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We introduce JUNE, an open-source framework for the detailed
simulation of epidemics on the basis of social interactions in a
virtual population constructed from geographically granular
census data, reflecting age, sex, ethnicity and socio-economic
indicators. Interactions between individuals are modelled in
groups of various sizes and properties, such as households,
schools and workplaces, and other social activities using
social mixing matrices. JUNE provides a suite of flexible
parametrizations that describe infectious diseases, how they
are transmitted and affect contaminated individuals. In this
paper, we apply JUNE to the specific case of modelling the
spread of COVID-19 in England. We discuss the quality of
initial model outputs which reproduce reported hospital
admission and mortality statistics at national and regional
levels as well as by age strata.
1. Introduction
The spread of SARS-CoV-2 in populations with largely no
immunological resistance, and the associated COVID-19 disease,
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have caused considerable disruption to healthcare systems and a large number of fatalities around the

globe. The assessment of policy options to mitigate the impact of this and other epidemics on the
health of individuals, and the efficiency of healthcare systems, relies on a detailed understanding of
the spread of the disease, and requires both short-term operational forecasts and longer-term strategic
resource planning.

There are various modelling approaches which aim to provide insights into the spread of an epidemic.
They range from analytic models, formulated through differential or difference equations, which reduce
numerous aspects of the society–virus–disease interaction onto a small set of parameters, to purely
data-driven parametrizations, often based on machine learning, which inherently rely on a probability
density that has been fitted to the current and past state of the system in an often untraceable way. As
another class of approaches, agent-based models (ABMs) are particularly useful when it is necessary to
model the disease system in a spatially-explicit fashion or when host behavior is complex[.] [1, p. 2:5].1 Being the
traditional tool of choice to analyse behavioural patterns in society, they find ample use in
understanding and modelling the observed spread of infections and in leveraging this for intermediate
and long-term forecasting [3–5]. Such models also provide the flexibility to experiment with different
policies and practices, founded in realistic changes to the model structure, such as the inclusion of new
treatments, changes in social behaviour and restrictions on movement.

To simulate pandemics, specific realizations of ABMs, individual-based models (IBMs), have been
developed in the past two decades, for example [6,7]. In these models, the agents represent individuals
constituting a population, usually distributed spatially according to the population density and with the
demographics—age and sex—taken from census data.2 Within the existing taxonomy of agent-based
models in epidemiology, see for instance [8,9], these models often use a disease-specific modelling
framework. Interactions between individuals in predefined social settings, systematically studied for the
first time in [10], provide the background for disease spread, formulated in probabilistic language and
dependent on the properties of the individuals and the social setting. The sociology of the population and
the transmission dynamics are constrained separately using external datasets and available literature, and
connected in the description of the spread of the disease. Calibration of such models to observed disease
outcomes, such as hospital admission and mortality rates, is therefore reduced to the specific interface
between the disease and the varying physiology across the broad population. Policy interactions and
mitigation strategies can be flexibly encoded in detail as modifications of the social setting, and allow
precise analysis of their efficacy that is not readily available in other approaches.

Evidence from disease data such as COVID-19 fatality statistics suggests that case and infection fatality
rates are correlated, amongst other factors, to the age and socio-economics status of the population exposed
to the etiological agent [11]. This necessitates the construction of a model with exceptional social and
geographic granularity to exploit highly local heterogeneities in the demographic structure. In this
publication, we introduce a new individual-based model, JUNE,3 a generalizable modular framework for
simulating the spread of infectious diseases with a fine-grained geographic and demographic resolution
and a strong focus on the detailed simulation of policy interventions. JUNE reaches a geographic
resolution of societal factors similar to models that focus on single-site infection models, such as [12],
where space, location and distance are carefully modelled. In addition, similar to approaches such as
the STHAM model [13], the individuals in JUNE follow detailed spatio-temporal activity profiles that are
informed by available data including time surveys, geographical and movement data. In contrast to
such models that are usually constrained to a few tens of thousands of agents, JUNE simulates,
simultaneously, the full population of a country in its spatio-temporal setting, and how a disease
spreads through its population mediated by contacts between individuals. JUNE allows for flexible and
precise parametrizations of policies that affect groups of individuals selected according to any of their
characteristics. This allows modelling of policies to mitigate the further spread of a disease, realized as
changes and restrictions on movement, to which we add the effectiveness of changes in social
behaviour such as social distancing. The major cost for this level of detail in the model is in
1Indeed, many models also feature some optimizing behaviour of individuals as artificial intelligence-type actors against randomly
drawn welfare functions, e.g. [2].
2We will use the term ‘sex’ in regard to chromosomal differentiation throughout this paper rather than gender. At the time of writing a
full classification of the impact of chromosomal sex versus gender identification on the epidemiology of COVID-19 is unavailable.
Within our modelling framework, nested and non-nested identifiers can be constructed to map sex and gender should more
granular statistical data be available.
3A full open source code base and implementation examples are linked here: GitHub: https://github.com/IDAS-Durham/JUNE and
PyPI: https://pypi.org/project/june/. The version used for this paper is v. 1.0
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computational load; indeed, models such as JUNE would probably not have been possible prior to 2010

without using a prohibitive amount of computing power, see for instance [14].
As a first application of JUNE, we model the spread of COVID-19 in England. In this context, JUNE uses

census, household composition and workplace data to ensure that each of the 53 million people in
England are assigned a specific, identifiable location at any point in time. Their activities, health, age
and other demographic attributes are then modelled at a fine-grained geographical level, which helps
to ensure that local heterogeneity in population and movement characteristics are well recovered. This
societal structure, generated by the model, is validated against a series of datasets (among others this
includes: surveys of household size and composition, location and size of businesses, size and type of
schools by region). The calibration to observed data from the actual spread of SARS-CoV-2 is then
limited to how the virus is transmitted in the community through person-to-person ‘contacts’ (in the
sense of sufficient proximity and timing to transmit). This component of the infection is calibrated to
the spatio-temporal development of hospitalizations and casualties during the COVID–19 outbreak in
England, starting in early March 2020. Preliminary observations demonstrate that a detailed large-
scale model of this type has important implications for intermediate- to long-term modelling of the
SARS-CoV-2 spread in the UK and elsewhere.

The remainder of this paper is as follows. Section 2 provides an overview of the structure of the JUNE

framework. In §3, we detail the construction of a virtual population including a variety of demographic
attributes. For the example case of England, we demonstrate that the constructed population reproduces
the distributions of age, gender, ethnicity, socio-economic indices and the composition of the households
they live in, all with a granularity of a few hundred people. The static properties of the population also
include the assignment of students to schools and universities and of employment in companies dis-
aggregated by 21 industry sectors. In §4, we discuss the dynamics of the population model. We
demonstrate how JUNE correctly reproduces the average time-profile of daily activities of individuals in
England. We also describe in detail how we reconstruct movement and daily commute patterns based
on publicly available data. Social interactions in various settings are modelled through parameters
informed by social mixing matrices derived from surveys such as PolyMod [10] and the BBC
Pandemic project [15]. In contrast to other models, JUNE also incorporates interactions in various social
venues such as pubs, restaurants, cinemas and shopping, outside the more structured settings of
households, workplaces and schools. Section 5 introduces the generalizable disease model with
specific applications to COVID-19—its transmission properties and the impact it has on infected
individuals. We employ a probabilistic model for the former, while for the latter we incorporate data
from the UK and other countries to characterize the journey of infected people through the healthcare
system. In §6, we describe how JUNE models the impact of various policy interventions and other
mitigation strategies. In §7, we show some first indicative results of JUNE highlighting its potential for
future, more detailed studies. Section 8 introduces our approach to fitting the model using Bayesian
emulation. We summarize our work in §9, and conclude the paper with discussion of future work
and improvements to the model.
2. The structure of the JUNE modelling framework
The JUNE framework is built on four interconnected layers: population, interactions, disease and
policy, the layers and their interfaces are illustrated in figure 1. In the context of this publication, we
focus on the application of JUNE to England’s population, the spread of the COVID-19 disease, and
policies that have been enacted by the UK Government in 2020. Clearly, a different population with
different behavioural patterns will not only affect the distribution of individuals according to their
personal characteristics, but it will also necessitate the adaptation of e.g. social venues to these
patterns and corresponding changes to the population and interactions layers. Similarly,
modifications to the disease layer will allow application of the JUNE framework for a different
disease or, possibly, even a range of competing diseases. This flexibility and adaptability is even more
pronounced in the policy layer where the introduction of new policies in reaction to an epidemic
depends on behavioural patterns or societal norms.

The population layer encodes the individuals in the model and constructs static social
environments such as the households they live in, the schools and universities they study in, and the
workplaces where they work. The construction of the virtual population is informed by demographic
data such as age, sex and ethnicity distributions, the geographical location of their residence, and its
composition. Depending on their age, individuals will attend school or university, work, or be retired.
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The interaction layer models the social interactions of individuals, based on data about the
frequency and intensity of contacts with other people in social settings. In addition to daily patterns
of regular interactions with fixed groups of individuals such as household members, students and
teachers in schools, and work colleagues, the interaction layer also models more randomized
interactions. These include daily commute patterns to and from work, and more dynamic activities
such as visits to restaurants, pubs, cinemas and visits to other households.

The disease layer, which sits on top of the population and interaction layers, models the
characteristics of disease transmission and the effects it has on those infected. In terms of disease
transmission, the model incorporates the varying susceptibility of individuals, how likely individuals
are to become infected when they mix with others in various locations, and how infectious they are
over the course of their infection. In terms of disease progression, the model captures how likely
individuals are to experience symptoms with varying severity, to be hospitalized, to be admitted to
intensive care, or to die, as well as the timings associated with these events.

In response to the spread of a disease through its population, a government might introduce policy
measures designed to control and reduce the impact of the disease. In the case of COVID-19 in England
and many other countries, policies have included social distancing measures, the closure of schools, shops,
restaurants and other leisure venues, and restrictions on movement. In JUNE, these are modelled in the
policy layer. The high level of detail present in the population and interaction layers allows
policies to be modelled at a corresponding granularity. This enables JUNE to describe the impact of policies
that can be applied to specific geographical regions, to specific venues or sectors, or to individuals with
specific characteristics. Examples include, but are not restricted to, the closure of targeted different types of
(or even singular) venues, the inclusion or exclusion of specific age groups when going to school, shielding
of the older parts of the population, modification to inter-household visits, and self-isolation measures for
infected individuals and their contacts, including variations of compliance with these measures.
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Figure 2. Graphical representation of how the census data for England are structured, from the level of local authority districts
(LAD), down to the level of output areas (OA), with middle layer super output area (MSOA) in between.
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3. Population and its static properties
JUNE creates a detailed virtual population at the individual level through its population layer, using a cross-
section of demographic and geographic information. Since JUNE relies on multiple datasets, and is built to
dynamically adapt to varying types of input, the approaches described in this section are generalizable to
other settings with similar or complementary data availability. Given that different settings, e.g. countries,
may have different methods and types of data collection, many of the input parameters described here are
optional, allowing JUNE to be more easily adapted to differences in reporting.

3.1. Geography and demography
To facilitate generalizability acrossmultiple settings, JUNEmodels the geographic distribution of a population
using a hierarchy of three layers—regions, super areas and areas. Layering these geographies allows the
use of data at different levels of aggregation and enables simple statistical projections of data between
these levels.

For the case of England, the construction of the virtual population in JUNE is largely based on data
from the latest UK census, which was carried out in 2011. This data is accessible through NOMIS, an
open-access database provided by the Office for National Statistics (ONS), and each dataset varies in
its degree of aggregation. The three hierarchical geographical layers represented in figure 2 are:

1. regions—London, East Midlands, West Midlands, the Northwest, the Northeast, etc.;
2. super areas—approximately 7200 middle layer super output areas (MSOAs);
3. areas—approximately 180 000 output areas (OAs).

The individuals in JUNE’s virtual population are constructed according to age and sex disaggregated
information, the minimal information required by JUNE. In the case of England, the ONS census data
provides this information at the OA (area) level [16,17] such that JUNE naturally captures the
population density at the most fine-grained level. In figure 3, we show age distributions in different
regions. We use data derived from the ONS to additionally assign one of five broad ethnic categories
to individuals based on their age, sex and location of residence [18] and follow a similar procedure for
the socio-economic index, which we divide into centiles, according to the ranked English Index of
Multiple Deprivation (IMD) [19].

3.2. Household construction
The virtual population within JUNE is placed into households of varying types. Depending on the
structure of the available public records, households in JUNE can be allocated with an arbitrary degree
of granularity, taking into account multiple demographic attributes.

For the UK the ONS census datasets provide a detailed record of both household type and
composition in England at the OA (area) level. That is, for each OA there is a set of summary statistics
across a number of criteria, choices can then be made in regard to aggregating those frequency
measurements at different resolutions. In term of data categories for households, the OA (area) level
provides the following occupancy type counts: single, couple, family, student, communal and other
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[20], and further specifies them by the number of old adults, aged over 65, adults, dependent adults (such
as students) and children, providing around 20 distinct classes contingent on the underlying census
information. Given the data structure, it is impossible to recover the exact composition for each
household type. For example, the number of non-dependent children (people over the age of 18 living
with their parents), the number of multi-generational families, and the exact distribution of adult
groups sharing a household are not specified in these datasets. However, these features can be
statistically extrapolated using a mix of further secondary data and validated against various
aggregate survey information at the regional and national level.4 Households are populated iteratively
giving preference to those household types with the most precise available data. The exact procedure
for the UK is documented in appendix A.1.

