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The estrogen-related receptor (ERR) family of orphan nuclear receptors are transcriptional activators for
genes involved in mitochondrial bioenergetics and metabolism. The goal of this study was to explore
the role of ERRa in lipid metabolism and the potential effect of inhibiting ERRa on the development of
nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). In the current study,
three experimental mouse models: high-fat diet, high-carbohydrate diet, and a genetic model of he-
patic insulin resistance where the liver hyperinsulinemia signal is mimicked via hepatic deletion of Pten
(phosphatase and tensin homolog deleted on chromosome 10), the negative regulator of the insulin/
phosphatidylinositol 3-kinase signaling pathway, were used. A recently developed small-molecule in-
hibitor for ERRa was used to demonstrate that inhibiting ERRa blocked NAFLD development induced by
either high-carbohydrate diet or high-fat diet feeding. ERRa inhibition also diminished lipid accu-
mulation and attenuated NASH development in the Pten null mice. Glycerolipid synthesis was discov-
ered as an additional mechanism for ERRa-regulated NAFLD/NASH development and glycerophosphate
acyltransferase 4 was identified as a novel transcriptional target of ERRa. In summary, these results
establish ERRa as a major transcriptional regulator of lipid biosynthesis in addition to its characterized
primary function as a regulator for mitochondrial function. This study recognizes ERRa as a potential
target for NAFLD/NASH treatment and elucidates novel signaling pathways regulated by ERRa.
(Am J Pathol 2021, 191: 1240e1254; https://doi.org/10.1016/j.ajpath.2021.04.007)
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The prevalence of liver steatosis is about 25% of the general
population and is as high as 70% in the obese population and
those with type 2 diabetes.1,2 These numbers are expected to
increase with the predicted increase of obesity prevalence.
Although moderate steatosis is considered benign and
reversible, compounding with inflammation and hepatocel-
lular damage in nonalcoholic steatohepatitis (NASH) signif-
icantly increases the likelihood of developing fibrosis,
cirrhosis, and hepatocellular carcinoma. In the absence of
effective Food and Drug Administrationeapproved therapy,
nonalcoholic fatty liver disease (NAFLD)/NASH is antici-
pated to become the leading cause of hepatocellular carci-
noma and the primary reason for liver transplants in the next
decade.3
stigative Pathology. Published by Elsevier Inc
Mitochondria participate in multiple metabolic pro-
cesses, and mitochondrial dysfunction has been attributed
to be a major contributor for the pathogenesis of NAFLD/
NASH.4 Mouse studies that manipulate mitochondrial
proteins, such as the mitochondrial trifunctional protein
and the mitochondrial, as well as the nuclear, forms of
sirtuins, support a role of mitochondria in NAFLD and
NASH pathogenesis.5,6 Estrogen-related receptor (ERR),
. All rights reserved.
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Table 1 Real-Time PCR Primers Used in Study

Gene Primer Sequence Amplicon size, bp

ACC Forward 50-TCACACCTGAAGACCTTAAAGCC-30 152
Reverse 50-AGCCCACACTGCTTGTACTG-30

AGPAT1 Forward 50-AGGACGCAACGTCGAGAAC-30 176
Reverse 50-GCAGTACCTCCATCATCCCAAG-30

AGPAT3 Forward 50-CTGCTGGTCGGCTTTGTCTT-30 133
Reverse 50-TCCAGAGTGAGTAGGCGAGG-30

CYC1 Forward 50-TCAGGCCCCTGGATACTCTT-30 165
Reverse 50-GCTATTAAGTCTGCCCTTTCTTCC-30

DGAT1 Forward 50-TATTGCGGCCAATGTCTTTGC-30 166
Reverse 50-CACTGGAGTGATAGACTCAACCA-30

DGAT2 Forward 50-GAATGGGAGTGGCAATGCTAT-30 194
Reverse 50-CCTCGAAGATCACCTGCTTGT-30

FASN Forward 50-ACAGCGGGGAATGGGTACT-30 188
Reverse 50-GACTGGTACAACGAGCGGAT-30

AGPAT1 Forward 50-TCTTTGGGTTTGCGGAATGTT-30 111
Reverse 50-ATTTGGAGCTGCCTAGCCTC-30

GPAT4 Forward 50-ATTTGGAGCTGCCTAGCCTC-30 105
Reverse 50-GACACTCTTCTCCCGAAGGC-30

ACADM Forward 50-ACAACGTGAACCAGGATTAG-30 83
Reverse 50-TGGCAAATTTACGAGCAGTA-30

Acc Forward 50-ATGGGCGGAATGGTCTCTTTC-30 148
Reverse 30-TGGGGACCTTGTCTTCATCAT-30

Agpat1 Forward 50-TAAGATGGCCTTCTACAACGGC-30 135
Reverse 50-CCATACAGGTATTTGACGTGGAG-30

