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Abstract

In analysis of survival outcomes supplemented with both clinical information and high-

dimensional gene expression data, use of the traditional Cox proportional hazards model fails to 

meet some emerging needs in biomedical research. First, the number of covariates is generally 

much larger the sample size. Secondly, predicting an outcome based on individual gene expression 

is inadequate because multiple biological processes and functional pathways regulate phenotypic 

expression. Another challenge is that the Cox model assumes that populations are homogenous, 

implying that all individuals have the same risk of death, which is rarely true due to unmeasured 

risk factors among populations. In this paper we propose group LASSO with gamma-distributed 

frailty for variable selection in Cox regression by extending previous scholarship to account for 

heterogeneity among group structures related to exposure and susceptibility. The consistency 

property of the proposed method is established. This method is appropriate for addressing a wide 

variety of research questions from genetics to air pollution. Simulated and real world data analysis 

shows promising performance by group LASSO compared with other methods, including group 

SCAD and group MCP. Future research directions include expanding the use of frailty with 

adaptive group LASSO and sparse group LASSO methods.
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1. Introduction

1.1. Survival Analysis

Survival analysis models the time it takes for death and other long-term events to occur, 

focusing on the distribution of survival times. Survival modeling examines the relationship 

between survival and one or more predictors, usually called covariates. The semi-parametric 

approach is one of three approaches found in survival analysis, which assumes that the real 

probability distributions of observations belong to a class of laws dependent upon 

parameters, while other parts are written as non-parametric functions (Cox 1972; Cox & 

Oakes 1984).
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Cox regression models the impact of predictors on the hazard function, which characterizes 

for an individual j the probability of dying or experiencing a particular outcome within a 

short interval of time provided the individual has survived or not experienced the outcome 

previously. Many extended versions of the Cox regression model have been implemented to 

take into account clustered data or groups within which the failure times may be correlated 

(Martinussen & Scheike 2006). These groups may represent such distinct entities as 

members of the same family, patients in the same hospital, or organs within an individual. 

Grouping structures arise naturally in many statistical modeling problems. As addressed by 

(Ma et al. 2007), complex diseases such as cancer are often caused by mutations in pathways 

involving multiple genes; therefore, it is preferable to select groups of related genes together 

rather than individual genes separately if they operate on the same causal pathway.

In linear regression, variable selection techniques such as best subset and forward and 

backward stepwise selection have traditionally been used. However, these types of 

approaches are often unsatisfactory for reasons related to problems with high-dimensional 

data and computational intensity (Breiman 1995; Fani & Li 2001, Greenland 2008, Hastie et 

al. 2009). Penalized regression techniques have been proposed to accomplish the same goals 

as these techniques but in a more stable, continuous, and computationally efficient fashion. 

These techniques include a L1 absolute value “Least Absolute Shrinkage and Selection 

Operator” (“LASSO”) penalty (Tibshirani 1996, 1997), and a L2 quadratic (“ridge”) penalty 

(Hoerl & Kennard 1970; Le Cessie & van Houwelingen 1992; Verweij & Van Houwelingen 

1994).

L1 and L2 penalized estimation methods shrink the estimates of the regression coefficients 

towards zero relative to the maximum likelihood estimates. The purpose of this shrinkage is 

to prevent overfitting due to either collinearity of the covariates or high dimensionality but 

can suffer poor performance with some highly correlated datasets (Hou et al. 2018). 

Although both methods are shrinkage oriented, the effects of L1 and L2 penalization are 

quite different in practice. Applying a L2 penalty tends to result in all small but non-zero 

regression coefficients. As a continuous shrinkage method, if there is high correlation 

between predictors, ridge regression achieves better predictive performance through a bias-

variance trade-off that favors ridge over LASSO (Tibshirani 1996). However, ridge 

regression cannot produce a parsimonious model, as it produces coefficient values for each 

of the predictor variables. Applying a L1 penalty tends to result in many regression 

coefficients shrunk to zero and a few other regression coefficients with comparatively little 

shrinkage. Consequently, LASSO is popular due to its sparse output. The L1 penalty has 

been applied to other models including Cox regression (Tibshirani 1997) and logistic 

regression (Lokhorst 1999; Roth 2004; Genkin et al. 2007).

1.2. Literature review and problem statement

This method is an extension of the popular model selection and shrinkage estimation L1 

penalty technique to address the problem of variable selection in high dimensions (i.e., the 

number of regressors p is greater than the number of observations n). Group LASSO (Bakin 

1999; Cai 2001, Antoniadis & Fan 2001; Youan & Lin 2006 Meier et al. 2008) handles these 

Utazirubanda et al. Page 2

Commun Stat Simul Comput. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



problems by extending the LASSO penalty to cover group variable structures and has been 

applied to survival analysis (Kim et al. 2012).