Similarly, to households, care homes are classified by type, positioned and populated using ONS data
[21] at the OA (area) level. The ONS collects information on the age distribution and sex of residents of
communal establishments at the MSOA (super area) level [22]. By combining these datasets, we infer the
age and sex distribution of the care home population.

Other communal establishments specified in the census, including student accommodations and
prisons can be flexibly added with sufficient datasets. Within the presented version of JUNE we do not
model explicitly the age and sex distribution of these other communal establishments, however, since
the age and sex distribution of the OA (area) level’s population will be biased towards these
communal residents, their resident characteristics are deemed to be realistic. Cross-checking of case
studies suggests that the communal allocation does capture the age and sex very accurately.

3.3. Construction of virtual schools and universities
Schools and universities are two locations where a resident population will visit and interact. Every
location can have universal and specific attributes flexibly initiated within the modelling framework
depending on the detail of available information. From public records JUNE locates and enrols schools
according to their precise geo-coordinates and the publicly reported age ranges and numbers in
attendance at each school. Students are sent to one of the n nearest schools to their place of residence,
according to which schools cater for their age. We form year groups which include all students of the
same age. The formation of year groups, and classes within them, allows JUNE to control mixing
within and between children of different ages within the school environment.

To model schools in England, we use data provided by [23] to determine the location of schools
and their age brackets. Based on the current enrolment requirements for the UK, we assume that
children between the ages 0–19 can attend school, with mandatory attendance between 5 and 18.
Since 19-year-olds can attend school, university, work or none of these, the institution they attend is
determined by the number of vacancies in schools accepting students of that age group. We send
children to one of the n = 10 nearest schools where classes sizes are limited to 40. One way in which
we validate our assumptions is by comparing average travel distance to schools of different types.
In JUNE, we find 1.7 and 5.0 km for primary and secondary school students, compared with 2.6 and
5.5 km, respectively, from the 2014 national travel survey [24]. Teachers are allocated to a school by
randomized sampling from the available population—i.e. people over the age of 21 (to allow them to
4A forthcoming publication will discuss the use of secondary data to further constrain the uncertainty in the household construction
and the subsequent impact on simulating the spread of COVID–19.
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have attended university), who live in the same MSOA (super area) as the school, and who have been
assigned ‘Education’ as their work sector (see next section for more details on work sectors). The
number of teachers assigned to a particular school, and therefore the number of classes, is determined
by sampling the ratio of students to teachers from a Poisson distribution with mean equal to the UK
national average, separately for primary (mean of 21) and secondary schools (mean of 16), or a
random choice of the two for mixed schools [25]. JUNE’s recovered student–teacher ratios are 22.0 and
17.8 for primary and secondary schools, respectively.

Similarly, universities are located according to their address as recorded in the UK Register of
Learning Providers (UKRLP) [23]. Students are enrolled in a university using the UKRLP enrolment
data. The enrolled students are assigned from a subset of the local population to the university,
reflecting the fact that the ONS census uses the term-time address of students.

Students are sampled from adults between the ages 18–25 with a preference given to those previously
assigned to living in student or communal households in a given radius around the university. The
concentrations of students expected by JUNE in a particular area can be matched to secondary data on
student living within any given city in the UK. Figure 4 shows an example of a university city,
Durham, in which we highlight the modelled regions inhabited by students. To date, we have not
explicitly constructed the employees at universities and their interactions with the student body.
3.4. Construction of workplaces
Workplaces are constructed for the subset of the population in employment according to public records.
We divide employment structures into three categories: work in companies with employees; work
outside fixed company structures; work in hospitals and schools. The number of employees in each
MSOA (super area) is data driven from the workforce information in that specific MSOA. To
distribute the workforce over workplaces, JUNE first initializes companies based on data containing
their locations, sizes and the sectors in which they operate. In a next step, individuals who are eligible
to work (i.e. between the ages of 18–65) are assigned an industry sector based on the geographical
distribution of where the workforce live by sector. This results in origin–destination matrices which
are used to match workers to their workplace and to optimize the distribution of individual company
to reproduce sector-dependent distributions.

In England, the ONS database contains information on companies and workforce structured by
industry type. Industries and companies are categorized according to 21 sectors following the
Standard Industrial Classification (SIC) code convention [26] (table 1) and information about company
numbers per sector, and company sizes is available at the MSOA (super area) level [27]. Similarly, the
ONS data also contain the size and sex distribution of the workforce by sector at the MSOA level, as
well as the location of their employment [28,29]. This enables the construction of an origin–destination
matrix and allows us to distribute the workforce accordingly. More details on this specific procedure
for initializing companies in JUNE and matching working individuals to these companies can be found
in appendix A.3.



Table 1. Standard Industrial Classification (SIC) code identifiers for the 21 workplace sectors modelled in JUNE and used by the
ONS to categorize companies [26].

SIC code
identifier description

A agriculture, forestry and fishing

B mining and quarrying

C manufacturing

D electricity, gas, steam and air conditioning supply

E water supply; sewerage, waste management and remediation activities

F construction

G wholesale and retail trade; repair of motor vehicles and motorcycles

H transportation and storage

I accommodation and food service activities

J information and communication

K financial and insurance activities

L real estate activities

M professional, scientific and technical activities

N administrative and support service activities

O public administration and defence; compulsory social security

P education

Q human health and social work activities

R arts, entertainment and recreation

S other service activities

T activities of households as employers; undifferentiated goods-and services-producing activities of

households for own use

U activities of extraterritorial organizations and bodies
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The resulting distribution of our procedure assigning individuals an industry sector can be seen in
figure 5. JUNE captures many of the sex-dependent features of the job market such as females dominating
the healthcare profession and males the manufacturing sector. Recovering these sector-level sex
imbalances can be crucial to reproducing and predicting potential sex imbalances in disease spread.

JUNE locates employment using data specifying the physical position of, for instance, company buildings.
This, however, does not capture othermodes of employment.Wemodel peopleworking fromhome through
the specification of single-person companies in the same location as their place of residence. It should be
noted that we do not currently explicitly model those workers who may not work in formal company
buildings but also do not work from home, such as contractors who may interact with a household of the
people they are visiting for building improvements or maintenance work.

Hospitals play a dual role in JUNE, both as an essential part of patient’s possible medical journey and
as workplaces. We will discuss the role of hospitals for the former case in §5. For both purposes, hospitals
are initialized like many other locations in JUNE, based on available data regarding their location and
capacity. Hospitals can be modelled individually or as clusters; in the latter case we represent the full
cluster by one hospital. For our simulation of COVID–19 in England, we define the relevant National
Health Service (NHS) trusts as those that reported disease-related casualties—this amounts to a total
of 129 trusts—and we cluster them into single hospitals.5 The clustering of hospitals is in fact a better
representation of the situation in England. The aggregation of data by NHS trust allows for a more
detailed comparison of the number and geographical spread of hospital admissions with available
data. We assign medical workers to hospitals based on the same origin–destination matrix at the
MSOA (super area) level as derived above, by choosing from those who work in the healthcare
5Some NHS trusts share resources and exchange patients across regions in an ad hoc manner; however, this is not modelled explicitly.
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sector (Q), with the additional constraint of assuming a fixed ratio of 10 hospital beds per medic–nurse or
doctor. Teachers are chosen from the population in a similar matter by using the origin–destination
matrix and choosing from those in the education sector (P).
6

4. Simulating social interactions
The interation layer maps the spatial movement, location and intensity of social interactions, of the
virtual population. To ensure a close match to real-world dynamics, summary information on the
virtual population is calibrated to equivalent observed summary data. Comparable IBMs, such as
[6,7], simulate social interactions in either static environments, such as households, schools, or
workplaces, in a similar manner to that described in the previous section, or in a less specific way
determined by gravity models. By contrast, JUNE allows for the specification of additional social
settings, and directly connects them to geographical locations, such as shops or restaurants. We can
also model transport routes of different types between specified geographical start- and end-points.
This granularity is further increased through the addition of social mixing matrices which parametrize
differences in frequency and intensity of contacts between individuals in various settings [10,30].

4.1. A virtual individual’s day
Calendar days, decomposed into time-steps of varying length given in units of hours, are the background
for our simulation of the social interactions of our virtual population.

Time in JUNE occurs in discrete time-steps of varying length measured in hours. Every time-step in
JUNE is tagged to a calendar day. The use of calendar time allows JUNE to distinguish between week-
day and weekend activity profiles, which is relevant for time spent at work or in school. Each day can
have a number of fixed, static, activities, such as 8 h of work at the workplace or 10 h at home
overnight, supplemented with other activities, denoted as ‘other’, that are distributed dynamically.
Time-steps apply to all individuals, and are chosen to best approximate an ‘average’ individual’s day.
The default time-steps are described more explicitly in appendix B. During each time-step in which an
‘other’ activity is allowed, each person who is not otherwise occupied, for example they are working
or ill and in hospital, is assigned a set of probabilities for undertaking other activities in the model.
These probabilities are part of a flexible social interaction model and depend on the age and sex of
the person.6 Given N possible activities with associated probabilities per hour given by λ1,…, λN, for
a person with characteristic properties {p}, the overall probability P of being involved with any
activity in a given time interval Δt is modelled through a Poisson process,

P ¼ 1� exp �
XN
i¼1

li({p})Dt

 !
: (4:1)
6These probabilities can be generalized to depend on any attributes of the individual given reliable data.
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If the individual is selected to participate in one of these activities, the chosen activity, i, is then selected
according to its probability

Pi ¼ li({p})PN
j¼1 lj({p})

: (4:2)

The person is then moved to the relevant location corresponding to this activity. If no activity is selected,
the individual will stay at home.

A summary of how much time is spent each week on various activities as a function of age is reported
in figure 6a. In figure 6b, we show a comparison of the amount of time spent at home, work, grocery
shopping, eating at restaurants/pubs and commuting, between JUNE and the UK Time Use Survey,
2014–2015 [31]. Care home and cinema visits are not accounted for in the time survey.

4.2. Localized activities
Within JUNE social activities outside the static home, work and school settings can be specified and given
their own specific interaction model. Indeed, collections of sub-models can be specified, with
substitutable activity choices. For instance, for the English population, these activity models are
informed and parametrized by time surveys available from the ONS [29], which identify a variety of
activity types including time spent at home, work or in school. In addition, we have identified five
additional settings which we assume are similarly relevant for the spread of the disease and have a
similar level of social mixing: visits to pubs or restaurants (pubs), cinema visits (cinemas), shopping
(groceries), visiting friends or relatives in their homes (household visits), or visiting family members
in care homes (care home visits).

For England, we have located 120 000 pubs and restaurants according to their geo-coordinates, as
well as 32 000 stores and 650 cinemas, with data from OpenStreetMap [32]. Each time a person is
assigned to any of ‘pubs’, ‘groceries’ or ‘cinemas’, we pick a random venue from the n venues closest
to their place of residence, or the closest venue if the distance to any of them is greater than 5 km. We
have chosen n = 7 for pubs, n = 15 for shopping stores and n = 5 for cinemas. Note that there are no
permanent ‘workers’ in these venues who return to a single venue daily; only ‘attendees’ who choose
their venue at random. Further locations such as gyms and places of worship can be easily added to
the activity model, and, of course, it can easily be adjusted to other societies.

In addition, wemodel interactions in naively constructed social networks, by linking each household to a
list of up to N other households in the same super area. One of the households in this list is selected if
‘household visits’ is chosen as activity during a time-step. Residents will stay at home to receive the
incoming visitor, who in turn may also bring their whole household with them according to a probability
described by an external parameter. Comparison with national surveys suggests that setting the number
of linked households N ¼ 3 provides realistic movement profiles. While care home residents in JUNE
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cannot visit other people, each resident is connected to a household of them in the local super output area
from whom they can receive visitors. JUNE also models the interactions that result from elderly people
needing help in their daily activities. Each person older than 65 years old has a probability, increasing by
age, of needing some kind of assistance in their daily activities. We therefore assign a member of the local
super area to be the carer of an elderly person, following the data available in [33]. Every weekday, the
carer spends their leisure time visiting the household of the person needing domestic care.

4.3. Modelling mobility: commuting patterns
Mobility is modelled in JUNE through a number of transport types that collect and move the virtual
population within a pre-specified region or connecting regions within a simulated country. JUNE

permits an arbitrary number of transport networks of different types with different interactions (e.g.
bus networks, train networks and road networks). For any given movement of the population JUNE

ensures that each individual is singularly accounted for with an equivalent end or return location.
Travellers move between nodes on these transport networks, and may share their means of
transportation and potentially interact in a time consistent manner.

To model commuting and rail travel in England we use data provided by the UK Department for
Transport [34]. Large metropolitan areas are selected as the major transit node for the network.
Commuting induces social mixing between many people who may not normally come into contact and
reflects the importance of transport as a mechanism for promoting the geographical spread of infection
supplementing the spread from individuals moving to a new location and infecting other individuals at
that location.