Agpat3 Forward 50-CTGCTTGCCTACCTGAAGACC-30 141
Reverse 50-GATACGGCGGTATAGGTGCTT-30

Cyc1 Forward 50-CCAGTGCCACACCGTTGAA-30 136
Reverse 50-TCCCCAGATGATGCCTTTGTT-30

Dgat1 Forward 50-TCCGTCCAGGGTGGTAGTG-30 199
Reverse 50-TGAACAAAGAATCTTGCAGACGA-30

Dgat2 Forward 50-CGAGACACCATAGACTACTTGCT-30 126
Reverse 50-GCGGTTCTTCAGGGTGACTG-30

Fasn Forward 50-GGAGGTGGTGATAGCCGGTAT-30 140
Reverse 50-TGGGTAATCCATAGAGCCCAG-30

Agpat1 Forward 50-ACAGTTGGCACAATAGACGTTT-30 139
Reverse 50-CCTTCCATTTCAGTGTTGCAGA-30

Gpat4 Forward 50-TCAGTTTGGTGACGCCTTCT-30 216
Reverse 50-TTCAATCCACCGTCCCACAG-30

Acadm Forward 50-AGGGTTTAGTTTTGAGTTGACGG-30 110
Reverse 50-CCCCGCTTTTGTCATATTCCG-30

ERRa in Liver Steatosis
alias NR3B, is an orphan nuclear receptor that plays
critical roles in the transcriptional regulation of genes
involved in mitochondrial bioenergetics and functions.7

ERRa, the dominant isoform of ERR in the liver,8 binds
to coactivators such as peroxisome proliferator-activated
receptor g coactivator 1-a, to regulate the expression of
genes encoding mitochondrial respiratory complexes and
metabolic enzymes involved in lipid and glucose metab-
olisms.9e14 Among the transcriptional targets of ERRa
are genes that make up the mitochondrial respiratory
apparatus, and genes that encode enzymes for the tricar-
boxylic acid cycle, mitochondrial oxidative phosphoryla-
tion, and fatty acid b-oxidation. ERRa also regulates
genes that transcribe proteins that interact with
The American Journal of Pathology - ajp.amjpathol.org
mitochondrial DNA to initiate mitochondrial gene tran-
scription.8,15,16 Given the diverse functions of these target
genes, it was hypothesized that loss of ERRa function
would result in lower oxidative phosphorylation and
suppress catabolism, leading to accumulation of lipids.
Surprisingly, mice deficient for ERRa (Esrrae/e mice)
have been reported to be resistant to high-fat diet (HFD)e
induced obesity and NAFLD.17 In addition to promoting
triglyceride breakdown during refeeding, ERRa also
promotes triglyceride buildup during chronic condi-
tions.18 This observation indicates that either the physio-
logical functions of ERRa in metabolic regulation are
more complex and depend on the metabolic state, or other
unidentified target genes of ERRa mediate its function in
1241
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Table 2 ChIP Primers Used in Study

Gene Primer Sequence

ESRRA is the
official symbol
here.

Forward 50-GAGCGATGCATGGTCCGT-30

Reverse 50-CAACTGAGCACTCGAACCGT-30

DGAT1 Forward 50-CCTCCGGGCCCTAGACAA-30

Reverse 50-CCCCGTCAGCCTCTCCA-30

GPAT4 Forward 50-CCCCCTAGTCCGCCAGA-30

Reverse 50-AAGCTGCGTCAGGACGTG-30

ChIP, chromatin immunoprecipitation.

Chen et al
lipid metabolism. In particular, fatty acid synthase (FASn)
and acetyl-CoA carboxylase (ACC), two rate-limiting
lipogenic genes, were found to be potential target genes
of ERRa transcription.18,19 In agreement with this puta-
tive function of ERRa in lipogenesis, ERRa and peroxi-
some proliferator-activated receptor g coactivator 1-a
together are shown to be required for adipogenic differ-
entiation induced by glucocorticoid, cAMP, and insu-
lin.20,21 Thus, ERRa appears to play multiple roles in the
regulation of lipid metabolism, and further studies are
needed to elucidate additional mechanisms that regulate
ERRa-mediated lipid buildups in NAFLD/NASH.

The current study aimed to explore the function of ERRa
in lipid metabolism and NAFLD/NASH development. We
hypothesized that inhibiting ERRa function will attenuate
NAFLD/NASH formation and explored this hypothesis
using a recently discovered small-molecule inhibitor of
ERRa.22

Materials and Methods

Animals

Three animal models were used to model NAFLD/
NASH: a high-carbohydrate diet (HCD) model where
2.5-montheold male mice were fed a 75% by calorie
carbohydrate diet (TD.99252; Envigo, Placentia, CA) for
10 days; a HFD model where 2-montheold mice were
fed a 60% by calorie fat diet (06,414; Harlan Labora-
tories, Indianapolis, IN) for 2 months; and a genetic
NAFLD/NASH model (Pten null) where Pten (phos-
phatase and tensin homolog deleted on chromosome 10),
the negative regulator of phosphatidylinositol 3-kinase
(PI3K)/AKT, is selectively deleted in the liver (Pten-
loxP/loxP;Alb-Creþ).23,24 Normal chowefed wild-type
mice were used as controls. All animals were housed in
a temperature-, humidity-, and light-controlled room (12-
hour light/dark cycle), with free access to food and water.
All mice were of C57BL/6 background, and all experi-
mental procedures were conducted according to the
Institutional Animal Care and Use Committee guidelines
of the University of Southern California.

