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Soybean is sensitive to flooding stress that may result in poor seed quality and significant yield reduction. Soybean production
under flooding could be sustained by developing flood-tolerant cultivars through breeding programs. Conventionally, soybean
tolerance to flooding in field conditions is evaluated by visually rating the shoot injury/damage due to flooding stress, which is
labor-intensive and subjective to human error. Recent developments of field high-throughput phenotyping technology have
shown great potential in measuring crop traits and detecting crop responses to abiotic and biotic stresses. The goal of this study
was to investigate the potential in estimating flood-induced soybean injuries using UAV-based image features collected at
different flight heights. The flooding injury score (FIS) of 724 soybean breeding plots was taken visually by breeders when
soybean showed obvious injury symptoms. Aerial images were taken on the same day using a five-band multispectral and an
infrared (IR) thermal camera at 20, 50, and 80m above ground. Five image features, i.e., canopy temperature, normalized
difference vegetation index, canopy area, width, and length, were extracted from the images at three flight heights. A deep
learning model was used to classify the soybean breeding plots to five FIS ratings based on the extracted image features. Results
show that the image features were significantly different at three flight heights. The best classification performance was obtained
by the model developed using image features at 20m with 0.9 for the five-level FIS. The results indicate that the proposed
method is very promising in estimating FIS for soybean breeding.

1. Introduction

The climatic change increases the frequency of precipitations
of higher magnitude. It is predicted a 30% increase in heavy
precipitation events by 2030 [1]. Flooding is the second
largest abiotic stress [2], causing approximately $3.75 billion
economic loss in 2019 and $114 billion in total from 1995-
2019 across the United States [3]. Flooding has caused a
significant reduction in crop production, including soybean
[2], rice [4], wheat [5], corn [6], and other crops. Flooding
causes yield losses by reducing root growth, shoot growth,
nodulation, nitrogen fixation, photosynthesis, biomass accu-
mulation, stomatal conductance, and nutrient uptake [7].
Flooding is referred to as a water layer above the soil surface

and can be classified into waterlogging (water-saturated soil
with only the root system under anaerobic conditions) and
submergence (all roots and a portion of or all shoots covered
by water) [8]. Submergence is often seen in wetland crops
(e.g., rice), while waterlogging is common in dryland crops
including soybean and maize [7].

Soybean is an important legume crop widely used for
human food, animal feed, biofuel production, and many
other products owing to its high protein and edible oil con-
tent [7]. However, due to population growth, climate change,
soil degradation, and pollution, the current arable land is
decreasing, resulting in great pressure on the global food sup-
ply, including soybeans [9]. Soybean growth, productivity,
and seed quality are adversely affected by flooding stress.
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Flooding can reduce soybean yield by 17 to 43% at the vege-
tative growth stage and 50 to 56% at the reproductive stage
[2]. Waterlogging treatment for two days could reduce soy-
bean yield by 27% [10].

In conventional soybean breeding, numbers of progenies
are crossed by one parent from elite cultivars and another
from naturally selected soybean species and evaluated under
flooding environments. Soybean cultivars with flooding-
tolerant trait and high-yielding potential can be identified
based on visual observation by experienced breeders [11].
Visual rating was used to evaluate soybean injury caused by
flooding stress in the field [12, 13]. However, visual-based
evaluations are laborious and subjective to human bias and
may not be sufficiently precise for breeding purposes [14].
Therefore, it is much needed to develop an efficient, effective,
and unbiased tool to quantify flooding injuries under field
conditions.

In recent years, UAV-based imaging technologies have
been widely used in agriculture, including quantifying crop
growth traits, such as plant height [15], canopy area [16],
and leaf temperature [17], estimating yield [18], determining
growth stages [19], and detecting plant stresses [20, 21].
Crops under flooding develop a series of morphological
(e.g., increased plant height, leaf wilting, and decreased bio-
mass) and physiological responses (e.g., closing of stomata,
reduction of transpiration, and inhibition of photosynthesis)
[8] that could potentially be detected and quantified by
remote sensing approaches. Jiménez et al. [14] reported a sig-
nificantly positive relationship (Pearson correlation r = 0:85
with p value < 0.001) between NDVI and visual evaluation
rates of flooding damages on Brachiaria grasses and an esti-
mated waterlogging tolerance coefficient (WTC, the ratio of
plant shoot biomass under flooding stress to the one under
control conditions) based on NDVI highly agreed (r = 0:7,
p value < 0.001) with destructively measured WTC. Duarte
et al. [22] detected significant differences in photosynthetic
pigment contents and chlorophyll a fluorescence collected
using a portable fluorometer between nonflooded and
flooded Allophylus edulis tree plants. However, there are
few studies reporting an effective method to estimate flood-
ing injuries or classify tolerance abilities.