Estimating coefficients in group LASSO is slightly different from standard LASSO because 

the constraints are now applied to each grouping of variables. In regular LASSO it is 

possible to have a different constraint for each coefficient. Group LASSO removes a set of 

explanatory variables in the model by shrinking its corresponding parameter to zero and 

keeping a subset of significant variables upon which the hazard function depends. Some 

tuning parameter λ is used for each factor without assessing its relative importance. It has 

been shown that such an excessive penalty applied to the relevant variables can degrade the 

estimation efficiency (Fan & Li 2001) and affect the selection consistency (Leng et al. 2006; 

Yuan & Lin 2006; Zou 2006). Group LASSO suffers the same drawback; to address this 

issue, Wang & Leng (2008) proposed adaptive group LASSO, which allows for unique 

tuning parameter values to be used for different factors. Such flexibility in turn produces 

variable amounts of shrinkage for different factors.

In the classic semi-parametric Cox model, the study population is implicitly assumed to be 

homogeneous, meaning all individuals have the same risk of death. This assumption rarely 

holds true. Individuals within a group may possess a non-observed susceptibility to death 

from differential genetic predisposition to certain diseases or have common environmental 

exposures that influence time to the studied event (Gilhodes et al. 2017). Another 

assumption in survival analysis is that individuals under observation are independent; 

however, individuals of the same group may share unobserved risk factors. Typical groups 

sharing risk factors include families, villages, hospitals, and repeated measurements on one 

individual (Fu et al. 2017). A simple model for dependent survival times that is a 

generalization of the proportional hazard model can be implemented using the concept of 

frailty. This was first proposed by Vaupel et al. (1979).

The frailty distributions that have been studied mostly belong to the power variance function 

family, a particular set of distributions introduced first by Tweedy (1984) and later 

independently studied by Hougaard (1986). The gamma, inverse Gaussian, positive stable, 

and compound Poisson distributions are all members of this group. Generally, the gamma 

distribution is used to model frailty for sake of mathematical convenience. It has been 

demonstrated that its Laplace transform is a useful mathematical tool for several measures of 

dependence, and the nth derivative of its Laplace transform has a simple notation. To control 

the hidden heterogeneity and/or dependence among individuals with a group-related 

“frailty,” we introduce into our model a random variable that follows a gamma distribution. 

In frailty modeling, the gamma distribution is typically parametrized with one parameter 

being used simultaneously for both shape and scale.

Fan & Li (2002) proposed LASSO for the Cox proportional hazard frailty model. In this 

paper, we further improve this procedure by extending it to group LASSO for the Cox 

proportional hazard frailty model for survival censored times in high dimensions. This 

method takes into account group structure and linkages between predictor variables that are 

supplied in the model. Additionally, allowance is made for a group-level frailty related to 

unmeasured but suspected background vulnerability or resilience to a particular disease 
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outcome. This model algorithm, using group LASSO with the Cox proportional hazard 

frailty model, is most applicable in situations with the aforementioned individual and 

outcome characteristics. In this paper, this method is demonstrated with both simulated and 

real datasets.

Section 2 describes the model and the necessary mathematical underpinnings for the 

following parts. Section 3 builds on the previous section and describes the algorithm for 

choosing model parameters β. Section 4 gives details proving theoretical consistency of the 

method. Section 5 describes applications of this modeling method, and Section 6 gives 

examples of these using simulated and true datasets. Section 7 concludes with a brief 

discussion of the results, limitations, and futures uses of the method.

2. Methods

2.1. Model set-up

Suppose that there are n clusters and that the ith cluster has Ji individuals with unobserved 

shared frailty ui(1 ≤ i ≤ n). A vector Xij(1 ≤ i ≤ n, 1 ≤ j ≤ Ji) is associated with the ijth 

survival time Tij of the jth individual in the ith cluster. Assume that we have independent and 

identically distributed survival data for a subject j in ith cluster: (Zij, δij, Xij, ui) with 

δij = 1 Tij ≤ Cij  the status indicator of censoring, Cij the censoring time and Zij = min(Tij, 

Cij) the observed time for individual j of cluster i. The corresponding likelihood function 

with a shared gamma frailty is given by

Ln β, α, H0( . ) = ∏
i = 1

n
∏
j = 1

Ji
ℎij Zij\ui, Xij

δijSij Zij\ui, Xij ∏
i = 1

n
g ui (2.1)

where S(t) = exp(−H0(t)) refers to a conditional survival function and h(t \ X, u) a 

conditional hazard function of T given X and u with the ui′s representing group-level frailties. 