The ERRa inhibitor, polyamide ERR-PA, and mis-
matched polyamide control (MM-PA) compounds, provided
gratis by Dr. Peter Dervan (California Insititue of Tech-
nology, Pasadena, CA),22 were dissolved in phosphate-
buffered saline containing 5% dimethyl sulfoxide in
approximately 0.3 mg/mL concentration and administered
via i.p. injection (1 mg/kg), as indicated. All vehicle control
groups received 100 mL phosphate-buffered saline supple-
mented with 5% dimethyl sulfoxide.

Cell Culture

Huh7 human hepatocytes (ATCC, Manassas, VA) were
cultured in Dulbecco’s modified Eagle’s medium
1242
supplemented with 10% fetal bovine serum and 1%
penicillin-streptomycin, and incubated at 37�C with 85%
relative humidity/5% CO2. For experiments using poly-
amides, 1 mmol/L of polyamides was used with dimethyl
sulfoxide as a vehicle control for 24 hours.
Plasmid DNA (4 mg) and siRNA (100 pmol) together

with 10 mL of Lipofectamine 2000 (Thermo Fisher, Wal-
tham, MA), were added to cells growing at 70% to 90%
confluence and incubated for 24 hours. siRNAs for ERRa
and scramble control were purchased from Santa Cruz
Biotechnology (Dallas, TX). siRNA for CCAAT-enhancer
binding protein b (C/EBPb) was purchased from Origene
(Rockville, MD). Expression vector for C/EBPb was pro-
vided by Addgene (Watertown, MA).
Immunopathology

Livers were perfused with cold phosphate-buffered saline
and collected in Zn-formalin for histology; collected in OCT
compound for frozen section; and flash frozen for protein,
RNA, and lipid analysis. Histologic sections were stained
with hematoxylin and eosin for morphologic analysis, oil
red O to visualize lipid, and Sirius red to visualize liver
fibrosis. Oil red O and Sirius red staining data were further
quantified using ImageJ version 2.0 software (NIH,
Bethesda, MD; http://imagej.nih.gov/ij, last accessed
February 28, 2021) with Fiji in some experiments. For
each animal, 10 to 40 images were taken and scored for
areas of oil red Oepositive versus total tissue area. Immu-
nohistochemistry was performed on liver sections with
anti-pan cytokeratin antibody for visualizing cholangiocytes
and anti-CD68 antibody for macrophages/monocytes.
Biochemical Assays

Total liver triglycerides (TGs) were quantified using the
Folch method. The TG content was determined using a kit
from Wako Chemicals (Richmond, VA) and normalized to
the initial weight of the liver sample. To assess liver injury,
serum alanine aminotransferase was determined using the
alanine aminotransferase activity assay kit, according to
manufacturer’s protocol.
ajp.amjpathol.org - The American Journal of Pathology
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ERRa in Liver Steatosis
RNA Isolation, qPCR, and RNA-Sequencing Analysis

Total RNA from cells and frozen liver tissues was isolated
using TRIzol reagent (Invitrogen, Carlsbad, CA) following
manufacturer’s instruction. cDNA was produced using the
Reverse Transcription System (Promega, Madison, WI).
Quantitative PCR (qPCR) was performed using SYBR
green qPCR mix (Thermo Fisher Scientific, Waltham, MA).
Gene-specific primers used for qPCR are listed in Table 1.
Figure 1 Treatment with the estrogen-related receptor (ERR) aespecific inhib
high-carbohydrate diet (HCD) fed mice. A: Top panel: Treatment protocol. Bottom
ERR-PA (1 mg/kg), a mismatched control polyamide (MM-PA), or vehicle (Veh). Nu
Quantitative PCR analysis of cytochrome c (CYC) expression in livers of HCD-NAFL
plasma glucose. D: Liver triglycerides and oil red Oepositive area in different coho
oil red O staining (bottom panels) images of livers isolated from mice on normal
*P � 0.05 between the indicated groups. Scale bar Z 100 mm (E). GAPDH, glyc