Therefore, the goal of this study was to investigate the
potential of using UAV-based imagery in estimating soybean

shoot injuries due to flooding stress under field conditions.
There were three supportive objectives: (1) to evaluate the
differences in image features among soybean genotypes with
different shoot injuries, (2) to evaluate the impact of flight
heights and image resolution on the effectiveness of image
features in differentiating flooding injuries, and (3) to evalu-
ate the classification performance of a deep learning model
with UAV-based image features as predictors.

2. Materials and Methods

2.1. Experiment Field and Experiment Setup. A field experi-
ment (Figure 1) was conducted at the Lee Farm, Portageville,
MO (36°23′42.1″N 89°36′30.0″W). A group of 382 soybean
genotypes (maturity group IV to VI) was planted in single-
row plots with two replicates on May 29, 2019, leading to a
total of 764 soybean single-row plots. The soybean plots were
planted with 2.13m in length and 0.75m spacing between
rows. Waterlogging treatments were imposed by flood irriga-
tion following previously described protocols [2, 12, 23].
Water was pumped on the field when 80% of the breeding
plots were at the R1 growth stage [24]. The floodwater was
raised to 5 to 10 cm above the soil surface and kept at this
level for 8 days, and water was drained from the field when
the injury was observed on checks that are sensitive to flood-
ing stress. About 10 days after draining the water, each plot
was rated using a five-level flooding injury score (FIS) based
on the evaluation criteria described by Nguyen et al. [12],
where “1” indicates no apparent injury and “5” indicates
most plants severely injured or dead (Figures 2(a) and
2(b)). Excluding the plots with poor germination or
completely dead before treatment, there were 724 plots with
FIS recorded, and the distribution of soybean breeding plots
of different FISs is shown in Figure 2(c).

2.2. UAV Imagery Data Acquisition. Two types of aerial
images were collected simultaneously using a UAV imaging
system. Multispectral images were acquired using a multi-
spectral camera RedEdge-M (MicaSense, Seattle, WA, USA)
that has a resolution (number of total pixels) of 1260 × 960
pixels. The multispectral camera was configured to take
time-lapse images at 1 frame per second (fps). A GPS receiver
was attached to the camera to provide geo-referencing

Test site: Portageville
(36°23'42.1"N, 89°36'30.0"W)

(a) (b)

Figure 1: The field experiment. (a) The test site location. (b) Illustration of the experimental region in the field.
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information for each image frame as a part of metadata. All
images with the EXIF (Exchangeable Image File Format)
metadata were saved to an onboard SD card of the camera.
Before and after each flight, a calibration reflectance panel
(CRP) was imaged by holding the camera at about 1m above
the CRP and looking vertically in an open area (to avoid
shadow) [19, 25].

Thermal images were collected using an infrared (IR)
thermal camera (8640P, Infrared Cameras Inc., Beaumont,
TX, USA) that has a resolution of 640 × 512 and an accuracy
of ±1°C with the spectral band range of 7-14μm. The thermal
camera was controlled using a single chip computer (Rasp-
berry Pi 3B) to log thermal images to its onboard SD card
at 1 fps. Prior to the flight, the camera was powered on for
at least 15min to warm up the sensor to acquire stabilized
readings. The radiometric values of the thermal camera were
factory calibrated, and a calibration file provided by the
manufacturer was included in Raspberry Pi to correct the
readings of each pixel.

Two cameras and their accessories (a power bank and a
Raspberry Pi) were mounted on a UAV (DJI Matrice 600
Pro, DJI, Shenzhen, China) with the cameras facing the
ground vertically (nadir view) during data collection. The
UAV platform was controlled using a flight control App
Autopilot (Hangar Technology, Austin, TX, USA). Images
were acquired at 4 pm local time on Sept. 6, 2019, a clear
day with an average air temperature of 33.4°C, relative
humidity of 52%, and wind speed of 3m/s. Images were taken
at 20m above ground level (AGL) at the speed of 7 km/h
following a zigzag path to cover the field with the forward
overlap ≥70% and side overlap ≥65%. Immediately after the
completion of the mission at 20m, the UAV platform was

raised to 50m and 80m AGL to take images of the whole
field. The ground sampling distances (GSDs) of the two
types of UAV imagery at three flight heights are shown
in Table 1.