Let the frailty have a gamma distribution with the density of u written as:

g(u) = ααuα − 1exp( − αu)
Γ(α)

Consider the Cox proportional hazard with frailty model,

ℎij t\Xij, ui = ℎo(t)uiexp β⊤Xij (2.2)

with h0(t) the baseline hazard function and β the parameter vector of interest, where 

H0(t) = ∫0
tℎo(μ)dμ is the cumulative baseline hazard function. From (2.1) the likelihood 

becomes
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Ln β, α, H0( . ) = ∏
i = 1

n
∏
j = 1

Ji
ℎ0 Zij

δijexp β⊤Xij ui
δijexp −H0 Zij exp β⊤Xij ui

∏
i = 1

n
g ui .

(2.3)

The likelihood of the observed data, after integration of the expression (2.3) with respect to 

u1, …, un, is given by

∫u1
⋯∫un

∏
i = 1

n
∏

j = 1

Ji
ℎ0 Zij

δijexp β⊤Xij ui
δijexp −H0 Zij exp β⊤Xij ui ∏

i = 1

n
g ui dun…du1

= ∏
i = 1

n
∏

j = 1

Ji
ℎ0 Zij

δijexp β⊤Xij

× ∫u1
…∫un

∏
i = 1

n
∏

j = 1

Ji
ui
δijexp −H0 Zij exp β⊤Xij ui ∏

i = 1

n
g ui dun…du1 .

Let’s set A equal to the last term.

A = ∫u1
…∫un

∏
i = 1

n
∏
j = 1

Ji
ui

δijexp −H0 Zij exp β⊤Xij ui ∏
i = 1

n
g ui dun

…du1 .

= ∫u1
…∫un

∏
i = 1

n
ui

∑j = 1
Ji δijexp − ∑

j = 1

Ji
H0 Zij exp β⊤Xij ui g ui dun

…du1

(2.4)

A = ∏
i = 1

n ∫ui
ui

Ai + α − 1exp − ∑
j = 1

Ji
H0 Zij exp β⊤Xij + α ui dui × ∏

i = 1

n αα

Γ(α) (2.5)

where Ai = ∑j = 1
Ji δij.

Considering the following variable substitution k = ∑j = 1
Ji H0 Zij exp β⊤Xij + α , then

A = ∏
i = 1

n ∫ui
kui

Ai + α − 1exp − kui d kui
1

(k)Ai + α ∏
i = 1

n αα
Γ(α)

A = ∏
i = 1

n
Γ Ai + α 1

∑j = 1
Ji H0 Zij exp β⊤Xij + α

Ai + α ∏
i = 1

n αα
Γ(α)

We can deduce the likelihood of the observed data as
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Ln β, α, H0( . ) = ∏
i = 1

n αα∏j = 1
Ji ℎ0 Zij

δijexp β⊤Xij δij

Γ(α) ∑j = 1
Ji H0 Zij exp β⊤Xij + α

Ai + α Γ Ai + α (2.6)

Therefore, the log-likelihood in (2.6) is given by

ℓn β, α, H0( . ) = ∑
i = 1

n
αlogα + ∑

j = 1

Ji
[β⊤Xijδij + δijlogℎ0(Zij)] + logΓ(Ai + α)

− logΓ(α)

−(Ai + α)log[ ∑
j = 1

Ji
H0(Zij)expβ⊤Xij) + α]

(2.7)

We formulate a profiled likelihood as follows: Consider the least informative nonparametric 

model for H0(.) in which H0(Zij) has a possible jump of size ρl at the observed failure time 

Zl. Then

H0 Zij = ∑
l = 1

N
ρl1 Zl ≤ Zij

ℎ0 Zij = ∏
l = 1

N
ρl

1{Zl ≤ Zij}
(2.8)

where Zl, l = 1, …, N are pooled observed failure times.

Substituting (2.8) in (2.7) and differentiating with respect to ρk, we get

∂ℓn β, α, H0( . )
∂ρk

= ∑
i = 1

n
∑
j = 1

Ji
δij1 Zk ≤ Zij

1
ρk

− ∑
i = 1

n
Ai + α

∑j = 1
Ji exp β⊤Xij 1 Zk ≤ Zij

α + ∑j = 1
Ji exp β⊤Xij ∑l = 1

N ρl1 Zl ≤ Zij
, k = 1,

…N

(2.9)

Assume there are no simultaneous events (“ties”) occurring for different groups.

The root of the equation (2.9) should satisfy the following equation

1
ρk

= ∑
i = 1

n Ai + α ∑j = 1
Ji exp β⊤Xij 1 Zk ≤ Zij

α + ∑j = 1
Ji exp β⊤Xij ∑l = 1

N ρl1 Zl ≤ Zij
, for k = 1, …N (2.10)

Utazirubanda et al. Page 6

Commun Stat Simul Comput. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The value of ρk in (2.10) is obtained numerically with the algorithm described in section 3.