To fill our origin–destination matrix we use information contained in the ONS database concerning
the mode of commuting of individuals at the area (OA) level [35], to distribute commuting modes
probabilistically. We define two modes of public transport, ‘external’ which defines those commuting
in and out of metropolitan areas, and ‘internal’ which defines those commuting within these areas.
Metropolitan areas are defined using data obtained from the ONS [36]. For the sake of computational
efficiency, we model only the travel patterns of those working inside metropolitan areas, who in fact
represent the overwhelming majority of public transport commuters. This includes commuters who
live and work in the city, as well as those who are entering the metropolitan area from outside. The
number of internal and external commuters by city in England is given in figure 7. The cities included
are geographically spread across England thereby accounting for major commuting patterns in most
regions modelled. In total, we explicitly model commuting into 13 out of a possible 109 cities in
England, which accounts for 60% of all metropolitan commuters and 46% of all those using public
transport to commute to work. Figure 8 shows maps of the residences of internal and external
commuters in two cities in our model, where the inner section in white denotes the respective
metropolitan areas. Specifically, from figure 8b, we can see that, given the large commute radius of
cities like London (we observe a similarly large radius for Birmingham and several other cities),
commuting can be a key driver for the inter-regional spread of infectious diseases.



(a) (b)

1000

2000

3000

4000

800

600

1000

1200

1400

1600

400

200

Figure 8. Commuting maps for London as derived from JUNE. Any visible super area (MSOA) which is not completely white has at
least one commuter from that location. (a) Number of internal commuters in London. (b) Number of external commuters in London.

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.8:210506
12
Travelling within a metropolitan area, i.e. the internal commuting mode, is modelled as a self-
connected loop—practically speaking this means that internal commuters may in principle interact,
irrespective of the actual movement inside the city. For external commuting, the travel into and out
from the metropolitan area, we identify shared routes for commuters living in neighbouring areas and
super areas. The number of possible routes into each city, and therefore the number of ways to divide
regions around the cities, is informed by the approximate number of rail network lines into each
city—currently this is set to eight in London and four for each of the other 12 cities [37].

We randomly partition people sharing the same commuting route into subgroups, ‘carriages’, which
define the environment in which social interactions take place. The commuting time-step is run twice a
day and in each run the travellers are randomly distributed into carriages. The number of people per
carriage is determined by city-dependent data obtained from the UK Department for Transport [34].
More details on the specific algorithm for modelling commuting in JUNE can be found in appendix A.4.

4.4. Social interaction frequencies and intensities
Social contact matrices [10,15] provide information about the age-dependent frequency and intensity of in-
person contact in different social settings, an important ingredient to many epidemiological simulations.
They measure the average daily number of conversational and physical contacts between individuals of
different ages. This means that they are normalized to the size of the population in the respective age
bins, but do not account for whether they can take part in such contacts. To use them within JUNE, we
therefore have to account for the fact that social settings define the group of people coming into contact
with each other. To exemplify this, consider the case of contacts between adults and students in schools.
While the social contact matrices in the literature normalize the number of contacts of a 30-year-old with
children of a certain age to the number of 30-year-old adults in the population, in JUNE only a subset of
30-year-old adults work as teachers and can therefore interact with the children. In the construction of
matrices specific for JUNE, we therefore combine the results from [10,15] with simple assumptions about
possible participants in contacts.

Averaging over age ranges in different settings, we arrive at simplified socialmixingmatrices, xLsi , which
will be comparable to the inputs from literature upon combination with the model results for the
composition of social environments. Below we list our simplified social mixing matrices inferred from
the literature, with L [ {(H), (S), (W)} (home, school, workplace), as well as the relative proportions,
fL
si , of physical contacts. The latter are relevant, since in line with standard approaches, closer physical

contact in JUNE is proportional to a higher propensity for transmission for the etiological agent.
For the households social mixing matrices, we define four categories, young children (K), young

dependent adults of age 18 or more (Y) that still live with their parents, adults (A), and older adults
(O) of age 65 and over. We use

x(H)
ij ¼

1:2 1:69 1:69 1:69
1:27 1:34 1:47 1:50
1:27 1:30 1:34 1:34
1:27 1:50 1:34 2:00

0
BB@

1
CCA and f(H)

ij ¼
0:79 0:70 0:70 0:70
0:70 0:34 0:40 0:40
0:70 0:40 0:62 0:40
0:70 0:40 0:40 0:56

0
BB@

1
CCA: (4:3)
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For household visits, we make the simplifying assumption that the same matrices also describe the

contacts between visitors and residents. For visits to care homes, we believe that visitors come into
contact only with residents and care home workers, and not with other visitors. We therefore
hypothesize six conversational contacts with residents and 1.5 with care home workers.

Social contacts in schools identify teachers (T) and students (S); the latter are organized in year
groups and further divided into classes of up to 40 students. In our age-averaging, we implicitly
assume that the number and character of teacher–student contacts is independent of the age of the
students. Student–student contacts are assumed to be most frequent within a class or year group, and
fall off steeply with the age difference. This behaviour is captured by fitting a matrix with values for
the age-diagonal elements and a fall-off per year age-difference by a factor of 3. Therefore we have

x(S)ij[{T, S} ¼
4:8 0:75
15 x(S)SS

� �
and f(S)

ij[{T,S} ¼
0:05 0:08
0:1 f(S)

SS

� �
, (4:4)

with the student–student matrices taking the following form

x(S)SS ¼
2:5 0:75 0:25 . . .
0:75 2:5 0:75 . . .
0:25 0:75 2:5 . . .

..

. ..
. ..

. . .
.

0
BBB@

1
CCCA and f(S)

SS ¼ 0:15 8i, j [ {S}: (4:5)

For the contacts at work, we do not take into account of any age-dependence and, in the absence of
data, do not model any sector-dependent variation of their number of intensity, thus

x(W)
si ¼ 4:8 and f(W)

si ¼ 0:07: (4:6)

In appendix C, we detail the algorithms used to construct the social mixing matrices used in JUNE

including the matrices for other locations not listed here.
These social mixing matrices in JUNE are defined for a setting-specific characteristic time tchar, so the

total number of contacts in a time interval Δt in a given setting is then modified by a factor Δt/tchar.
To validate these simplified matrices, we include them within JUNE where they are combined with the

composition of the specific social settings. In figure 9, we show the resulting contact matrices as
‘measured’ from the JUNE simulation. The effect of the combination with the composition is most
pronounced in the household matrices which exhibit textures that can be directly traced back to the
age intervals of children, dependent children/young adults, adults and older adults that JUNE inherits
from the ONS data. These matrices naturally recover much of the structure present in those recorded
in [10,15]. Further details on the methodology for extracting these matrices from JUNE can be found
in appendix C.5.
5. Infection modelling: spreading and health impact
The transmission of infection through social interactions described in the interaction layer, and the
progression of the disease and its impact on the individual, are both modelled in the disease layer.
Although we focus on the case of COVID-19 here, this layer is designed to be generalizable and can
contain more than one circulating etiological agent and or types of agent.

Throughout this section and the rest of the paper, we will use two definitions of COVID-19 ‘cases’.
The first is when we refer to cases in the model itself—here, a case of COVID-19 is an infected agent
which may be symptomatic or asymptomatic. The second is when referring to cases in reality—here, a
case is someone who has tested positive for COVID-19. Since the latter is subject to testing coverage,
capacity and efficacy, we do not use these for fitting or validation purposes.

5.1. Infection transmission
JUNE models the transmission of an infection from infecting individual, i, to susceptible individual, s, in a
probabilistic way. The probability of infection in a social setting within a group of people, g, at a location,
L, depends on a number of factors:

— the number, Ni, of infectious people i∈ g present;
— the infectiousness of the infectors, i, at time t, Ii(t);
— the susceptibility, ψs, of the potential infectee, s;
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— the exposure time interval, [t, t + Δt], during which the group, g, is at the same location;
— the number of possible contacts, x(L)si , and the proportion of physical contacts, f(L)

si , in location L, both
taken from equations (4.3)–(4.6) in §4.4;

— and the overall intensity, β(L,g), of group contacts in location L.

Most of these ingredients depend on the time, t, of the contact. For example, the number of contacts, x(L)si ,
and the proportion of physical contacts, f(L)

si , and the overall contact intensity, β(L,g), will change with the
implementation of social distancing policies. To simplify notation, we introduce a combined contact
intensity for a group g with size Ng at location L,

b
(L,g)
si (t) ¼ b(L,g) � x

(L)
si (t)
Ng

1þ f(L)
si (t) a(t)� 1½ �� �

, (5:1)

where the ratio χ/Ng provides a simple parametrization of the probability of s being in contact
with another individual in the group, and α(t) > 0 describes the relative impact of close physical
contacts. Both the factor α(t), which we assume to be the same for all locations, and the location- and
group-specific contact intensities, β(L,g), are taken from fits to data.7

In the construction of an infection probability for a susceptible individual, s, we make a number of
assumptions. First of all, we model the probability of being infected as a Poisson process. In keeping
with the probabilistic process, the argument of the Poisonnian is given by a sum over individual pairs
7In reality, the β parameters are fitted in a location-specific way, irrespective of the group—i.e. a location of type L in containing one
group of people, g1, and another location of the same type, but with a different group of people, g2, (e.g. two pubs in different places)
will have the same β.
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of infectious individuals with the susceptible person, implying a simple superposition of individual
infectiousness. The underlying individual transmission probabilities are written as the product of the
susceptibility of the susceptible individual, the infectiousness of the infected person, and the contact
intensity, all integrated over the time interval in which the interaction occurs. The integration over
time ensures that the transmission probability increases with the time of exposure. We therefore arrive
at the transmission probability, i.e. a probability for s to be infected as

�Ps(t, tþ Dt) ¼ 1� exp �cs

X
i[g

ðtþDt

t
b
(L,g)
si (t0)I i(t0) dt0

2
4

3
5: (5:2)

Note that in the actual implementation, we approximate the integral over time with a simple product,

ðtþDt

t
b
(L,g)
si (t0)I i(t0) dt0 �! b

(L,g)
si (t)I i(t)Dt: (5:3)

This leaves us to fix the last two ingredients in equation (5.2), the individual susceptibility, ψs, and
the infectiousness, I i(t). Contemporary peer-reviewed academic research on susceptibility to infection
by the etiological agent with or without the onset of disease symptoms is sparse and inconsistent.
Following some evidence, for example in [38] and [39], on transmission and susceptibility of
children (using the UN classification), we fix ψs = 0.5 for children under the age of 12, and ψs = 1 for
everybody else. The infectiousness of individuals, I i, changes with time, and it is not directly
measurable. To model its behaviour, we use the temporal dependence of viral shedding as a proxy for
infectiousness. Studies in the context of COVID-19 have shown that viral shedding peaks at or slightly
before the onset of symptoms, and then begins to decrease [40]. In JUNE, we use a globally defined
temporal dependence of infectiousness, fI(t), and multiply it with a peak value, I i,max, which depends on
the infected individual,

I i(t0) ¼ I i,max � fI(t0): (5:4)

We choose the maximal infectiousness according to a log-normal distribution parametrized by its median
exp (μ) = 1 and shape σ = 0.25. The long right tail of the log-normal distribution allows for small numbers
of highly infectious individuals more likely to precipitate superspreading events (SSEV). We also capture
the conjectured reduced infectiousness of individuals with no or only mild symptoms. Following a similar
parametrization to that in [41], we multiply the maximal infectiousness of asymptomatic individuals by
0.5. In figure 10, we show an example of the time evolving profile for an infected individual in JUNE,
comparing the resulting infectiousness for different symptoms. For the time-dependent profile, we use the
gamma distribution as fitted in [40],

fI(t ¼ t0 � t0 � tinc, a) ¼ ta�1 e�t

G(a)
, (5:5)
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where t0 is the time of infection, tinc is the incubation period, sampled from a normal distribution centred at 2
days prior a possible onset of symptoms and with a width of half a day, a is the shape parameter of the
gamma distribution, and G(a) is the the gamma function.

5.2. Infection progression
When an individual is infected, they will experience different impacts on their health. Figure 11 presents
the paths available in JUNE for the progression of the infection that aim to capture different symptom
severities, outcomes, and their operational impact on the healthcare system, i.e. whether patients are
hospitalized or admitted to intensive care or treatment units (ICU/ITU). Once an individual is
infected, JUNE selects their specific complete path according to these probabilities. These paths are
codified as a sequence of possible different stages of the disease (infected, asymptomatic, mild, severe,
hospitalized, ICU/ITU, dead, recovered) in addition to characteristic time intervals for each stage. The
latter are chosen randomly according to probability functions informed by available data. The paths
terminate with the individuals either dead and taken out of the simulation, or recovered, in which
case their susceptibility is set to 0, making them immune to reinfection.8

JUNE distinguishes the following different routes for the progression of the infection with rates
depending on the characteristics of the infected individual (currently age, sex), summarily denoted by p:

1. asymptomatic individuals, rate RI→A( p), continue their life normally;
2. individuals with mild symptoms, rate RI→M( p), usually continue their lives as normal, except if

certain policies are activated;
3. individuals with severe but not lethal symptoms, rate RI→S( p), stay at home until recovery;
4. individuals with severe symptoms who will eventually die in their residences, with rate RI→DR( p);
5. individuals who are admitted to hospital but will recover, with rate RI→H( p);
6. individuals who are ultimately admitted to ICU/ITU before recovering, with rate RI→ICU( p);
7. individuals who are admitted to hospital and will die there, with rate RI→DH( p) and
8. individuals who are admitted to ICU/ITU and die there, with rate RI→DICU( p).