The American Journal of Pathology - ajp.amjpathol.org
RNA sequencing was performed on an Illumina (San
Diego, CA) HiSeq2500 by the University of Southern
California Molecular Genomics’ Core. Data were processed
using Partek Flow (Partek, St. Louis, MO) with �1.2-fold
change in expression and false discovery rate <0.05 to be
considered different. The heat maps for gene expression
values were analyzed using Partek Flow or Gene Set
Enrichment Analysis.
itor ERR-PA blocks nonalcoholic fatty liver disease (NAFLD) development in
panel: ERRa protein expression detected in HCD-NAFLD livers treated with

mbers below are ratio of densitometry reading of ERRa versus actin band. B:
D mice treated with ERR-PA or vehicle control. C: Body weight and fasting
rt of mice. E: Representative hematoxylin and eosin (H&E; top panels) and
chow or HCD treated with different compounds. n Z 5 (C); n Z 5 to 7 (D).
eraldehyde-3-phosphate dehydrogenase; PBS, phosphate-buffered saline.
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Chen et al
Immunoblotting

Cell and tissue lysates were prepared in protein lysis buffer
supplemented with phosphatase inhibitors and protease in-
hibitors (Roche, Los Gatos, CA). Protein blots were probed
with anti-ERRa (Abcam, Cambridge, UK), phosphorylated
AKT (Cell Signaling Technology, Danvers, MA), PTEN
(Cell Signaling Technology), and b-actin (Sigma-Aldrich,
St. Louis, MO) antibodies.
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Chromatin Immunoprecipitation Assay

Chromatin immunoprecipitation reaction was performed
using 5 mg anti-ERRa antibody (Abcam). Precipitated DNA
samples were analyzed by quantitative PCR using SYBR
green qPCR mix. The chromatin immunoprecipitatione
qPCR data were calculated relative to the input (ie, per-
centage input method). The primers used are listed in
Table 2.
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ERRa in Liver Steatosis
Statistical Analysis

Data in this study were presented as means � SEM. For
multiple-group comparison, multivariance analysis of vari-
ance was used to determine if there were intergroup dif-
ferences. This was followed by the post-hoc Tukey test. For
two-group comparison, data were analyzed by the two-tailed
t-test. P < 0.05 was considered statistically significant.
Results

Inhibiting ERRa Attenuates NAFLD Development

ERRa was up-regulated in NAFLD induced by either HCD
or HFD feeding (Supplemental Figure S1). HCD or HFD
fed mice were treated with ERR-PA, a recently discovered
small-molecule inhibitor of ERRa.22 ERR-PA is a
sequence-specific polyamide that binds to the ERR response
element on the promoters of ERR target genes. It func-
tionally inhibits oxidative phosphorylation, a primary
cellular function regulated by ERRa.22 In Huh7 cells, RNA-
sequencing analysis indicates that 94.7% of differentially
expressed genes altered by ERR-PA treatment are similarly
altered by treatment with siRNA for ERRa (Supplemental
Figure S2, A and B), confirming the specificity of the
ERR-PA. In accordance with down-regulatiion of ERRa
function, ERR-PA treatment robustly down-regulated
mitochondrial signaling (Supplemental Figure S2C).

Lipogenesis and hepatosteatosis were induced in C56BL6
mice fed on HCD for 10 days.25,26 The HCD-fed mice were
treated with ERR-PA to determine if it would inhibit the
effects of HCD on hepatosteatosis (Figure 1A). As expected
for the reduced ERR transcriptional activity, ERR-PA
reduced the expression of cytochrome c (CYC), a charac-
terized transcriptional target for ERRa, confirming the
functional inhibition of ERRa by treatment with ERR-PA
(Figure 1B). Protein levels of ERRa were also reduced by
ERR-PA treatment in the liver (Figure 1A). This is likely
due to the function of ERRa as a transcriptional activator for
its own transcription.10 MM-PA, a mismatch polyamide,
was used as control.22 MM-PA requires 10� higher dose to
disrupt the binding of ERRa to the estrogen related receptor
response element. It also has reduced ability to inhibit
expression of CYC in Huh7 cells and does not reduce
luciferase activity of an estrogen related receptor response
element reporter or oxygen consumption in the same cells.
MM-PA treatment led to a moderate inhibition of CYC
expression in the livers of HCD-fed mice. The reason for
this non-specific effect of MM-PA in vivo is unclear and
will need to be explored in the future. A 10-day treatment
with ERR-PA or MM-PA did not cause discomfort, changes
in body weight, or fasting glucose (Figure 1C). This short-
term inhibition of ERRa led to a 40% reduction in hepatic
TG accumulation in the HCD mice (Figure 1D). Histolog-
ically, ERR-PA treatment significantly reduced the per-
centage of areas that stained positive for lipid with oil red O
The American Journal of Pathology - ajp.amjpathol.org
(Figure 1D) in the livers of the HCD mice, whereas MM-PA
treatment did not. The appearance of the ERR-PA-treated
livers resembled that of livers from the normal chow group
(Figure 1E). These results suggest that ERR-PA treatment to
inhibit ERRa has the potential to suppress NAFLD
development.