2.2. Group LASSO estimator for Cox regression with frailty

The objective function in the group LASSO for Cox model with frailty is

Qn β, λn = − 1
nℓn α, β, H0( . ) + λn ∑

j = 1

K
pj β(j) 2 (2.11)

where Qn(β, λn) is the objective convex function to be minimized over the model parameter 

β with a given optimal tuning parameter λn. This optimal tuning parameter controls the 

amount of penalization. ℓn (β, α, H0(.)) is the log-likelihood (2.7). The model parameter β is 

decomposed into K vectors β(j), j = 1, 2, …, K which correspond to their respeective K 
covariate groups. The term pj adjusts for the varying group sizes, and ∥.∥2 is the Euclidean 

norm.

The group LASSO estimator for Cox regression with frailty is defined as

βn λn = arg min
β

− 1
nℓn α, β, H0( . ) + λn ∑

j = 1

K
pj β(j) 2 (2.12)

This estimator does not have an explicit solution in general due to its non-differentiability. 

Therefore, we use an iterative procedure to solve the minimization problem. Depending on 

the value of the optimal tuning parameter λn, the estimated coefficients within a given 

parameter group j satisfy: Either (β (j) = 0) for all of its components or (β (j) ≠ 0) for all of its 

components. This occurs as a consequence of the non-differentiability of the square root 

function at zero (β(j) = 0). If the group sizes are all one, the process reduces to the standard 

LASSO.

2.3. Model selection - find an optimal tuning parameter λn

It is necessary to have an automated method for selecting the tuning parameter λn that 

controls the amount of penalization that is considered to be optimal dependent on a specific 

criterion, such as the Akaike information criterion (AIC) (Akaike, 1973), the Bayesian 

information criterion (BIC) (Schwarz 1978) or generalized cross-validation (GCV) (Craven 

and Wahba 1978). We would like to assign the best value to λn, however that is defined. 

There is no easy or universally agreed upon best way to find the optimal value for λn, or for 

any tuning parameter. In general, the selected value is based on optimizing some function, 

typically a loss function ∑i = 1
n L(yi, f Xi ) where f(X) is a prediction model fitted on a 

training subset of data. Finding the value for λn that performs best according to the metric of 

choice can be done through several methods, of which k-fold cross-validation (CV) is the 

most common. In k-fold CV we randomly split the data into k so-called folds. For every fold 

i = 1…k, we fit a model on all available data less the data in that particular fold, which is 

used as the training set. With that model, we try to predict the data in the missing fold, 

known as the test set. For each fold we obtain an estimate of some metric to evaluate our 

model, such as an evaluation of a relevant loss function. As a final estimate of how our 
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model performs, we take the average metric over all of the folds. The cross validation error 

for the subset is naturally chosen to be the negative log likelihood. An important problem of 

k-fold CV is the computational burden. Fitting a penalized proportional hazards model is 

computationally intensive, especially if the model has to be fit multiple times for each value 

of λ we want to evaluate. In this paper, choosing k to be equal to 10, we estimate λn by 

minimizing a k-Cross Validation( GCV) error that is mathematically illustrated as follows:

CV k λn = − ∑
i = 1

k
ℓni β (n − i)(λ) /n

β (n − i)(λ) is the penalized estimate for β at λ with the ith subset taken out as the test set and 

the remaining k − 1 subsets kept as the training set. ℓn
i ( . ) is the log partial likelihood for the 

ith subset.

3. Algorithm

To minimize (2.11) we use the following procedure: We split (2.7) into two pseudo log-

likelihood functions. One mainly depending on β :

ℓn
(β) β, α, H0( . ) ≡ ∑

i = 1

n
∑
j = 1

Ji
β⊤Xijδij − ∑

i = 1

n
Ai + α log

∑
j = 1

Ji
H0 Zij exp β⊤Xij + α

(3.1)

and the other mainly depending on α:

ℓn
(α) β, α, H0( . ) ≡ ∑

i = 1

n
αlogα + logΓ Ai + α − logΓ(α)

− Ai + α log ∑
j = 1

Ji
H0 Zij exp β⊤Xij + α

(3.2)

Since the the penalty term in (2.11) depends only on β, minimizing (2.11) over β is 

equivalent with minimizing

− 1
nℓn

(β) β, α, H0( . ) + λn ∑
j = 1

K
pj β(j) 2 (3.3)

We cycle through the parameter groups and minimize (3.3) keeping all except the current 

parameter group fixed. The Block Co-ordinate Gradient Descent algorithm is to be applied 

to solve the non-smooth convex optimization problem in (3.3) (Yun et al. 2011). This 

algorithm would also be used to optimize (3.2). However, (3.2) involves the first two order 

derivatives of the gamma function, which may not exist for certain values of α. We use an 
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approach similar to that in (Fan & Li 2002) to avoid this difficulty by using a grid of 

possible values for the frailty parameter α and finding the minima of (3.2) over this discrete 

grid, as suggested by Nielsen et al. (1992).