The determination of probabilities for the different paths is based on COVID–19 data that are not entirely
sufficient to develop a complete and detailed picture. As a consequence, we supplement them with
8JUNE could also model reinfection of individuals but to date there are no data constraining this in the context of COVID–19.



Table 2. Datasets used in the derivation of mortality and hospitalization rates. GP stands for people living in a household, and
CH stands for people living in care homes. If not specified, datasets involve people from both populations. All data is taken until
13 July 2020, consistently with the seroprevalence study [42].

quantity source

population by age, sex and residence type [47,48]

seroprevalence in GP by age [42]

seroprevalence in CH by age [44]

deaths by place of occurrence and residence type [43]

deaths profile by age and sex [43]

deaths in CH profile by age and sex [49]

hospital deaths profile by age, sex [50]

hospital deaths in CH profile by age, sex [51]

ICU/ITU deaths profile by age, sex [51]

total hospital admissions [52]

hospital admissions profile by age, sex [50]

ICU/ITU admissions profile by age, sex [51]

hospital admissions in CH profile by age, sex [51]
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assumptions by inferring some properties through cross-relating datasets. In the following, we will
outline our procedure which is largely predicated by our choice of the example at hand—the spread
of COVID-19 in England. We will use a notation where NX( p) denotes the number of cases satisfying
criterion X for people with characteristic properties p.

The construction of reasonable progression paths, and their probabilistic distribution, relies critically
on the knowledge of how many people have been infected, as well as the dependence on attributes such
as age and sex. COVID-19 tests between February and May 2020 in the UK were mostly administered to
people presenting symptoms or people that have been in close contact with confirmed cases in hospital,
thereby biasing the results. We therefore need to infer the number of infections from other controlled
studies, such as antibody tests. In [42], the seroprevalence, rsp( p), of COVID-19 in the adult
population in England was determined through a sample of more than 100 000 adults, showing a
reduction in seroprevalence with increasing age. Because the seroprevalence is an estimate of all
people that were infected up to the time of the test and—most importantly—survived, we need to
correct for those who died of the disease until this point. This turns out to be an important correction,
especially in older age bins due to the non-negligible probability of elderly who died. We therefore
add the age- and sex-dependent number of deaths, ND( p), reported by the ONS [43], to the
corresponding numbers inferred from the seroprevalence to arrive at the total number of cases, Ntot( p),

Ntot(p) ¼ rsp(p)N(p)þ [1� rsp(p)]ND(p), (5:6)

where N( p) is the total population number in England with characteristics p. We note that there were two
population groups excluded from the serology survey: people under the age of 18, and care home
residents. For the former, we assume that their seroprevalence by age is identical to the population
group aged 18, while for the latter, we set a flat seroprevalence by age at 11% value as reported in the
Vivaldi report of the UK Department of Health and Social Care [44] in the beginning of July 2020.

Health outcomes given a simulated infection are captured in RI→X, where X is one of the eight
trajectories listed in figure 11. The asymptomatic rate, RI→A, and the mild case rate, RI→M, are taken from
a calibration done in [41] from [45,46]. To calculate the different hospitalization and fatality rates, we
have used a series of datasets listed in table 2, all of them containing data until 13 July 2020, to be
consistent with the considered seroprevalence values. In order to avoid possible irregularities in our
results derived from the use of different data sources, we normalize all our death data to the ONS
reported numbers of total deaths (51 443), hospital deaths (32 164) and residence deaths (19 279), [43]
and then use more granular data to distribute deaths by age and sex for each place of death occurrence
[50,51]. Likewise, the total number of hospital admissions is taken from [52], and distributed by age, sex
and residence type also using [50,51]. The number of deaths in care homes reported in [53] is only
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reported by age until late June, so we assume that the distribution does not change until 13 July 2020. We
also ensure that we correctly account for differences in reporting times. As a first step, we calculate the
overall infection fatality rate (IFR) for the general population outside care homes (GP),

RGP
I!D(p) ¼

ND(p)�Nch
D (p)

Ntot(p)�Nch
tot(p)

, (5:7)

which can be directly compared with the results from the REACT2 study [42] (figure 12b), and the
Imperical College London COVID-19 report 34 [54] (figure 12a). The remaining rates just follow from the
same methodology,

RGP
I!X(p) ¼

NX(p)�Nch
X (p)

Ntot(p)�Nch
tot(p)

(5:8)

and

RCH
I!X(p) ¼

Nch
X (p)

Nch
tot(p)

, (5:9)

where X refers to one of deaths or hospital admission in the normal hospital ward or in the ICU/ITU. The
rate of non-hospital deaths is computed by subtracting the hospital death rates from the overall IFRs.
Finally, the probability of having severe symptoms but recovering at home is given by

RI!S(p) ¼ 1�
X
i=S

RI!Xi (p): (5:10)

The results of computing the individual infection outcome rates by age, sex and residence type are
shown in figure 13. The most important visible difference is the disparity on the fatality rates between
care home residents and the general population. This could be the reflection of various reasons,
including, for example, a generally poorer health condition of the care home population, or
differences in admission policies to hospitals. Consistent with the ONS data [53], most of the care
home deaths occur within the care home residence itself, while the probability of being admitted to
the hospital decreases with age. Likewise, both for the general population and the care home
population, people aged 55–70 years old are the group most likely to be admitted in the ICU/ITU.
Females are less likely in general to develop a severe infection of COVID-19, with fatality rates
roughly equivalent to those of a male 5 years younger.

Once an infection outcome has been determined, the infected individual follows a symptoms
trajectory composed of different stages. The time spent at each stage is sampled from different
distributions derived from different data sources. In table 3, we list the different stages per trajectory
by infection outcome, and the details on the various timings are listed in appendix D. In figure 14a,
we show the probability density functions for the incubation time, and the time to die or recover
in hospital.
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Table 3. List of different trajectories through disease progression, with stages and, in brackets, the distribution from which
corresponding timings are drawn. For their definition see table 7. The available stages are Infected, Asymptomatic, Mild and
Severe symptoms, admitted to a regular Hospital or an ICU/ITU ward, and, finally, as outcomes, Recovered or Dead.

trajectory stages

asymptomatic I[βI] A[C14] R

mild I[βI] M[C20] R

severe I[βI] M[C20] S[C20] R

death at home I[βI] M[LNM] S[C3] D

ward I[βI] M[LNM] H[βH] M[C8] R

death in ward I[βI] M[LNM] H[βD] D

ICU/ITU I[βI] M[LNM] H[LNICU] ICU[eICU] H[eH] M[C3] R

death in ICU/ITU I[βI] M[LNM] H[LNICU] ICU[eD] D
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5.3. Seeding infections
In the absence of sufficiently detailed knowledge of how epidemics arrive in a country, we seed
infections using secondary information such as the number and regional distribution of observed
cases. In the example of the simulating the spread of COVID-19 in England, we use the number of
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COVID-19-related deaths recorded in hospitals to estimate initial infection numbers and their regional

distribution. Accounting for the time delay between infection and possible death, and for the
probability of admitted patients to die, we have

Ntot(t, x) ¼ 1
�RH!D(x)

NH!D(tþ DtD, x), (5:11)

where Ntot(t, x) is the estimated number of cases in a region, x, on day, t, NH→D(t, x) is the number of
observed deaths in the region at date t, and �RH!D(x) is the rate for people dying in hospital in the
region x, where the average over the characteristics p is given by

�RH!D(x) ¼ 1
NH!D(tþ DtD, x)

X
i[NH!D(tþDtD,x)

RH!D(pi): (5:12)

The relatively large statistical fluctuations in the initial phase of an epidemic, and possibly differing
time profiles across regions, translate into the need for a region-specific seeding. This difference is
highlighted by contrasting the seeding for London, where we introduce initial infections over two
days only (28–29 February 2020) with the northeast of England and Yorkshire, where we seeded
infections for a week, 28 February–5 March 2020. We introduce the estimated number of daily cases in
each of the regions until the following criterion is met,

Ntot(t , T(x), x) . 0:1Ntot(tmax, x), (5:13)

where T(x) is the number of days over which we seed new infections in region x, and Ntot(tmax, x) is the
maximum number of cases that region x would reach in any given day, estimated from the maximum
number of daily deaths in hospital. It is important to define the seeding for the infection based on the
maximum number of cases each region will have, since the different regions are experiencing different
stages of the epidemic at any given time.
6. Mitigation policies and strategies
Policies and interventions, often enacted by governing bodies, are introduced in an attempt to mitigate
and control the spread of infectious diseases. In general, such policies are highly dependent on the type
of infection and social norms in the affected population, and may include guidelines on how to change
individual patterns of behaviour or the closure of certain venues where transmission is estimated to be
highly likely. The modular nature of JUNE allows policies to be dynamically activated and deactivated at
different points in time to allow for changes in policy decisions. Due to JUNE’s granularity, these policies
can be implemented at a highly localized level: by type and place of social interactions, by geographical
region, by industry sector or venue type. JUNE can also model the population’s compliance with the
measures, again with high granularity. In this section, we present a variety of policies which can be
implemented in JUNE and exemplify their application through those measures that have been enacted
by the UK Government to mitigate the spread of SARS-CoV-2.

6.1. Behavioural changes
There are a variety of changes in behavioural patterns that are designed to reduce the probability of viral
transmission, ranging from simple social distancing, increased hygiene and mask wearing, to
quarantining of infected individuals or those who have been in sufficiently close contact with them,
and the shielding of vulnerable parts of the population. We model the impact of the former set of
measures, social distancing, increased hygiene and mask wearing, through multiplicative reductions in
the location-specific contact-intensity parameters, β(L,g), see figure 15 for an example. The impact of
compliance with social distancing and other, similar measures can be recorded both nationally and
sometimes even in specific locations. This allows us to calculate the reduction in the corresponding
intensity parameters as follows:

b(L,g) ¼ M(L,g)b(L,g) (6:1)

¼ 1� C(N) � C(L) � (1� E)
� �

b(L,g), (6:2)

where M(L,g) is the location- and group-specific modification factor, C(N ) is the national compliance (i.e.
percentage of the population following guidelines), C(L) is the compliance in a given location or social
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setting L, and E denotes the efficiency of the measure. Quarantining is simulated by keeping the
individuals in question in their homes for a certain amount of time, and allowing them to interact
with members of their household in an otherwise unchanged household setting only. In JUNE, we have
the ability to apply different policies to those with mild and severe symptoms, and to quarantine
household members of symptomatic individuals. Similarly, JUNE also allows the definition of
vulnerable individuals—typically by characteristics such as age—and of a prescription of how
shielding policies are enacted relative to this group.

We will now turn to discuss our choices for specific measures. There have been a variety of studies
on the effectiveness of social distancing with respect to COVID-19 and other infectious diseases.
A comprehensive systematic review and meta-analysis [55] suggested that the relative risk of infection
decreases by approximately a factor of 2 per metre distance. In practice, however, the efficiency of
social distancing is highly dependent on external factors, in terms of both physical and social
environment. We therefore use this literature as a benchmark, assuming on average 1m social
distancing, E = 0.5, and fit the effects of social distancing to data where possible (see §6.3).

We simulate mask wearing according to equation (6.2), i.e. by multiplicatively reducing the β
parameters in different locations. There is a significant body of literature on the effectiveness of mask
wearing, including differences based on the material of the mask and the locations in which they are
worn [55–57], as well as changes in efficiency due to re-using or washing them [58,59]. In general, we
focus on the wearing of masks by non-healthcare workers in settings outside the home and estimate
mask effectiveness, E, to be 50% [60], irrespective of the specific location. However, after adjustments
for compliance the actual, intensity parameter reduction may be much lower than this, which leads us
to believe that this represents a conservative estimate.

In JUNE, quarantining of infected people with mild or severe symptoms is relatively straightforward:
afflicted individuals do not leave their household for a predefined period of time—usually 7 to 14 days—
but do not change interaction patterns with the residents in their household. In some versions of
quarantine policies, household members must also stay at home and isolate themselves. This is
modelled in JUNE along the same lines, only the possibly time-dependent compliance of the
population with quarantine measures. Clearly, infected individuals with severe symptoms will always
stay at home, until they are either recovered, moved to hospital, or died. It should be noted that
quarantine sits on top of other, less individual-driven policy interventions included in JUNE which may
restrict movement, such as the closure of companies and leisure venues.

Given the additional danger infectious diseases may pose to the more vulnerable and elderly
populations, various policies, usually referred to as ‘shielding’ can be introduced with an aim to
protect these individuals. In JUNE, shielding is realized similar to quarantine: vulnerable individuals—
usually defined by their age or other characteristics—stay at home and do not interact with others
outside their household. Apart from the definition of relevant characteristics, this only leaves a
compliance probability to be introduced, which reduces the participation in any other social settings
other than households.
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6.2. Closure of venues

Mitigation strategies that aim at reducing infection transmission through changes in individual
behaviour may have to be further supplemented through partial or complete closure of certain parts
of public life such as companies, transport, schools and universities.

Starting with the closure of companies, JUNE can realise this important measure in a sector–specific
way. JUNE allows the definition of ‘key’ and ‘furloughed’ workers, again in a sector–specific way.
While the former represent those parts of the workforce that continue with their essential work as
usual, the latter never goes to work and instead is given the chance to take part in available leisure
activities or stay at home during regular working hours. For the rest of the workforce, JUNE allows the
definition of flexible work patterns by assigning daily probabilities for workers to go to their companies.