Similar to HCD feeding, feeding HFD for 4 months
increased liver TGs by more than twofold and led to a clear
presence of steatosis (Figure 2). To inhibit ERRa, HFD-fed
mice were treated with ERR-PA for the last 2 months of
being on the diet (Figure 2A). Similar to that in HCD mice,
2-month treatment with ERR-PA attenuated the expression
of CYC (Figure 2B) and led to moderately reduced protein
expression of ERRa (Figure 2A) in HFD mice. Treatment
with ERR-PA did not reduce the body weight of the mice
(Figure 2C), indicating limited overall toxicity. The weight
gain, however, was reduced from 18.2 � 0.9 to 14.8 � 1.4 g
in the vehicle versus ERR-PA treated groups (P Z 0.06),
consistent with previous reports.17,18 Plasma glucose was
also reduced in the ERR-PA treated group (Figure 2C),
consistent with the role of ERRa in the regulation of sys-
temic glucose metabolism.27 Next, the expression of phos-
phoenolpyruvate carboxykinase (PEPCK) and glucose-6-
phosphatase (G6Pase), the two key rate-limiting enzymes
for gluconeogenesis reported to be transcriptional targets of
ERRa, was evaluated. As expected, HFD reduced the
expression of both PEPCK and G6Pase. In agreement with
its glucose-lowering effect, ERR-PA reduced the expression
of G6Pase in the livers of the HFD treated mice, whereas
PEPCK was less responsive (Supplemental Figure S3). The
expression of PEPCK and G6Pase was explored in the
HCD-fed mouse livers. Consistent with an induction effect
of high glucose on G6Pase, HCD induced the expression of
G6Pase. Treatment of ERR-PA significantly reduced the
expression of HCD-induced G6Pase, whereas PEPCK was
not affected by HCD or ERR-PA treatment. The inhibition
of hepatic G6Pase expression by ERR-PA in both HCD and
HFD mice may have contributed to the glucose-lowering
effect of ERR-PA, although a systemic effect on tissues
other than the liver cannot be ruled out.

Hepatic TG accumulation was significantly reduced by
more than twofold in livers of HFD mice treated with ERR-
PA (Figure 2C). The liver TG levels in the ERR-PA-treated
mice were similar to those observed in the normal chow-fed
mice. The steatosis histology was also ameliorated by ERR-
PA treatment, as indicated both with hematoxylin and
eosine and oil red Oestained tissue sections (Figure 2D).

ERRa Inhibition Attenuates NASH Development

A mouse model where NAFLD/NASH is induced by the
loss of PTEN, a negative regulator of the insulin/PI3K/AKT
signaling pathway, was used to address whether inhibiting
ERRa could also attenuate NASH. The PI3K/AKT pathway
regulates ERRa in hepatocytes.28e31 Deletion of Pten leads
to constitutive activation of PI3K/AKT signaling
1245
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downstream of insulin, mimicking the hepatic hyper-
insulinemia conditions that accompany metabolic disorders,
like those caused by diet feeding or obesity.32 The Pten-null
NAFLD/NASH mice do not develop hyperinsulinemia
outside the liver,24 allowing studying hyperinsulinemia
signal-mediated steatosis in the liver without the complica-
tions of systemic metabolic changes. NAFLD develops
early in the Pten deleted mice with macrovesicular lipid
1246
accumulation.24,32e34 From 7 to 9 months of age, the Pten-
null mice spontaneously develop NASH-like pathologic
features, including steatosis, Mallory bodies, pericellular
fibrosis, and the presence of inflammatory cells.32,33,35,36

ERRa was elevated in the livers of the Pten-null mice,
concurrent with constitutively phosphorylated AKT
(Figure 3A). Treatment of 7-montheold Pten-null mice with
ERR-PA for 2 months did not affect the body weight of the
ajp.amjpathol.org - The American Journal of Pathology
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mice (Figure 3, B and C), although the Pten-null mice had
moderately lower body weight and blood glucose compared
with the control mice, as previously reported.37 Similar to
that in HFD mice, ERR-PA reduced plasma glucose in Pten-
The American Journal of Pathology - ajp.amjpathol.org
null mice (Figure 3C). Interestingly, ERR-PA treatment
moderately rescued the down-regulation of G6Pase by
PTEN loss, suggesting that the direct signaling regulation of
ERRa by PTEN/AKT30 was blocked by ERR-PA
1247
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(Supplemental Figure S3). Interestingly, PEPCK expression
was not affected by ERR-PA treatment, although PTEN loss
significantly down-regulated PEPCK in either vehicle or
ERR-PA treated groups (Supplemental Figure S3).
1248
Similar to that in the HCD- and HFD-treated mice, the
histologic appearance of both the macrovesicular steatosis
and hepatic TGs was suppressed by ERR-PA in the livers of
Pten-null mice (Figure 4A). Sirius red staining for collagen
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showed that the percentage of liver area positive for Sirius
red reduced significantly from approximately 15% to <5%
(Figure 4B). Concomitantly, plasma alanine aminotrans-
ferase reduced by 50%, which was indicative of less severe
liver injury in the ERR-PA-treated groups (Figure 4C). The
expression of IL-6, tumor necrosis factor-a (TNF-a), and
IL-1b was significantly reduced with ERR-PA treatment,
consistent with reduced inflammation in the liver
(Figure 4D). Staining with CD68 also revealed less infil-
tration of macrophages in the ERR-PA treated livers
(Figure 4E). Deletion of Pten in the liver leads to elevated
apoptosis.34 Herein, treatment with ERR-PA reduced the
percentage of cells that stained positive for terminal deox-
ynucleotidyl transferase-mediated dUTP nick-end labeling
(Figure 4F), suggesting that inhibiting ERRa with ERR-PA
also rescued cell death. Taken together, these results suggest
that ERR-PA not only blocked hepatic TG accumulation,
but also substantially improved NASH pathology.