Denote Qλn(β) = − 1
nℓn

(β) β, α, H0( . ) + λn∑j = 1
K pj β(j) 2 a penalized objective function to 

be minimized and denote ∇Qλn(β) its gradient to be evaluated at β

With BCGD in Table (1), we propose the following algorithm to solve (2.11).

Steps Algorithm

1. For j = 1, …,K

choose β (j)
(0)

, α(j)
(0)

, ρj, k
(0)

, k=1,…,N as initial values.

2.
For the mth iteration, ρj, k

(m + 1)
 is updated from (2.10) with m = 0,1, 2,… and then compute H0

(m + 1)
 from 

(2.8)

3.
Since H0

(m + 1)( . ) is known, we can then minimize (3.2) with respect to β (j)
(m + 1)

 using BCGD algorithm

4.
Since H0

(m + 1)( . ), β (j)
(m + 1)

 are known, we minimize (3.3) with respect to α(j)
(m + 1)

 as stated above

5. For each j, repeat steps 2 up 4 until some convergence criterion is met

4. Theoretical consistency of the method

Consider the penalized pseudo-partial likelihood estimator:

βn λn = arg minβ − 1
nℓn α, β, H0( . ) + λn ∑

j = 1

K
pj β(j) 2

Denote β0 the true value of the model parameter β = (α, β, H0 (.)). ∀ε > 0, we need to show 

that P βn λn − β0 < ε 1 as n → ∞. Given (A)-(D) regularity conditions in (Andersen 

and Gill 1982), according to the Theorem 3.2 in Andersen and Gill (1982), the following 

two results hold.

n−1/2ℓ̇n β0 ℙ N(0, Σ)

− 1
n ℓ̈n β* ℙ Σ ∀ β* ℙ β0

ℓ̇n β0  and ℓ̈n β*  are the first and second order derivatives of ℓn(β), i.e., the score function 

and the Hessian matrix, evaluated at β0 and β∗ respectively. Σ is the positive definite Fisher 

information. The consistency theorem stated in this section buids up on the two results 

above.

Theorem 4.1. (Consistency) Assume that (Xij, Tij, Cij) are independently distributed random 
samples given ui which are i.i.d. from a gamma distribution for i = 1, …, n and j = 1, …, Ji. 
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Tij and Cij are conditionally independent given Xij. Under regularity conditions (A)-(D) in 
Anderson and Gill (1982), if λn → 0 when n → ∞, then there exists a local minimizer 

βn λn  of Qn(β, λn) such that ℙ βn λn − β0 < ε 1.

Before proving this theorem, let us first give further definitions, their interpretations and 

recall the list of regularity conditions (A)-(D) in Anderson and Gill (1982). These conditions 

are assumed to hold throughout this section.

S(0)(β, t) = 1
n ∑

i = 1

n
Yi(t)exp β⊤Xi(t) ,

S(1)(β, t) = 1
n ∑

i = 1

n
Xi(t)Yi(t)exp β⊤Xi(t) ,

S(2)(β, t) = 1
n ∑

i = 1

n
Xi t ⊗ 2(t)Yi(t)exp β⊤Xi(t) ,

E(β, t) = S(1)(β, t)
S(0)(β, t)

,

and

V(β, t) = S(2)(β, t)
S(0)(β, t)

− E(β, t) ⊗ 2 = S(2)(β, t)
S(0)(β, t)

− S(1)(β, t)
S(0)(β, t)

S(1)(β, t)
S(0)(β, t)

⊤
.

Note that S(0) is a scalar, S(1) and E are p-vectors and S(2) and V are p × p matrices. These 

quantities can be interpreted as follows. Suppose at time t, we select individuals in group i 
out of those groups of individuals under observation (i.e., with Yi(t) = 1) with probabilities 

proportional to exp β⊤Xi(t). Then E(β, t) and V(β, t) are the expectation and the variance 

respectively of the covariate Xi(t) associated to the group i of individuals selected. S(0), S(1) 

and S(2) are roughly to be interpreted as a norming factor, a sum and a sum of squares 

respectively.