School and university closure is handled similarly to the closure of companies in JUNE. However, in
the case of schools, we are able to close individual year groups as well as entire schools, and we can
identify the children of key workers and have them continue going to school. Since the return to in-
person schooling may also be voluntary at certain points, or children may only go to school on certain
days of the week, we also can apply a compliance factor at the year group level, which is used to
probabilistically determine which children attend school on any particular day.

In addition to the partial or complete closure of companies in some industry sectors and of schools or
universities, government policies may also close or limit the number or people attending leisure venues,
such as restaurants and pubs, cinemas, or similar. In JUNE, we are able to fully or partially close different
types of leisure venues either nationally or at a more local level, down to super areas. Partial closure is
enacted through a change in the probabilities that people attend different venues, which is both sex and
age disaggregated. Modifications to other leisure activities, such as household visits, are also simple to
realize in JUNE, by directly modifying the daily probabilities for such activities to take place.

6.3. Policies in the UK
The population, interaction and disease layers of JUNE will have time inhomogeneous states and
parametrizations dependent on the public policy response and the response of individuals in
changing behaviour as an infection spreads. For ex-post analysis, policies can be imposed on the
simulation using a set of policy levers with varying effectiveness. For ex-ante prediction, scenarios of
responses to different policy combinations can be real-time of pseudo out-of-sample forecasted.

To simulate, ex-post, the spread of COVID–19 in England we impose a set of policies restricting
movement and attempting to reduce transmission. Table 4 lists the operational policy interventions
enacted by the UK Government from the beginning of March 2020 to October 2020 in an effort to
reduce the spread of SARS-CoV-2.

In order to estimate the effects of social distancing on the epidemiological development of COVID–19, we
implement multiple staggered social distancing steps during the first wave of the pandemic between 16
March and 4 July 2020 and then again going into September 2020 as schools and universities begin to fully
reopen. We fit the national compliance, C(N ), with social distancing between 24 March and 11 May 2020 in
the range 20–100% when fitting the rest the parameters (see §7). This is taken to be the harshest social
distancing step against and others are determined relative to this fit. The location-specific compliance, C(L),
is set to be 100% in all locations during fitting to avoid parameter degeneracy and then altered manually
thereafter. No social distancing is assumed between household members. We derived the compliance with
mask wearing from a YouGov survey [61], and we further stratify the results by social environment or
locations. Specifically, we assume complete (100%) compliance with mask wearing during commuting,
50% in care homes and no compliance in pubs, schools or in the household. Compliance with mask
wearing in grocery stores is assumed to be at 50% before 24 July 2020, after which we assume complete
compliance given the change in government regulations. Since we already assume low intensity
parameters in hospitals due to the significant amount of personal protective equipment (PPE) being worn
in these scenarios, we do not apply any additional mask wearing in these settings.

On 16 March 2020, the UK Government encouraged people with COVID-19 symptoms to quarantine
in their household for 7 days and all those in their household to quarantine for 14 days from symptom
onset. We assume that compliance with this measure varies with time as people become more aware of
the dangers of COVID-19. Between the 16 March and 23 March 2020 (i.e. the week leading up to the
nationwide ‘lockdown’) we fit compliance with the quarantine policy of those symptomatic to be between
5 and 45%, and the probability that the rest of the household of a symptomatic individual complies is set
to the same fitted value. After ‘lockdown’ comes into effect, the government tightened these rules to only



Table 4. List of policies introduced in England by the UK Government at different points in time.

date (dd/mm/yy) policy implemented

04/03/2020 encourage increased hand-washing

12/03/2020 case isolation at home �

16/03/2020 voluntary household quarantine �

16/03/2020 stop all non-essential travel ��

16/03/2020 stop all non-essential contact ��

16/03/2020 voluntary working from home �

16/03/2020 voluntary avoidance of leisure venues �

16/03/2020 encourage social distancing of entire population �

16/03/2020 shielding of over-70s �

20/03/2020 closure of schools and universities �

21/03/2020 closure of leisure venues �

21/03/2020 stopping of mass gatherings ��

23/03/2020 ‘stay at home’ messaging ��

11/05/2020 multiple trips outside are allowed in England only

13/05/2020 encouraged to go back to work if they can while distancing �

01/06/2020 meeting in groups of up to 6 outside allowed ��

01/06/2020 shielding of over-70s relaxed �

01/06/2020 school reopening for Early Year and Year 6 students �

13/06/2020 ‘support bubbles’ allowed

15/06/2020 school reopening for Year 10 and 12 students for face-to-face support �

04/07/2020 leisure venues allowed to reopen �

04/07/2020 household-to-household visits permitted along with overnight stays �

24/07/2020 mask wearing compulsory in grocery stores �

01/08/2020 shielding is paused �

01/08/2020 ‘Eat Out to Help Out’ scheme introduced �

31/08/2020 ‘Eat Out to Help Out’ scheme ends �

01/09/2020 schools and universities allowed to reopen �

01/09/2020 ‘Rule of 6’ introduced

14/10/2020 tiered local lockdown system introduced �

�Indicates policies directly implemented in the model.
��Indicates policies which are indirectly implemented—i.e. other policies effectively implement this one by default.
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leave the house for essential trips and one form of exercise per day. To account for this, we increase the
symptomatic and household compliance with quarantine to be double their fitted value. In addition, the
UK Government strongly suggested that people over the age of 70 were to shield, from 16 March 2020. As
in the case of quarantine, we assume people become more compliant with this policy over time and that
the initial compliance with the shielding policy for this age bracket increased from 20% in the first week
to 70% afterwards. Indeed, one of the reasons the compliance was set to only 70% even after lockdown is
due to the fact that people in this age bracket already have a reduced mobility and interaction potential. A
70% compliance therefore still allows them a small chance to interact with others, e.g. in grocery stores,
and any higher compliance figures would mean a complete and unrealistic decoupling of this critical
population from any social interactions. The shielding policy initially runs until 1 August 2020 and after
which the UK Government paused the policy.

Tomodel the partial or complete closure of industry sectors, it is important to understand the descriptions
of key workers provided by the UK Government [62], and match these up with the relevant five-digit SIC
codes [26]. This ultimately allows us to deduce the proportion of key workers in each sector and assign the
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corresponding key worker attribute probabilistically according to these proportions. In our simulation, we
encode findings from the ONS [62], reporting that 33% of the total workforce were key workers in 2019
with 14% able to work from home. We therefore set the proportion of key workers, i.e. those who go to
work each day, at 19% of the workforce. We use the same logic to also decide which workers are
furloughed in JUNE by identifying the five-digit SIC codes of the relevant affected industries and
proportionally assigning the relevant percentage of a given sector to be furloughed. We derive the relevant
SIC codes from the Institute for Fiscal Studies in the UK [63], and we dynamically correct for any over or
underestimation of furloughed workers by defining the proportion of the workforce who should be
furloughed at any particular time, derived from government reports [64]. A similar dynamic correction is
also applied to the key workforce. To model the more random work patterns of the remaining part of the
workforce, we derive a probability that a random worker goes into the company for work from a YouGov
survey [65]. We note that in many surveys, including this and others undertaken (e.g. by the ONS [66]),
the methodology does not explicitly state if key or furloughed workers were included. We believe,
however, that our use of these surveys presents at least a conservative estimate of work attendance.

From 20 March 2020, all schools and universities in England were asked to close, with the
exception that children of key workers could still attend school. To account for the partial school
reopening of Early Years (nursery and reception age children) and Year 6 students on 1 June 2020, we
open up these year groups in JUNE with an attendance compliance based on data derived from the
Department for Education (DfE) [67]. While the government also asked schools to offer face-to-face
support for Year 10 and 12 students from 15 June 2020, we do not include this as the sessions were
generally limited and had an attendance rate around the 10% level [67]. Figure 16 shows the good
agreement in the number of children attending school as derived from JUNE compared with DfE data.
The slight deviation from data after 15 June 2020, can be explained by not fully capturing the partial
return of Year 10 and 12 students. The good agreement between JUNE and the DfE data before 1 June
2020, is of particular note since this option was available only for children where all parents in the
household were classified as key workers. This serves as an implicit partial validation of our method
of selecting which individuals are key workers, as well as the household and company sector
distribution algorithms. From 1 September 2020, we reopen schools fully in JUNE, while accounting for
a closure for the national school holidays. While the timings of this week-long holiday varies across
the country, we assume all schools share the same holiday period 26 October—30 October 2020.
Similarly, universities are opened from 1 September 2020, but with more restrictive social distancing
measures in place. Given the modelling of where university students live, their inter-mixing is
naturally captured in the household component of JUNE (see §3.2).

On 16 March 2020, the UK Government encouraged people to avoid going to leisure venues such
as bars and restaurants, although this rule was not imposed through the closure of such venues.
However, on 21 March 2020, this closure took place. We model these policies first by reducing the
probability that people leave the house from 16 March 2020 followed by the closure of all relevant
leisure venues included in the simulation—cinemas, pubs and restaurants—from 21 March 2020.
Visits to care homes are also halted from this time. Since many of these venues were permitted to
reopen from 4 July 2020, we assumed all venues reopen at this point. Additionally, data collected by
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Figure 18. Daily hospital deaths for each region in England, and England itself, for 14 realizations of JUNE as described in this
section. Each realization is illustrated as a separate colour for visibility. Observed data in black with 3 s.d. error bands. Data from
CPNS [72].
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OpenTable suggests that restaurant attendance after that date saw a significant increase probably
encouraged by the UK Government’s ‘Eat Out to Help Out’ scheme which we capture in JUNE (figure 17)
[68,69]. For the simulation of other leisure activities, and in particular household-to-household visits, we
assume a drop in compliance and a consequently increasing number of such visits. In line with data
collected by the ONS [70], we model this by gradually increasing the probability of visiting another
household from mid-May until 4 July 2020, when overnight visits were permitted.
7. Discussion of model outputs
In this section, we finally highlight the ability of JUNE to capture intricate social dynamics through a
number of model outputs. It is worth noting that the realizations of JUNE presented in the following
were run at parameter settings sampled from the ‘non-implausible’ region of the global parameter
space, as defined in §8 and appendix E. See table 8 for the ranges of the global parameter space.
A more complete uncertainty analysis and parameter exploration will be performed in [71].

In figure 18, we exhibit results for the number of daily deaths in hospital for regions of England and
England itself. In addition, in figure 19, we show the same realizations for daily deaths in England
stratified by age. The agreement with data is satisfying and while there are minor discrepancies for



M
ar 

20
20

Apr
 20

20

M
ay

 20
20

Ju
ne

 20
20

Ju
ly 

20
20

Aug
 20

20

Sep
 20

20

M
ar 

20
20

Apr
 20

20

M
ay

 20
20

Ju
ne

 20
20

Ju
ly 

20
20

Aug
 20

20

Sep
 20

20

M
ar 

20
20

Apr
 20

20

M
ay

 20
20

Ju
ne

 20
20

Ju
ly 

20
20

Aug
 20

20

Sep
 20

20

M
ar 

20
20

Apr
 20

20

M
ay

 20
20

Ju
ne

 20
20

Ju
ly 

20
20

Aug
 20

20

Sep
 20

20

M
ar 

20
20

Apr
 20

20

M
ay

 20
20

Ju
ne

 20
20

Ju
ly 

20
20

Aug
 20

20

Sep
 20

20

JUNE

0–5 6–17

18–64 65–84 85–99

data

da
ily

 h
os

pi
ta

l d
ea

th
s

da
ily

 h
os

pi
ta

l d
ea

th
s

0

50

150

100

–6

–4

–2

0

2

4

6

–6

–4

–2

0

2

4

6

0

100

200

300

400

500

0

50

150

200

100

250

300

Figure 19. Daily hospital deaths in England stratified by age, for the same realizations as in figure 18. Observed data in black with 3
s.d. error bands. Data from CPNS [72].

da
ily

 d
ea

th
s

Mar 2020 Apr 2020 May 2020 June 2020 July 2020 Aug 2020 Sep 2020 Oct 2020 Nov 2020

800

600

1000

1200

total (JUNE)
hospital (JUNE)
care homes (JUNE)
total (data)
hospital (data)
care homes (data)

400

200

0

Figure 20. Deaths in England illustrated as different lines for total deaths, hospital deaths and deaths within care homes. Note that
the total curve is the sum of hospital deaths and residence deaths (care homes as plotted, and usual households which are not
plotted). Data from ONS [43].

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.8:210506
26
certain outputs, we would like to stress that all of these outputs are simultaneously fit by JUNE without
any region-specific parameters.

Along with deaths in hospitals, there have been a non-negligible number of fatalities in care homes in
England during this pandemic. JUNE successfully models both deaths in hospitals, and deaths within care
homes as illustrated in figure 20 where there is good agreement with data even into the second wave of
the pandemic.

We would like to emphasize that the outputs shown here are illustrative of the capabilities of JUNE to
capture the social dynamics of a heterogeneous population giving rise to large differences in disease
spread to different age strata and regions.