Regulation of Both de Novo Lipogenesis and
Glycerolipid Biosynthesis by ERRa

RNA sequencing in Huh7 cells expressing siRNA against
ERRa indicated that genes encoding lipogenesis and glyc-
erol lipid biosynthesis were regulated by ERRa
(Supplemental Figure S4). The regulation of lipogenic genes
was validated by assessing the levels of FASn and ACC, the
two key regulatory enzymes in the de novo lipogenesis
pathway, with down-regulated ERRa. Introduction of
ERRa siRNA to Huh7 cells significantly inhibited the
expression of FASn and ACC in addition to the expression
of the medium chain acyl-CoA dehydrogenase (MCAD) and
CYC, two confirmed transcriptional targets of ERRa
(Figure 5A). Expressions of FASn and ACC were also
down-regulated in all three models where ERR-PA inhibited
lipid accumulation in hepatocytes (Figure 5B). These data
confirm that ERRa-regulated de novo lipogenesis likely
plays a role in the pathogenesis of NAFLD.

Free fatty acid synthesized de novo in the liver or trans-
ported from other tissues is stored into TGs via the action of
enzymes that catalyze glycerolipid biosynthesis. The regu-
lation of genes encoding these enzymes by ERRa was
verified in Huh7 cells (Figure 5C) and four of the genes
were found to be significantly inhibited by the small in-
hibitor ERRa: glycerol-3-phophate acyltransferases
[GPAT1 (alias GPAM) and GPAT4], which catalyze the
conversion of glycerol-3-phosphate to lysophosphatidic
acid, the first step in the glycerol lipid synthesis pathway;
and diacylglycerol acyltransferases (DGAT1 and DGAT2),
which catalyze the conversion of diacylglycerol to tri-
acylglycerol, the last step of the pathway. Down-regulation
of all but one of these genes by ERRa inhibition was also
observed in the livers of all three NAFLD/NASH mouse
models treated with ERR-PA (Figure 5C). The exception is
GPAT4 in the HCD model, likely due to the shorter treat-
ment duration.
1250
Regulation of GPAT1, DGAT1, and DGAT2, but Not
GPAT4, by C/EBPb

To address the mechanisms by which ERRa regulates the
expression of these genes involved in glycerolipid synthesis,
the role of C/EBPb was explored, as GPAT1, DGAT1, and
DGAT2 are transcriptional targets of C/EBPb.38,39 Consis-
tent with a positive regulatory role of C/EBPb on the tran-
scription of GPAT1 and DGAT2, expression of exogenous
C/EBPb in Huh7 cells led to their induction compared with
the untreated vector controls (Figure 6A). Although inhib-
iting ERRa with ERR-PA reduces the expression of GPAT1
and DGAT2, introduction of C/EBPb blocks this effect.
Only moderate and insignificant reduction of GPAT1 and
DGAT2 is observed with the concomitant treatment of
ERR-PA and expression of C/EBPb. Confirming an effect
of C/EBPb in the regulation of these two genes, introduction
of small inhibitor C/EBPb (siC/EBPb) inhibited their
expression (Figure 6B). The expression of DGAT1, how-
ever, was not altered with the overexpression of C/EBPb
(Figure 6A) with or without ERR-PA treatment, suggesting
that regulation of DGAT1 by ERRa is not dependent on C/
EBPb. Because siC/EBPb was still capable of inhibiting its
expression (Figure 6B), these data together suggest that C/
EBPb likely is needed to sustain DGAT1 expression but is
not sufficient to induce its expression under the experi-
mental conditions. Thus, C/EBPb and ERRa may inde-
pendently regulate the expression of DGAT1.