CONDITIONS:

A. (Finite interval): ∫0
1ℎ0(t)dt < ∞

B. (Asymptotic stability). There exists a neighborhood ℬ of the true value β0 and 

scalar, vector and matrix functions s(0), s(1) and s(2) defined on ℬx[0, 1] such that 

j = 0, 1, 2

sup
t ∈ [0, 1], β ∈ ℬ

S(j)(β, t) − s(j)(β, j) ℙ 0

C. (Lindeberg condition). There exists δ > 0 such that
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n− 1
2sup

i, t
Xi(t) Yi(t)I β0

⊤Xi(t) > − δ Xi(t)
ℙ 0

D. (Asymptotic regularity conditions). Let ℬ, s(0), s(1) and s(2) be as defined in 

condition B and define e = s(1)
s(0)  and v = s(2)

s(0) − e ⊗ 2. For all β ∈ ℬ, t ∈ [0,1] :

s(1)( . , t) = ∂
∂β s(0)(β, t), s(2)( . , t) = ∂2

∂β2 s(0)(β, t)

s(0)(., t), s(1)(., t) and s(2)(., t) are continuous functions of β ∈ ℬ, uniformly in t ∈ [0,1], s(0), 
s(1) and s(2) are bounded on ℬx[0, 1]; s(0) is bounded away from zero on ℬx[0, 1], and the 

Σ = ∫0
tv β0, t s(0) β0, t ℎ0(t)dt is positive definite.

Note that the partial derivative conditions on s(0), s(1) and s(2) are satisfied by S(0), S(1) and 

S(2); also, that Σ is automatically positive semidefinite. Furthermore, the interval [0, 1] in the 

conditions may everywhere be replaced by the set {t : h0(t) > 0}

Proof: Applying Theorem 5.7 in Van der Vaart(1998) with a slightly different approach the 

theorem can be proved as follows: Let us first show that Qn βn, λn > Qn βn
0, λn .

Let Δn = Qn βn, λn − Qn βn
0, λn

Δn = − 1
n ℓn(β) − ℓn β0 + ∑

j = 1

K
λn pj β(j) − β(j)

0

≥ − n−1/2 n−1/2 ∂
∂β ℓn(β0)

⊤
β − β0 + β − β0 ⊤ n−1/2 ∂2

∂β2 ℓn(β0) β − β0

+ n−1op β − β0 2 − ∑
j = 1

K
λn pj β(j) − β(j)

0

≥ − n−1Op(1) β − β0 + β − β0 ⊤ Σ + op(1) β − β0

+ n−1op β − β0 2 − λn ∑
j = 1

K
pj β(j) − β(j)

0

Since λn → 0 as n → 0 then Qn βn, λn − Qn βn
0, λn ≥ β − β0 ⊤ Σ + op(1) β − β0  and the 

right-side part is positive since Σ is positive. Qn(βn, λn) is non-empty and lower bounded by 

Qn βn
0, λn  consequently it admits a local minimum. Since Qn (βn, λn) is concave, its local 

minimum is also its global minimum.

Qn βn, λn > Qn βn0, λn .

For any positive ε
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sup
β: β − β0 = a

Qn βn, λn > Qn βn0, λn ⊆ βn λn − β0 < ε

ℙ βn λn − β0 < ε ≥ ℙ sup
β: β − β0 = a

Qn βn, λn > Qn βn0, λn

Thus ℙ βn λn − β0 < ε 1

5. Applications

With the advent of molecular biology to study the relationship between genetics and disease 

outcomes such as cancer, and as exposure science improves for taking multiple polluant or 

pathogen measurements, in air and water as well as in other media, it becomes possible for 

affected individuals, researchers and public health practitioners to generate large datasets 

with rich information such that the numbers of predictors p is greater than the sample sizes 

n. Statistical methods are needed to handle and analyze such data sets (Saadati et al. 2018). 

In the case of genetic epidemiology, researchers are able to identify genes that act along 

identical or similar pathways and are able to group these genes together to understand 

associations with health outcomes and to calculate cumulative risk. In the case of exposure 

assessment, environmental health scientists now understand that pollution sources release 

multiple pollutants that contribute to the same morbidities. Examples include the many 

chemicals in tobacco smoke, vehicle emissions, and effluents from industrial plants. People 

experiencing diarrhea may have co-infection with multiple pathogenic agents, and 

understanding the nature of outbreaks may be improved as water exposure science advances 

in the future. Personalized medicine has opened the door to personalized public health as 

more information can be gathered at the individual level. By using group LASSO with group 

level frailty in survival analysis, we will be better able to trace health outcomes back to 

sources that contribute multiple exposures of interest. Group LASSO’s preferential 

shrinking towards zero of non-significant groups of predictors will produce sparse models 

that link back to pollution sources rather than individual chemical or biological exposures. 