All interactions resulting in infections are stored in full detail in the model’s output, enabling further
ex-post analysis of the sociological nature of disease spread and outcomes for all individuals modelled in
the simulation. A simple example of such an analysis is shown in figure 21 where locations of infections
are compared for one of the realizations shown in figure 18. Remaining realizations manifest a similar
hierarchy of infection locations demonstrating JUNE’s physical consistency across parameter space.
A further, more involved, example of this type of detailed ex-post analysis can be found in [73].
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8. Fitting via Bayesian emulation
We now discuss efficient calibration strategies which form a critical part of our ability to extract core insights
from JUNE. Fitting a complex model such as JUNE to observed data presents a challenging task. This is mainly
due to (i) the detailed nature of JUNE and the inevitable computational expense of performing model
evaluations, (ii) the large number of input parameters that we may wish to explore, (iii) the stochastic
nature of the output of JUNE, and (iv) the various uncertainties present in the comparison between model
and data. A typical full England run of JUNE like those shown in figure 18 would take approximately 10 h
to complete on 64 cores (Intel Xeon Skylake) and 128GB of memory. The combination of computational
expense and high dimensional input parameter space precludes the use of many parameter exploration
methods that rely upon large numbers of model evaluations (including many standard optimizers,
sampling approaches such as Markov chain Monte Carlo etc.). The stochastic output, which implies we
will be exploring a much more complex surface, requires methods developed to deal with stochastic
functions. Even more challenging is that the substantial uncertainties present imply that we may not even
want to optimize for a single ‘best fit to data’ as it may have limited statistical relevance, but instead
search for the set of all input parameter values that give acceptable matches between model output and
observed data, thereby fully capturing the induced parametric uncertainty.

We hence employ the Bayes linear emulation and history matching methodology [74–76], a widely
applied uncertainty quantification approach designed to facilitate the exploration of large parameter
spaces for expensive-to-evaluate models of deterministic or stochastic form. This approach centres around
the concept of an emulator: a statistical construct that mimics the slow-to-evaluate scientific model in
question, providing predictions of the model outputs with associated uncertainty, at as-yet-unevaluated
input parameter settings. In contrast to the model, the emulator is extremely fast to evaluate: for example,
in the case of JUNE, the emulator exhibited a speed increase of nine orders of magnitude. The emulator
provides insight into the model’s structure and, thanks to its speed, can be used to perform the global
parameter search far more efficiently than approaches that attempt to use the comparatively slow
scientific model itself. Here we give a brief overview of emulation and history matching, but for more
details see appendix E. See also [76–79] for further examples of its application within epidemiology, [80]
for a comparison with approximate Bayesian computation in an epidemiological setting, and [81] for a
tutorial introduction in the context of systems biology. For an extensive treatment, see [75] along with the
discussion in [82]. See also [83] for a general introduction to emulation.

Initially, we identify a large set of input parameters to search over, primarily composed of interaction
intensity parameters at the group level, along with associated broad ranges, as given in table 8. We then



royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.8:210506
28
identify a set of particular model outputs to match to corresponding observed data. Here, we focus on

hospital deaths (CPNS [72]) and total deaths (ONS) at well-spaced time points throughout the period
of the first wave of the epidemic. We then construct Bayes linear emulators for each of the model
outputs at each of the chosen time points. The emulators are trained using a set of JUNE runs, initially
designed using a 18-dimensional Latin hypercube, and seek to mimic the behaviour of each of the
JUNE outputs as a function over the 18-dimensional parameter space. The emulators provide, at each
unevaluated input location, an expectation for the possible JUNE model output value and a position-
dependent variance representing the emulator’s uncertainty about this estimate. Close to known runs
the emulator’s uncertainty will be low; however, it will increase appropriately as we move to less
well-explored regions of the parameter space [81]. Note that we deliberately choose to emulate the
direct physical outputs of the model as this has multiple benefits for emulator construction, in contrast
to emulating a combined metric such as the likelihood (for discussion of this point see [75,81,82]).

Due to the emulators’ speed, they are ideal for global parameter exploration. This is performed by
constructing an implausibility measure that gives the distance between the emulator’s expected JUNE

model output and the observed data we are trying to match, standardized by all the major uncertainties
present: observational errors, emulator uncertainty and structural model discrepancy, the latter being a
direct acknowledgement that the model is an imperfect representation of reality (see appendix E for
details). The implausibility measures are used to rule out large regions of the input parameter space that
will not provide acceptable matches, and the analysis then proceeds in iterations: a second batch of JUNE

runs is performed over the remaining region of parameter space, new emulators constructed (which are
only defined over this region), new implausibility measures formed and more parameter space removed.
This process is referred to as iterative history matching [75,76]. See for example [78] where it was
successfully applied to a stochastic disease model with 96 input parameters.

For the JUNE model, we constructed emulators for hospital deaths and total deaths at eight time points
over the period March to June, for England and for each of the seven regions, and for the age bins
(defined by the SITREP dataset) 0–5, 6–17, 18–64, 65–84, 85+. The emulators were trained in three
iterations formed from 125 JUNE evaluations each. The emulators were then evaluated at 500 000
locations across the 18-dimensional input space, taking 10min on a single processor. The results of the
global parameter search are given in the optical depth plots [75] of figure 22, which shows the
location of the ‘non-implausible’ region of interest in various two-dimensional projections of the 18-
dimensional parameter space for all combinations of 12 of the most interesting input parameters (the
remaining six inputs were only loosely constrained, jointly with other parameters, if at all). The JUNE

runs discussed in the preceding section were sampled from this region. Note the various joint
constraints on the input parameter space imposed by the matching process, for example the strong
reciprocal relationship that is required between βschool and βhousehold. Similar but more complex trade-
offs are identified between several other parameters, e.g. βcompany and βhoushold, βgrocery and
βcitytransport, and between βhousehold and Mquarantine household compliance. Most parameters were not
individually identifiable; however, βcompany and βcarevisits were reasonably well constrained. For more
details of this approach, of emulator diagnostics, and further output plots see appendix E.

We can see that the Bayes linear emulation and history matching methodology facilitates the efficient
exploration, development and calibration of the highly complex JUNE model using a modest number of
runs, a process which would be extremely challenging to perform directly. While here we have
performed a provisional exploration of the parameter space as part of the model development, for a
full uncertainty analysis of the JUNE model, including the emulator-driven generation of full
probabilistic forecasts incorporating all major sources of uncertainty, see [71].
9. Summary
In this paper, we introduced the new JUNE model to simulate the spread of epidemics through a
population. JUNE is an individual-based model (IBM) enabling a highly granular geographical and
sociological resolution. The frequent and persisting perception that IBMs such as JUNE are heavily
parametrized and therefore lack predictive power is misleading. As noted in [84], many of the
properties and building blocks of these types of model are not globally fitted to observed cases or
fatalities, as is the case for deterministic and stochastic models built from differential equations.
Instead, the JUNE framework separates the uncertainty arising from unknown disease dynamics from
uncertainties in the population structure, where the latter is informed by demographic statistics and
other available data.
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The model is formulated and encoded in four distinct layers, population, interaction, disease
and policy. Its modular structure allows not only the flexible and seamless addition of many details and
novel features, but it also lends itself to application to other populations with different sociological set-
ups. As a first example, we discuss its application to the case of the spread of COVID-19 in England, with
convincing results underlining the quality of the model and its ability to understand the spread of an
epidemic in great detail and with high geographical and sociological resolution.

Studies where JUNE is applied to different settings are forthcoming [85]. One of the strengths of the
model is its ability to capture differences in geographical and sociological structure with
unprecedented resolution, facilitated through the hierarchical structure in which the population is
organized. JUNE also allows a flexible yet detailed modelling of daily activities of the virtual
population, by combining the geographical position of buildings and other structures with the social
interactions taking place. In contrast to other models this enables a very granular understanding of
work patterns, leisure activities, etc. In forthcoming publications, we will exploit this high level of
detail to try and answer pertinent questions relating to social imbalances in the impact of COVID-19.
Data accessibility. Map data copyrighted OpenStreetMap contributors and available from https://www.openstreetmap.org.
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Appendix A. Algorithms
A.1. Constructing credible households
The ONS divides households into the following broad categories: single, couple, family, student,
communal and other [20]. We populate the households in this ordering, giving preference to those
types for which we have the most precise and unambiguous data.

We define and construct households types as follows:

1. Single: These are households with a single person living in them. The census data differentiate single
households occupied by an adult or an older adult (greater than or equal to 65 years old), and we fill
the households accordingly.

2. Couple: These are households occupied by a couple without children. Again, the census differentiates
between household with adults or older adults living in them. We preferentially fill these households
with two people of different sex, with an age difference sampled from the corresponding UK
distribution of age differences at the time of marriage [93] (see also figure 23a).

3. Family: These households are defined by the number of adults (singles or couples) and the number of
children. A difficulty here is that the census data does not stratify beyond ‘two or more’ children. To
compensate for this, we introduce a distribution to select the number of children in these households.
To fill a family household, we allocate a female adult first. If there are no female adults available
(because they have already been allocated somewhere else), we chose a male adult. In case of
families with two adults, we match the person with a partner, preferentially with different sex, and
an age difference sampled from the same dataset we use for couples. The census data provide us
with the number of dependent children for each OA (area), and we add a suitable number of
children according to the age difference between the mother and the n-th child as given by ONS
data collected on birth characteristics [94] (see also figure 23b,c).

4. Students: From the census data, we know how many student households there are and how many
students live in a given OA (area). We uniformly distribute students among their households,
assuming a constant ratio of the number of students per household. Students are selected from the
population aged between 18 and 25 years old.

5. Communal: We use census data on the number of people in an OA (area) living in a communal
establishment, as well as the number of such establishments, such as care homes [21]. The
communal establishments are filled last, after the types described above; their residents will be
those who do not live in any of the other household types. As in the case of student households,
we assume a constant ratio of the number of communal residents per establishment.
9https://ddis.physics.dur.ac.uk/.

http://www.dirac.ac.uk
https://ddis.physics.dur.ac.uk/
https://ddis.physics.dur.ac.uk/


ONS

JUNE

ONS

JUNE

ONS

JUNE0.10

0.08

0.06

0.04

0.02

0
–10 10 20 40 60 20 40 600

parent – second child
age difference

parent – first child
age difference

couples' age difference

fr
eq

ue
nc

y 
(%

)

(a) (b) (c)

Figure 23. Distributions of age differences between partners (a), between parents and their first (b) and second child (c): outputs of
JUNE compared with the input data from the ONS database.

30

20

10

0 2 4 6 8
household size

ONS sizes
JUNE sizes

fr
eq

ue
nc

y 
(%

)

100

80

60

40

20

0–15 16–24 25–34 35–49 50–100
age

ho
us

eh
ol

d 
ty

pe
 (

%
) ONS single

JUNE single
JUNE couple
JUNE family
JUNE other

ONS couple
ONS family
ONS other

Figure 24. Comparisons between outputs of JUNE and data from the ONS database for all England. (a) Household sizes,
(b) household composition by age.

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.8:210506
31
6. Other: This category encapsulates the uncertain household compositions given by ONS. These
may include groups of adults living together, multi-family or multi-generational families. In a
similar manner to the communal households, these are filled last with those people that have not
yet been allocated.

As a further test of our household populating algorithm against available data, we compare the JUNE

household size distribution and age dependence of people living in different household types with that
given by ONS [20]. Figure 24 demonstrates that the JUNE household composition algorithm clearly
produces a household size distribution in good agreement with the census data. We also observe the
impact of our assumptions on the composition of families and more complex household compositions
(other). Given the unknown specifics of certain household composition types, we believe our overall
household composition by age to be in reasonable agreement with the data.

A.2. Schools
The procedure for assigning children and teachers to schools throughout England is specified in §3.3.

Following our algorithm,we arrive at a distribution of school sizes displayed in figure 25,whichwe see to
be in reasonable agreementwith the data. Similarly, figure 26 shows the full distribution of class sizes in JUNE.
In the case of COVID-19, most countries have prioritized the return of children to school from younger age
brackets. Therefore, recovering good agreement with data particularly in these age brackets is crucial.

A.3. Workplaces
We use ONS data on industries and companies in England categorized according to 21 sectors following
the Standard Industrial Classification (SIC) code convention (table 1) [26] as our framework for
differentiating between different types of work.
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Companies are initialized according toONS data on company sizes and sectors at theMSOA (super area)
level [27]. We use data on the geographical distribution of company sizes to fix the number of companies at
the MSOA (super area) level and use the data on the distribution of sectors to probabilistically assign an
industry sector to these companies at the same geographical level. Since the ONS provides information on
company sizes by binned size ranges, we take the median size of each bin and assign this to each
company. The largest bin is 1000 + employees which we assume to be 1500. It should be noted that
companies are not assigned a sector based on their size, but purely on their geography. This does not
mean there is no correlation between company size and their sector in JUNE, but that this would arise
implicitly based on the geographical distributions, rather than explicitly from data input.

Individuals are assigned a sector attribute probabilistically, following the distributions of sectors dis-
aggregated by sex at the MSOA (super area) level [28]. We determine the MSOA (super area) in which
they work according to the ONS commuting origin–destination matrix (or ‘flow’ data) [29] which
provides information on the number of people by sex travelling from one MSOA (super area) to another
for work. Finally, a matching is carried out between people who work in a certain MSOA (super area),
and the companies available to them based on their respective sector attributes. In future work, we plan
to use additional demographic attributes to assign individuals their sectors and companies.