Identification of GPAT4 as a Novel Transcriptional
Target of ERRa

Although transcriptional regulation of GPAT1 has been well
studied, the regulation of GPAT4 is largely unknown.40

Herein, neither siC/EBPb nor expression of exogenous C/
EBPb was capable of altering the expression of GPAT4
(Figure 6, A and B). ERR-PA, however, was capable of
inhibiting the expression of GPAT4 even in the presence of
overexpressed C/EBPb (Figure 6A), suggesting that the
regulation of GPAT4 by ERRa is not mediated by C/EBPb.
To explore the potential regulation of GPAT4 by ERRa,
genomic locus of GPAT4 was examined using data available
from the University of California, Santa Cruz, genome
browser (https://genome.ucsc.edu, last accessed May 8,
2020). A putative site for ERRa binding was identified in
the predictive transcription initiation region, marked by
H3K4m3, K3K9ac, K3K27ac, and polymerase II binding
(Supplemental Figure S5), similar to that in ESRRA and
DGAT1, two confirmed transcriptional targets of ERRa.
To test whether ERRa binds to the promoter of GPAT4 to

regulate its transcription, primers spanning this locus were
designed to amplify the sequence after pulldown of the
ERRa-associated chromatin in Huh7 cells. Similar to
DGAT1 and ESRRA used as positive controls, GPAT4 was
detected in the ERRa-associated chromatin. Furthermore,
chromatin immunoprecipitationeqPCR analysis showed
ajp.amjpathol.org - The American Journal of Pathology
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that ERR-PA significantly reduced the association of ERRa
with this GPAT4 locus, whereas the control compound MM-
PA did not block the association (Figure 6, C and D).
Consistently, ERR-PA treatment reduced the expression of
GPAT4, but MM-PA did not (Figure 6E). Together, these
data confirm that GPAT4 is a novel transcriptional target of
ERRa, and ERR-PA reduces binding of ERRa to the pro-
moter of GPAT4.
Discussion

The ERR family of transcription factors are characterized
for their functions in adaptive mitochondrial biogenesis in
response to a variety of stimuli, including HFD, thermo-
genesis, and endurance exercise.13,27,41 The ERR family of
nuclear receptors were discovered using the DNA-binding
domain for estrogen receptor.42 This DNA binding domain
shares 54% to 68% amino acid homology with other
known nuclear receptors, including estrogen receptor, but
has little target gene similarity.42,43 Originally defined as
transcriptional factors for regulating oxidative phosphory-
lation through binding with cofactors, particularly peroxi-
some proliferator-activated receptor g coactivator
1,9,14,44,45 ERRs also play important roles in metabolism.
Although the transcriptional targets of ERRs suggest that
their functions promote catabolic reactions, mice lacking
ERRa exhibit resistance to HFD-induced obesity17 and
improved sensitivity to glucose challenge,46 suggesting
that the in vivo function of ERRa is more complicated. In
this study, the function of ERRa in hepatic lipid homeo-
stasis and its role in the pathogenesis of NAFLD and
NASH were explored. A recently developed functional
inhibitor of ERRa22 was used to show that inhibiting
ERRa transcriptional function could both block the
development of NAFLD and reverse established NAFLD.
In addition, ERRa inhibition attenuated fibrosis and
inflammation that are concurrent with steatosis and NASH.
ERRa positively regulated glycerol lipid biosynthesis as
well as de novo lipogenesis; and GPAT4 emerged as a
novel transcriptional target of ERRa.

Liver steatosis is often associated with impaired insulin
response and system metabolic syndromes, including
diabetes. In metabolic syndromes, insulin resistance
occurring in muscle and adipose tissue leads to systemic
hyperglycemia. The resulting hyperinsulinemia signal
leads to selective hepatic insulin resistance,47 where
hyperinsulinemia cannot suppress hepatic gluconeogen-
esis (resistance) but continues to induce lipogenesis
(nonresistance), contributing to NAFLD development.
Dissecting the signals downstream of AKT2 that diverge
in the regulation of gluconeogenesis and lipogenesis
contributed to selective insulin resistance.32,48,49 Herein,
using two models (HCD and Pten null) of NAFLD where
lipid accumulation results from de novo lipogen-
esis,25,50,51 the data established that ERRa-mediated
The American Journal of Pathology - ajp.amjpathol.org
FASn and ACC transcription is also important for hepatic
de novo lipogenesis in vivo. ERR function has been
previously reported to support adipogenesis via its bind-
ing to peroxisome proliferator-activated receptor g
coactivator 1 to induce FASn, ACC, and sterol regulatory
element binding protein, among others.14,20,52e54

Together with previous work demonstrating the regula-
tion of ERRa and ERRg by PI3K/AKT via cAMP
response element binding protein,30,55 the current data
establish a signaling pathway in which hepatic hyper-
insulinemia signals de novo lipogenesis via activation of
AKT2.32,48,49 Activation of AKT, then, leads to induction
of ERRa,30 resulting in increased transcription of FASn
and ACC, two rate-limiting enzymes involved in de novo
lipogenesis.