This application could be applied in the case of land-use studies, brownfield risk assessment, 

and environmental impact assessments of new construction projects. Group LASSO with the 

Cox proportional hazards frailty model will be part of the new paradigm of risk assessment 

that encompasses cumulative exposures (National Research Council of the National 

Academies 2009). For use with genetic epidemiology, as gene mapping and gene testing 

become increasingly cost effective, large cohort datasets will become available to more 

effectively establish associations between genetic and epigenetic markers and disease 

outcomes. As previously discussed, group LASSO with group frailty allows common 

pathways and mechanisms to be incorporated into the analysis while also including a frailty 

term to account for unmeasured susceptibility or resilience that exist in subpopulations.
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6. Examples

6.1. Simulated data

Data sets were simulated with sample size n = ∑i = 1
m Ji (where n is the number of 

observation clusters and Ji is the number of observations in the ith cluster) fixed to 100 and 

predictors p equals to 200. Group sizes for both individuals (with respect to frailty) and 

predictors (with respect to variable groupings) were set to 10 arbitrarily, though this can 

easily be adjusted depending on the dataset. We simulated a design matrix of of order (n, p) 

where Xi
i . i, d N(0, 1) and the covariance matrix Σi,j = ρ|i-j| with ρ = 0.5. In practice, the 

assumption of a constant hazard function is rarely tenable. A more general form of the 

hazard function is given by the Weibull distribution, which is characterized by two positive 

parameters: the scale parameter(λ > 0) and the shape parameter (ν > 0). Its corresponding 

baseline hazard function is

ℎ0(t) = λνtν − 1

and the survival time for a shared-gamma frailty Cox model is

T =
log(U)exp −β⊤X

λG

with U ↝ Uniform[0, 1] and G ↝ Gamma(α, α).. Taking into account the censoring status, 

we simulated censoring times from the exponential distribution: C ↝ Exponential(3). The 

observed failure time for each observation is the minimum between its survival time T and 

and its censoring status C. The algorithms described in (3) were implemented to select the 

appropriate tuning parameter λ to maximize the k-fold CV criterion. Performance of group 

LASSO with Cox proportional hazard frailty model is compared and contrasted with group 

SCAD and group MCP. Figure 1 shows an example solution path for group LASSO, group 

SCAD, and group MCP, respectively. From Table 2, group LASSO selects 8 groups at 

0.0294 value of the turning parameter while group SCAD and group MCP highly shrink 

groups of variables and select only 2 groups at 0.1079 value of the turning paraperter and 1 

group at 0.1255 value of the tuning parameter respectively.

Figures 2–4 compare the performance of the three methods over 100 simulations with 

summary measures of tuning parameter value choice, cross-validation error, and R2, 

respectively (remembering that this is a simulated data set). Some summary trends appear. 

Notably for these simulations, group LASSO tends to pick a smaller tuning parameter value, 

centered around 0.03 compared with 0.09 for group SCAD and 0.10 for group MCP. 

Considering cross-validation error, the results are similar, with group LASSO demonstrating 

only slightly better performance (139 for group LASSO compared with 151 for group 

SCAD and 156 for group MCP) in this set of simulations. R2 performance for group LASSO 

is significantly better, averaging around 0.18 compared with 0.05 for group SCAD and 0.03 

for group MCP.
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6.2. Real-world data set example

In this section we have applied the group LASSO method with group frailty for model 

selection and compare its performance with group SCAD and group MCP to the high 

dimensional microarray data of diffuse large B-cell lymphoma (DLBCL) patients receiving 

standard therapy of rituximab plus cyclophosphamide, doxorubicin, vincristine, and 

prednisolone (R-CHOP) from the US National Cancer Institute of 470+ patients. Gamma 

frailty has been applied to account for heteregeneity based on risk factors identified in the 

patient demographic data. Hierarchical clustering has been used to determine gene 

expression groupings since sparse information is available about these genes and their 

pathways of relevance to DLBCL. Patients with incomplete demographic or genetic data 

were excluded, resulting in 470 patient profiles for use in the model. There are 54634 genes 

described in the dataset; because of computational intensitivity, 5000 genes were selected for 

the model, and were grouped based on hierarchical clustering into 10 groups, comparable 

with the simulated dataset. To determine group frailty, eight indices of susceptibility to risk 

of DLBCL were selected from the demographic data. Based on presence/absence of these 

characteristics, seven groups were constructed and assigned frailties in order of lowest to 

highest unmeasured risk related to their demographic data.

Figure 5 shows an example solution path for group LASSO, group SCAD, and group MCP, 

respectively. Group LASSO tends to select more groups of variables at a smaller tuning 

parameter value comparing with group SCAD and group MCP. From Table 3, group LASSO 

selects 6 groups at 0.0303 value of the turning parameter, group SCAD selects 6 groups at 

0.0316 value of the turning paraperter and group MCP selects 3 groups at 0.0372 value of 

the truning parameter.

Figures 6–8 compare the performance of the three methods over 100 simulations with 

summary measures of tuning parameter value choice, cross-validation error, and R-squared, 

respectively. Some summary trends appear. Notably for these simulations, group LASSO 

and group SCAD pick a smaller tuning parameter value, centered around 3.5 × 10−2 

compared with 3.9 × 10−2 for group MCP. R2 performance for group LASSO is comparable 

with group SCAD, with both averaging around 4.5 × 10−3 compared with 2.0 × 10−3 for 

group MCP. Considering cross-validation error, the results for group LASSO and group 

SCAD are also similar, with values around 1459, with group MCP being slightly worse at 

1463 in this real dataset. In this case, group LASSO and group SCAD performance are 

comparable to each other.