A.4. Commuting
The commuting structure in JUNE is built upon the national transport network constructed from nodes
representing cities, and edges representing possible transit routes. Commuters are defined as either
‘internal’, i.e. they live and work in a city, or ‘external’, i.e. they live outside a city’s metropolitan
boundary and commute into it (see §3.4 for more details on how people are assigned locations of
work). The metropolitan boundary of each city is defined using data collected by the ONS [36] which
specifies the MSOAs (super areas) that belong to the cities.
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The following procedure is used to determine the groups within which people have the chance to mix
during a commute.

1. For each city, we seed several additional nodes which act as ‘gateway stations’ outside the
metropolitan area boundary. These serve as funnels into the city and determine the mixing of
external commuters. In the case of London, we seed eight stations which are placed evenly around
the boundary of the metropolitan area. For all other stations, we seed four evenly spaced stations
north, south, east and west of the city boundaries. These figures are informed by the approximate
number of train lines entering each city, and the proportional differences between the number of
London public transport links and those of other cities [37].

2. We model the commuting of all people who travel by public transport into a city’s metropolitan area.
We assign all external commuters to the nearest gateway station to where they live. During each
commuting time-step in the simulation, people travelling through the same gateway station are
randomly split into ‘carriages’ containing people with whom they have the potential to interact.
Similarly, internal commuters are also split into carriages and able to interact with each other.

3. During a commute time-step, each carriage is assigned to be travelling at ‘peak time’ with an 80%
probability.

4. The default number of people in an average carriage is fixed to 50 people. For each city this number is
adjusted in proportion to data from the UK Department for Transport (DfT) data on overcrowding in
trains [34]. This data also disaggregates at the level of peak or off-peak travel which is used to further
adjust the filling of carriages.

5. The commuting time-step is run twice a day in order to simulate commuting in each direction.

We calculate the distance travelled to work by sex, in figure 27, and we see that men are more likely to
travel further to work in our model than women. Our findings are in reasonably good agreement with
the survey [30] and serve as an independent validation of our model.
Appendix B. Time-steps
As mentioned in §4.1, JUNE time-steps allow differentiation between weekdays and weekends, and have a
number of allotted activities. The default time-steps are described in tables 5 and 6.

When choosing the time-steps, we aimed to choose the lengths such that they are somewhat close
to the characteristic time of interaction of activities allowed in that time-step, but also not choosing so
many time-steps to overfragment the simulation. For instance, the weekday time-step with index 1
(09.00–17.00) is 8 h, and matches the primary activities of ‘school’ and ‘work’, even though the
‘leisure’ activity (which is allowed for old adults who are not assigned a workplace) has a
characteristic time of 3 h. Breaking this in half would better match the leisure characteristic time (3 h)
for this time-step, but would mean that all individuals in the simulation would be reassigned an



Table 5. Time-steps and allowed activities for a calendar weekday, where M, R, C, P, L are ‘medical facility’, ‘residence’,
‘commute’, ‘primary activity’ and ‘leisure’, respectively.

index calendar time allowed activities

0 08.00–09.00 M, R, C

1 09.00–17.00 M, P, L, R

2 17.00–18.00 M, R, C

3 18.00–21.00 M, L, R

4 21.00–08.00 M, R

Table 6. Time-steps and allowed activities for a calendar weekend. Allowed activities are the same as in table 5.

index calendar time allowed activities

0 08.00–12.00 M, R, L

1 12.00–16.00 M, R, L

2 16.00–20.00 M, R, L

3 20.00–08.00 M, R
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activity for the second of the two time-steps. Even though the vast majority would be reassigned to their
same, required ‘primary activity’, causing needless computation.
Appendix C. Contact matrices
We use the contact matrices from the BBC Pandemic survey [15] and supplement them with the PolyMod
matrices [10] for interactions of children with other children in the age bracket of 0–12 years. When
comparing the matrices that capture interactions in all settings given in the BBC study, an anomaly
appears in the matrix describing physical contacts—the original PolyMod data approximately a factor
of 3 higher than the BBC matrices in neighbouring age bins. We account for that by a simple scaling
of the physical contacts by 1/3 before using these data. To arrive at matrices including interactions at
home, in school, or in other settings for the age brackets 5–12, missing in the BBC study, we scale
the PolyMod setting-inclusive results by a ratio of contacts in the respective setting for the age bin of
13–14-year-old kids, while we assume that the interactions of 0–4-year-old children are concentrated
at home.

To extract mixing matrices that are suitable for our context-specific simulation, we have to correct for
the fact that the reported matrices average over the corresponding age bins in the UK population. For
example, contacts between teachers and school children are normalized to the full UK population in
the respective age bin instead of the number of teachers in schools that actually participate in the
interaction. This necessitates rescaling to the number of people in the social context to arrive at
corrected social interaction matrices �M(H,W ,S,O)

ij . This correction step will be detailed in the relevant
subsections below.

C.1. Social mixing at work
The matrices for the age-dependent interaction frequency at the workplace show only a very mild
correlation with age, typically favouring interactions of workers with a similar age by about a factor
of 2. We will therefore not include age effects at the workplace into the matrices used in JUNE. To
minimize effects due to early retirement, students etc. we average over the ages of 25–60 and we
compare this to the average over the working age, 18–64, but correct for an employment rate of 75%.
In so doing, we arrive at the number of daily contacts for adults at work:

n(W)
AA ¼ 4 (0:35 physical) for ages 25�60

4:8 (0:35 physical) for ages 18�64, corrected for employment rate.

�
(C 1)
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In JUNE, we will use n(W)

AA ¼ 4:8, with a ratio of about 7% physical contacts. While it is obvious that
different industrial sectors will in reality have very different numbers of daily contacts, with
corresponding impact on their vulnerability towards infections, we have not made any attempt to
account for such a sector-dependent modulation, apart from effects that naturally arise from different
sizes of workforces in different companies.
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C.2. Social mixing in schools
We decompose school populations into year groups labelled with indices i∈ {1, 2,…, N} for a school with
N year groups and denote teachers with T. Starting with the interaction of pupils in various year groups
an apparent large asymmetry emerges between the summed number of interactions of pupils with adults
in the school and of adults with pupils in the BBC dataset. This, however, is easily explained by realizing
that the number of interaction in a given context is normalized to the fraction of the population in a given
age bin, irrespective of whether they can participate in the interaction or not. This means that the number
of interactions between teachers and pupils have to be renormalized to the ratio of teachers in the adult
population—about 500 000 teachers out of 36 300 000 adults, with about 216 000 working in primary and
208 000 working in secondary schools.

Summing the number of interactions of children in the age range of 5–17 with adults in the range
25–65 in schools, and assuming the latter are all teachers yields an average of 0.75 pupil–teacher
interactions (0:06 ¼ 8% of them physical) per day with very little dependence on the children’s age.
Conversely, adults have about 0.2 (0:02 ¼ 10% of them physical) interactions per day with children in
schools, again, relatively independent of the age of the children. Normalizing this to the number of
teachers in the population, we arrive at about 15 teacher–pupil interactions per day, which fits very
well to approximate teacher–pupil ratios of 1 : 20–1 : 25.10 We therefore assume that the individual
interaction frequency of one specific teacher–pupil pair is consistently described with 0.75/day. For
interactions among adults in the school setting, we include the interaction of parents with teachers
and of parents among themselves, thereby blurring the picture. We therefore assume that teachers
inherit the daily contact frequencies from the workplace mixing above. Turning finally to the
interactions amongst children, we see a very dominant correlation in age. In order to capture this, we
assume that per year of age-difference the number of interactions among children in school, n(S)KK, will
be reduced by a factor ξ. By fitting to the combination of BBC and PolyMod studies we find, to good
approximation, xi = 0.3 and n(S)KK ¼ 2:5, with on average 15% of the interactions being physical.

As a consequence, we obtain the following social interaction frequency matrix for individual pairings
at schools:

�M(S)
ij �

4:8 0:75 0:75 0:75 . . .
15 2:50 0:75 0:25 . . .
15 0:75 2:50 0:75 . . .
15 0:25 0:75 2:50 . . .

..

. ..
. ..

. ..
. . .

.

0
BBBBB@

1
CCCCCA, (C 2)

where the first row and the first column specify the interactions between teachers and students in
different year groups, and the second and following row and columns are populated by interactions
of the pupils with other pupils across year groups ordered by age.
C.3. Social mixing at home
In our model, we decompose the household population into four subgroups, namely children (K, ages
0–19), young adults (Y, 18–24), adults (A, 25–64) and older adults (O, 65+). We therefore arrive at a
4 × 4 matrix of corrected social interactions at home, �M(H)

ij , where the indices i, j∈ {K, Y, A, O}. In the
following, we will detail how we arrive at the various matrix elements. When correcting for the
impact of social environment, i.e. the household compositions, we will ignore household compositions
which are listed as ‘other’ in the ONS database, due to a lack of detailed information (see §3.2 for
more details). When using these data, we will use numbers in units of millions, HOAYK of households
with a composition of O older adults, A adults, Y independent children or young adults living at
home and K children aged 0–19.
10In fact, for primary schools, the average class size is about 21 pupils, while for secondary schools it is about 16 pupils [25].
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— �M(H)

OO: we ignore the case of care homes or other facilities with more than two residents. Then the
average interaction frequency from the BBC data is given by n(H)

OO ¼ 0:78 (0.44 physical) and 0.62 at
weekends.11 With H2000 = 2.131 and H1000 = 3.294.12

�M(H)
OO ¼ 0:78� 2H2000 þH1000

2H2000
� 1:4: (C 3)

— �M(H)
AA: the interaction frequency between adults aged 20–65 at home from the BBC data is given by

n(H)
AA ¼ 1:2 (0:74 ¼ 62% of them physical).

�M(H)
AA ¼ 1:2�

P
x,y (2H02xy þH01xy)P

x,y 2H02xy
� 1:34, (C 4)

where
P

x,y H02xy ¼ 8:751 and
P

x,y H01xy ¼ 7:644.
— �M(H)

YY : the interaction frequency between young adults age 18–26 at home from the BBC data is given
by n(H)

YY ¼ 1:3 (0:4 ¼ 34% of them physical). There is no obvious household correction that we can
apply, but the number of contacts is relatively close to the value of �M(H)

AA ¼ 1:34, so we will
assume that young adults interact with each other with a frequency similar to that of adults

�M(H)
YY ¼ �M(H)

AA: (C 5)

It is worth noting that the age range for young adults is relatively narrow, and that there will be
edge effects that may effectively increase the interaction frequency.

— �M(H)
YA and �M(H)

AY : we have n(H)
YA � 0:7 with a relatively steep decline with the age of the young adults,

which we attribute to the fact that with increasing age young adults move out of their parents’ home.
To obtain some better understanding of the situation, we look at the interaction of adults in the age
range 40–65 with young adults, aged 18–24. From this, we arrive at an average of n(H)

AY ¼ 0:17
(0:07 ¼ 40% of them physical).

To relate this to a corrected value, we must make an assumption concerning the number of young
adults in the three age bins that still live with their parents, which we take as 75%, 50% and 40% for
the three age bins. To correct the AY number, we assume that the majority of households with young
adults living as non-dependent children with their parents is composed of households with one
young adult. Therefore,

�M(H)
YA ¼ 1

3
0:87
0:75

þ 0:65
0:5

þ 0:55
0:4

	 

� 1:3

and �M(H)
AY ¼ 0:17 �

P
xy (2H02xy þH01xy)P
y (2H021y þH011y)

� 1:47,

9>>>>=
>>>>;

(C 6)

where
P

y H021y ¼ 1:514 and
P

y H011y ¼ 0:946.
— �M(H)

KK : the average number of daily contacts at home between children age 0–17 is n(H)
KK ¼ 0:47 (79% of

them physical). Assuming all children live as dependents with their parents, and demanding that
households with ‘2 or more children’ (ONS classification) have, on average, 2.3 children to account
for the UK reproduction rate, we arrive at

�M(H)
AA ¼ 0:87 �

P
x (H02x1 þH01x1)þ 2:3(H02x2 þH0:1x2)P

x 2:3(H02x2 þH0:1x2)
� 1:2: (C 7)

— �M(H)
KA and �M(H)

AK : to account for contacts of children with adults we will use sliding age windows in
dependence on the age of the child, using that parents are usually between 20 and 40 years older than
their children. We then arrive at n(H)

KA ¼ 1:27 (70% of them physical) and n(H)
AK ¼ 0:67, the former with

an only mild dependence on the age of the child, while the latter shows clear edge effects for the first
and last bins of the adult age distribution. These numbers translate into

�M(H)
KA ¼ 1:27 (C 8)
11One may speculate in how far this drop is a reflection of uncertainties in the data or a true ‘physical’ effect, for example due to
visitors, travel or similar.
12Here and in the following, the numbers of different household configurations are taken from [95].
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and

�M(H)
AK ¼ 0:67 �

P
x,y (2H02xy þH01xy)P

[]x,y 2(H02x1 þH02x2)þ (H01x1 þH01x2)]
� 1:69:13 (C 9)

We will also assume that the interaction frequency and intensity of children and young adults living
in the same household is determined by

�M(H)
KY ¼ �M(H)

KA and �M(H)
YK ¼ �M(H)

AK : (C 10)

— �M(H)
O,KYA and �M(H)

KYA,O: we assume that interactions of children, young adults and adults with older
adults at home have three different realizations:
1. as regular contacts in a multi-generational household, where we assume that older adults behave

like adults in terms of interaction frequency and intensity;
2. as regular contacts between children and their grandparents who act as child-minders while the

parents are at work;
3. through regular or sporadic visits, where we again assume that interactions of older adults follow

the pattern of adults.
As a result, we obtain the following social mixing matrix

�M(H)
ij ¼

1:2 1:69 1:69 1:69
1:27 1:34 1:47 1:50
1:27 1:30 1:34 1:34
1:27 1:50 1:34 2:00

0
BB@

1
CCA ¼

K Y A O
K 1:2 1:69 1:69 1:69
Y 1:27 1:34 1:47 1:50
A 1:27 1:30 1:34 1:34
O 1:27 1:50 1:34 2:00

, (C 11)

where, for convenience, we have made the entries explicit.
C.4. Social mixing in other venues
Social venues (pubs, cinemas and groceries) in JUNE are assumed to have only one subgroup, ‘attendees’,
meaning that the social mixing matrix for these interactions is a single-element; �M(P) ¼ 3, �M(C) ¼ 3,
�M(G) ¼ 1:5 for ‘pubs’, ‘cinemas’ and ‘groceries’, respectively. These values were chosen heuristically
according the estimated number of contacts in each location relative to the the number of contacts set
elsewhere (as discussed above). Given that we do not consider different subgroups in these locations,
making the matrix single-valued, these numbers only serve the purpose of intuitively introducing a
hierarchy of contact intensities (β parameters) into the model structure. Since the intensity parameters
are fitted to data (see §8), the form of equation (5.2) ensures that the choice of these social mixing
matrices values will not significantly affect the probabilities of transmission.