In addition to de novo lipogenesis, this work also iden-
tified a novel role for ERRa in the storage of lipids as TGs
and particularly identified GPAT4 as a novel transcriptional
target of ERRa. The storage of lipid into TG starts with
esterification of long-chain fatty acids to glycerol 3-
phosphate, forming lysophosphatidic acid. This committed
step is catalyzed by GPATs, the rate-limiting enzymes for
the process. Mammals possess two mitochondrial forms of
GPAT, GPAT1 (alias GPAM) and GPAT2; and two
microsomal forms of GPAT (GPAT3 and GPAT4).
Although GPAT2 may play other roles, all other forms of
GPATs regulate glycerol lipid biosynthesis, with GPAT3
primarily functioning in white adipose tissue.40 Both
GPAT1 and GPAT4 are expressed in the liver. GPAT1 and
not GPAT4 is responsible for incorporating de novo syn-
thesized fatty acids into TGs,56 whereas genetic manipula-
tion of either leads to reduced hepatic lipid content.57,58

Although sterol regulatory element binding protein and C/
EBP are reported to regulate the transcription of GPAT1,
how GPAT2, GPAT3, and GPAT4 are regulated is largely
unknown.38e40 The novel finding herein is that ERRa
serves as the transcriptional factor for GPAT4. As a target of
ERRa, down-regulation of GPAT4 is capable of blocking
the acylation of glycerol-3-phosphate at carbon 1, prevent-
ing further steps that lead to TG synthesis. This novel
regulation on GPAT4 by ERRa may also contribute to the
inhibitory effect of ERR-PA on liver steatosis in addition to
its regulation of de novo lipogenesis.

Unlike NAFLD, NASH can be accompanied with
inflammation and severe liver cell damage. Herein, inhib-
iting ERRa by ERR-PA not only abolished steatosis, but
also attenuated the pathologic features associated with
NASH, including fibrosis. Although these observations
could result from the diminished NAFLD development, a
direct effect of ERR-PA on NASH cannot be ruled out. A
key hypothesized pathogenesis for NAFLD/NASH-induced
liver damage is reactive oxygen species. Overexpression of
ERRa induces reactive oxygen species, whereas inhibiting
ERRa attenuates reactive oxygen species production.30 In
addition, a potential role of ERRa as the metabolic regulator
involved in T-cell and macrophage activation has also been
1251
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reported.12,59 How these roles of ERRa in inflammatory
cells may affect fibrosis needs to be further investigated.

NAFLD/NASH is a complex disorder involving
multiple factors. These factors ultimately lead to hepatic
lipid deposition, liver injury, and inflammation, which
are hallmarks of NASH. The ERRs serve as positive
transcriptional regulators of genes regulating mitochon-
drial respiration and negative regulators for genes
regulating gluconeogenesis. These characteristics have
made ERRs an interesting target for the treatment of
type 2 diabetes as activating ERRs has the potential to
improve overall mitochondrial respiratory function and
suppress hepatic glucose output. However, pharmaco-
logic inhibition of either ERRa or ERRg (the dominant
form of ERR in cardiac and skeletal muscles) has led to
improved insulin response and better tolerance to diet-
induced metabolic changes.60,61 This paradoxical effect
of ERR inhibition on insulin sensitivity is also observed
in mice lacking ERRa and is thought to be related to
circadian rhythm regulation.46 In NAFLD induced by
rapamycin treatment, lack of ERRa impairs fatty acid
oxidation, while buildup of citrate due to down-
regulation of the tricarboxylic acid cycle is redirected
toward lipid biosynthesis.19 Thus, the glucose-lowering
effect of ERRa inhibition by ERR-PA may have also
limited the production of citrate, playing a role in the
inhibition of liver steatosis. This glucose-lowering effect
of ERR inhibition may have resulted partially from the
effect of ERR-PA in hepatic gluconeogenesis. Our data
showed that ERR-PA treatment led to down-regulation
of G6Pase in both HCD and HFD treated mouse
livers, and did not alter the expression of either G6Pase
or PEPCK in the Pten-deleted models. As ERRs are
negative regulators of the transcription of G6Pase and
PEPCK, the negative effects of ERR-PA on the
expression of G6Pase suggest an off-target effect of a
metabolic regulatory effect that is secondary to the
primary effect of ERR-PA, likely occurring elsewhere
outside the liver. To address these possibilities, a tissue-
specific approach would need to be adopted to explore
the function of ERR in each tissue that may contribute
to glucose changes. Future work in this direction will
likely improve the understanding of the biological
function of ERR and its potential as a therapeutic target
for metabolic diseases.

In summary, the data presented in this study demon-
strated the function of ERRa in NAFLD/NASH develop-
ment and discovered mechanisms for ERRa-regulated lipid
synthesis and storage in the liver. This study demonstrated a
novel role of ERRa as the transcriptional factor for GPAT4
among other genes involved in glycerolipid biosynthesis, in
addition to its proposed positive regulatory function in
FASn and ACC. This study supports the targeting of ERRa
as potential therapeutic intervention for NAFLD/NASH and
sheds light on the paradoxical observations for the ERRa-
regulated cellular processes.
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