7. Discussion

The relatively poor performance of all group variable selection methods including group 

LASSO with the real-world dataset highlights problems in this field with tackling these 

challenges. A lack of informative data about group structure of the genes and their pathways 

makes describing and implementing their group selections less realistic and weakens the 

utility of the outcome data. Additionally, the concept of group frailty, be definition 

constituting unmeasured variation between groups of individuals, is difficult to quantify and 

requires some degree of knowledge about the differences between groups, even if it is not 

well measured. Using datasets that were not desigend prospectively to gather the relevant 
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data to highlight frality and grouping structures pose obstacles to rigorous survival analysis 

and implementation of this modified group LASSO approach.

The limitations of this methodology overlap with the limitations of LASSO. Group LASSO 

remains a penalization method that is not appropriate for all studies and circumstances and is 

outperformed at times by ridge regression, least-angle regression (LARS), and the non-

negative garrrotte (Yuan and Lin 2007). Even though group LASSO and group frailty make 

adjustments to account for clustering effects, this method requires a resolution of data and 

background knowledge that is not available for many data sets and research questions. 

Future research will continue to elucidate many of these scenarios and make the datasets 

more amenable to use with group LASSO. While the group LASSO gives a sparse set of 

groups, if it includes a group of covariates in the model then all coefficients in the group will 

be nonzero. Sometimes, parsimony both between groups and within each group would be 

preferred. As an example, if the predictors are genes, it would be useful to identify 

particularly “important” genes in the pathways of interest. Toward this end (Friedman et al. 

2010) focused on the “sparse-group LASSO” wherein they introduced a regularized model 

for linear regression with L1 and L2 penalties. They discussed the sparsity and other 

regularization properties of the optimal fit for this model and show that it has the desired 

effect of group-wise and within group sparsity. Even though the group LASSO is an 

attractive method for variable selection, since it respects the grouping structure in the data, it 

is generally not selection consistent and also can select groups that are not important in the 

model (Wei and Huang 2011). To improve the selection results, researchers proposed an 

adaptive group LASSO method which is a generalization of the adaptive LASSO and 

requires an initial estimator. They showed that the adaptive group LASSO is consistent in 

group selection under certain conditions if the group LASSO is used as the initial estimator. 

In this context, interested researchers may look into the “sparse-group LASSO” or “adaptive 

group LASSO” for use with the Cox proportional hazard model with frailty when optimizing 

grouped variable selection as a useful extension from the method proposed and implemented 

here.
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Figure 1: 
Group Solution path for three methods: Group LASSO, Group SCAD, Group MCP for 

Simulated data example
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Figure 2: 
Distribution of tuning parameter for each of the three methods over 100 simulations.
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Figure 3: 
Distribution of cross-validation errors for each of the three methods over 100 simulations.
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Figure 4: 
Distribution of R-squared values for each of the three methods over 100 simulations.
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Figure 5: 
Group Solution path for three methods: Group LASSO, Group SCAD, Group MCP for Real 

data set data example
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Figure 6: 
Distribution of tuning parameter for each of the three methods over 100 simulations.
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Figure 7: 
Distribution of cross-validation errors for each of the three methods over 100 simulations.
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Figure 8: 
Distribution of R-squared values for each of the three methods over 100 simulations.
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Table 1:

Block Co-ordinate Gradient (BCGD) Descent Algorithm

Steps Algorithm

1. For j = 1, …,K

choose β (j)
(0)

 as initial values.

2. For the mth iteration, β (j)
(m + 1) β l

(m) − γn∇Qλn β l
(m + 1)

 with m = 0,1,2,… and γn > 0 the step size computed following 

Armijo rule

3. For each j, repeat steps 2 until some convergence criterion is met
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Table 2:

Model selection summary for Simulated data example.

Method used Nonzero coefficients Nonzero groups Turning parameter value (λ)

Group LASSO(n=100, p=200) 80 8 0.0294

Group SCAD(n=100, p=200) 20 2 0.1079

Group MCP(n=100, p=200) 10 1 0.1255

Commun Stat Simul Comput. Author manuscript; available in PMC 2022 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Utazirubanda et al. Page 28

Table 3:

Model selection summary for DLBCL dataset example.

Method used Nonzero coefficients Nonzero groups Turning parameter value (λ)

Group LASSO(n=470, p=5000) 636 6 0.0303

Group SCAD(n=470, p=5000) 636 6 0.0316

Group MCP(n=470, p=5000) 278 3 0.0372
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