Hospitals have three subgroups: medical staff, ward patients and ICU/ITU patients. The social
mixing matrix for hospitals (where the superscript M refers to ‘medical facility’) is

�M(M)
ij ¼

5 10 10
1 0 0
1 0 0

0
@

1
A and f(M)

ij ¼
0:05 1 1
1 0 0
1 0 0

0
@

1
A, (C 12)

where (i, j )∈ {S, W, I} denoting the three subgroups, medical staff, ward patients and ICU/ITU patients,
respectively. The number of contacts between a medic and patients, 10, represents the average number of
patients per medic. We assume that a patient is visited by a medic once per characteristic time, set to 8 h
for hospitals. The number of contacts between patients is irrelevant, as patients are by definition already
infected, but is set to zero.

Social mixing in care homes considers three subgroups: workers, residents and visitors, with matrix

�M(CH)
ij ¼

15 15 1
1:5 4 20
1:5 6 0

0
@

1
A and f(CH)

ij ¼
0:05 1 0
1 0:4 1
0 0:5 0

0
@

1
A, (C 13)

with a characteristic time of 24 h. The seemingly high number of contacts between workers and visitors,
and residents and visitors is to compensate for the characteristic time of 24 h; if visitors were to be present
13Note that the latter number becomes 2.5 if we only use the central bins of parent ages 35–50 and the corresponding number of
contacts n(H)

AK ¼ 0:96, which, however, introduces a bias in favour of the more intense interactions with children in primary school age.



Table 7. Characteristic functions and their parameters.

name function source

CT constant with time T

βI β2.29,19.05,0.39,39.8(t) [40]

LNM LN0.83,5.7(t) �

βH β1.35,3.68,0.05,27.1(t) [96]

βD β1.21,1.97,0.08,12.9(t) [96]

LNICU LN1.41,0.9(t) [97]

eICU e1.06,0.89,12(t) [97]

eD e1.23,1,9.69(t) [97]
�We constrained the time from symptom onset to hospitalization through private communication with hospital physicians at
early stages of the first COVID-19 wave of infections. We later checked this assumed profile against published data and found
our values to be broadly consistent.
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in a care home for a full characteristic time, they would experience this many contacts, but visits are a
daytime activity which takes only a few hours, resulting in fewer contacts.

Finally, universities are modelled as having six groups to represent professors and five distinct
groups of students (for the moment based only on age 19–23), with diagonal elements �M(U)

i¼j ¼ 2 and
off-diagonal elements �M(U)

i=j ¼ 0:75, and all f(U)
ij ¼ 0:25.

C.5. Deriving contact matrices from JUNE

We derive the contact matrices in figure 9 by simulating a week of pre-lockdown activity. For each
person, in each subgroup i, in each venue, we choose the required Nij people (with replacement) for
all (non-empty) subgroups j in that venue (where Nij is from the relevant social mixing matrix). We
populate ‘raw’ contact matrices using these selected people. As these contacts are then uni-directional,
we make the same corrections as in [15] to account for reciprocal contacts. We hope to produce
contact matrices derived from constructing self-consistent (reciprocal) networks of contacts within
groups in future work.
Appendix D. Details on modelling health trajectories
For the times spent in different stages of disease progression, we use a variety of functions, namely
intervals of constant length, scaled and shifted β functions, scaled log-normal distributions and
exponential Weibull distributions, given by

Ctend (t) ¼ Q(tend � t),

ba,b,l,S(t) ¼ ba,b
t� l
S

� �
,

LNs,S(t) ¼ LNs
t
S

� �

and ea,c,S(t) ¼ ea,c
t
S

� �
:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

(D 1)

The trajectories and their building blocks to construct the corresponding time intervals infected
individuals spend in various stages of the disease are listed in table 3 (table 7).
Appendix E. Calibration via Bayes linear emulation and history matching
We now provide more details of the Bayes linear emulation and history matching process outlined in §8.
To set up the history matching problem, we identify a large set of 18 input parameters to the JUNE model
to explore. This set is composed mainly of contact intensity parameters, but also contains such



Table 8. The input parameters that form the 18-dimensional vector x explored in the global parameter search, their type and
their ranges that define the search region X 0. The parameters aseed strength and Msd4 random factor all modulate the strength of the
seeding process, and the social distancing policy active from 7 July, respectively.

input parameter (xi) type range

b pub contact intensity [0.02,0.6]

bgrocery . [0.02,0.6]

bcinema . [0.02,0.6]

buniversity . [0.02,0.6]

bcity transport . [0.08,0.77]

bintercity transport . [0.08,1.2]

bhospital . [0.08,1.2]

bcare home . [0.08,1.2]

bcompany . [0.08,1.2]

bschool . [0.08,1.2]

bhousehold . [0.08,1.2]

bcare visits . [0.1,8]

bhousehold visits . [0.08,1.2]

a physical physical contact factor [1.8,3]

aseed strength seeding [0.5,1.3]

Mquarantine household compliance compliance [0.034,0.26]

Msocial distancing beta factor social distancing [0.65,0.95]

Msd4 random factor all social distancing [0.004,0.5]
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parameters governing social distancing effects, compliance and physical contact, with each parameter
specified along with associated broad ranges, in table 8. We denote this set of parameters by the
18-dimensional vector x and denote the initial search region defined by their combined ranges as X0. We
identify a set of outputs to match to observed data, specifically the deaths and total deaths for England
and for each of the seven regions, and for the age bins 0–5, 6–17, 18–64, 65–84, 85+, at the time points of
20 March, 28 March, 5 April, 13 April, 21 April, 29 April, 12 May, 26 May, 8 June, 8 June and 23 June
2020. We represent the list of all these outputs as the vector f.

We note that the JUNE model can now be viewed as a function that maps the inputs x to the vector of
all outputs of interest f (x). As we cannot evaluate the model f (x) exhaustively over the full parameter
space X0 due to computational expense, we mimic it using a fast-to-evaluate (but uncertain) Bayesian
emulator. For an individual output fi(x), representing for example, the total deaths in England on 28
March, we construct an emulator of the form

fi(x) ¼
X
j

bijgij(xAi )þ ui(xAi )þ vi(x), (E 1)

where the first term on the r.h.s. is a regression term designed to capture global behaviour, composed of
known deterministic functions gij (with a common choice being low-order polynomials) of the active
variables xAi , which are a subset of the inputs that are found to be most influential for output fi(x),
and of the bij which are unknown regression coefficients. The middle term ui(xAi ) is a Gaussian
process with various forms of correlation structure available, capable of mimicking large classes of
functions, which has the flexibility to capture more local behaviour of fi(x), and vi(x) is an
uncorrelated nugget that represents the effect of the remaining inactive input variables, and/or any
stochasticity exhibited by the model.

We perform an initial space filling set of n = 125 runs D ¼ (f(x(1)), f(x(2)), . . ., f(x(n))) with the x(i) [ X0

chosen using a maximin Latin hypercube design. The emulators are updated by the runs D using the
Bayes linear update equations [75], and hence can give a prediction with corresponding uncertainty,
of the unobserved f (x) at a new, previously unevaluated input point x, in the form of the adjusted
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Figure 28. (a) An example diagnostic showing the emulator prediction ED( fi(x)) for fi(x) across several time points (the solid red
line) and the prediction interval ED(fi(x))+ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarD(fi(x))

p
(the red dashed lines) along with the held out smoothed run output f (x)

(the blue line). The emulator captures the behaviour of the JUNE model well. (b) Daily hospital deaths for all of England, showing
the progression of the runs from iterations 1, 2 and 3 used in the history matching process (in purple, green and red respectively).
Observed data (smoothed and original) in black. Vertical dashed lines: emulated outputs.
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expectation ED( fi(x)) and the adjusted variance VarD( fi(x)), respectively. The emulators have to satisfy
extensive diagnostics [75,98], an illustrative example of which is given in figure 28a, which shows the
emulator prediction ED( fi(x)) for fi(x) across several time points (the solid red line) and the prediction
interval ED(fi(x))+ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarD(fi(x))

p
(the red dashed lines) along with the held out run output f (x) (the

blue line) which the emulator has not previously seen, showing excellent agreement between emulator
and model. The emulator evaluation takes a fraction of a second, and mimics the JUNE model well.

By confronting the emulators with the observed data vector z corresponding to the outputs in f, and
incorporating major sources of uncertainty (e.g. observation error, structural model discrepancy,
stochasticity), we can rule out large parts of the input parameter space X0 as implausible. We do this
using an implausibility measure, for which the univariate version Ii(x), is defined for each output as

I2i (x) ¼
(EDi (fi(x))� zi)

2

VarD(fi(x))þ s2
ei
þ s2

ei

, (E 2)

where ED( fi(x)) and VarD( fi(x)) are the emulator expectation and variance as before, zi is the observed data
point corresponding to model output fi, s2

ei is the variance of the observation error ei (a random quantity
representing the imperfections of the measurement process), and s2

ei
is the variance of the model

discrepancy εi (an often-neglected random quantity representing the imperfections of the model
[74,75,99]). If Ii(x) is large, it is because the emulator expectation for fi(x) is very far from the observed
data zi, even given all the major sources of uncertainty, and therefore the input parameter x is highly
unlikely to yield model output similar to observed data were we to evaluate JUNE there, and hence x
could be discarded from further analysis. A typical cutoff may be Ii(x) < c where c = 3.

There are various ways to combine implausibility measures for each of the individual outputs, the
simplest being to maximize: IM(x) =maxi Ii(x), that is to take the maximum implausibility across all
outputs of interest, which is the measure chosen here, although we note that other more nuanced
and/or robust versions are available, that capture more of the multivariate behaviour [75].

We now employ iterative history matching [75], a parameter search method that seeks to identify all
parts of parameter space that would give rise to acceptable matches between model output and
observational data. This proceeds at the jth iteration (or wave), by constructing emulators using the
current set of runs, removing the implausible parts of the input space to define the new non-
implausible region X j ¼ {x [ X0 : IM(x) , c}, designing and performing a new space filling set of runs
across the reduced input space X j and re-emulating, but now with a more accurate emulator defined
only over the reduced region X j. For further discussion see [75,81,82], but it suffices to note that the
iterative nature of history matching is key, as it allows later iteration emulators to become far more
accurate as they are only employed over far smaller parts of the input space, and are hence informed
by a much higher density of runs.
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The observed data for total deaths were obtained from the ONS, while the hospital deaths data is
taken from CPNS—the Covid Patient Notification System [72]. For each output corresponding to the
element of f, the data were first smoothed slightly with a standard kernel smoother, to reduce the
day-to-day stochasticity. The observation error and model discrepancy variances for each output
were each decomposed into multiplicative and additive components to represent possible systematic
biases, in addition to a scaled

ffiffiffi
n

p
component for the observation error only, to model the noisy

count process. For example, we have the decompositions s2
ei
¼ a2

mult,ei z
2
i þ g2add,ei , with amult,ei ¼ 0:06

and g2add,ei ¼ 3=2, and s2
ei ¼ a2

mult,ei z
2
i þ g2add,ei þ (dcorr,ei

ffiffiffiffi
zi

p
)2, with amult,ei ¼ 0:06 and g2add,ei ¼ 3=2 and

dcorr,ei ¼ 0:25 governed by the mitigation of the smoothing process.
As described in §8, we performed three waves of the history match with 125 runs each wave, finding

that the emulators were of sufficient accuracy after the third wave. Figure 28b shows the progression of
the runs from iterations 1, 2 and 3 used in the history matching process (in purple, green and red,
respectively) for the daily hospital deaths in England output, with the data (original and smoothed) in
black. We can see that the third iteration runs are vastly improved and surround the observed data.
These allow accurate emulators to be constructed that can identify the region of input space of
interest, which were used to construct figure 22, as discussed in §8.
pen
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