2.3. Image Processing. The multispectral images collected at
20m were processed using a UAV image processing software
Pix4D Mapper (Pix4D, Lausanne, Switzerland) to generate
orthomosaic images. Images and associated GPS information
were read automatically from the EXIF metadata. The “Ag
Multispectral processing” template was applied for this pro-
cessing. A radiometric calibration procedure was conducted
before processing to convert its image pixel numbers to
reflectance values. Under the calibration option window,
the image of the CRP panel in each band of the five bands
was allowed to be selected and cropped, with the correspond-
ing known reflectance values provided for each band [26]. An
orthomosaic image of the IR thermal images at 20m was
generated using Agisoft PhotoScan Pro (Agisoft LLC, St.
Petersburg, Russia) following the procedure described in a
previous study [27]. Three parameters were set as “High”
with Generic and Reference preselection for image align-
ment, “High” for reconstruction parameter, and “Moderate”
for filtering mode. The orthomosaic images of the five-band
multispectral camera as well as the IR thermal camera were
all generated and exported as .tif images and then processed
using the Image Processing Toolbox and Computer Vision
System Toolbox of MATLAB (ver. 2016b, The MathWorks,
Natick, MA, USA). The multispectral raw images collected
at 50 and 80m were directly processed without generating
orthomosaic images due to the small number of images. To
compare the NDVI variations at different flight heights, pixel
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Figure 2: Representative images of soybean plots of different flooding injury scores (FISs). (a) Images were taken using a consumer-
grade camera show example soybean plots at 1-5 level of FISs. (b) Soybean plots of different FISs show differently at the UAV
images composing of the red, green, and blue channels from the multispectral images. (c) Histogram of the visually observed FISs
for 724 soybean plots.
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numbers of individual raw images were converted into reflec-
tance values using the same procedure with the orthomosaic
images, referred as the unified-factor method. Raw pixel
numbers were first converted to a common unit matric radi-
ance (W/m^2/nm/sr) accounting for image biases, vignette
effects, imager calibrations, and image gain. A unified scale
factor between radiance and reflectance (0-1) was then calcu-
lated by dividing the radiance values of the panel image with
its known reflectance in each band. Then, the reflectance of
each raw image was obtained by multiplying its radiance
values and the scale factor [28]. To avoid the assumption of
consistent light conditions in the unified-factor method,
pixel numbers at 50 and 80m were rescaled in each band
between 0 and 1 using the “rescale” function in MATLAB
with the “InputMin” of 0 and “InputMax” of 65535 (216-1),
referred as the max-min method. Twenty points were ran-
domly selected from each of the images taken at four corners,
i.e., bottom left, top left, bottom right, and top right, to com-
pare the difference of the same points screened at two differ-
ent images in reflectance values converted using the max-min
method.

Individual soybean plots were separated from all the six
single-channel orthomosaic images at 20m by manually
cropping a rectangle region of interest (ROI) around each
plot. The ROI size varied to cover each soybean plot accord-
ing to its canopy width and length. Overlapping between
adjacent plots was avoided based on visual examination.
Background (soil, shadow, and plant residues) was removed
from the multispectral images with the assistance of the
Color Thresholder app in MATLAB. After loading an image
to the app, the image was represented in four color spaces:
RGB, HSV [29], YCbCr [30], and CIE Lab [31]. In any
selected color spaces, the color regions of the background
in the space can be identified by drawing multiple freehand
regions on the image. The color regions were then saved in
a MATLAB script and applied to the images of other soybean
plots. The background was removed for individual plots
following a stepwise procedure (Figure 3) with one step
focusing on removing one segment in the background. A
three-layer image with the red, near-infrared (NIR), and
red edge bands was loaded to the app in the first step, and
color regions in the YCbCr space were selected to remove
the majority of soil background from the image. In step 2,
the remaining soil background close to the soybean canopy
was removed from the masked RGB image using the YCbCr
space. In step 3, shadows and fallen leaves that were in dark
colors were removed using the HSV color space. In the last

step, image regions were measured using the “regionprops”
function with the “area” property in MATLAB, and those
with an area less than 1% of the image were considered as
noises and removed. The background of the thermal images
was removed from individual plots using an unsupervised
machine learning method K-means clustering [27].

Five image features were extracted for each soybean plot
from the processed multispectral and IR thermal images, as
representatives of canopy color (NDVI), shape (canopy area,
canopy width, and length), and canopy temperature. As
shown in Figure 3, the length and width of a soybean canopy
were defined as the number of rows and columns of its mul-
tispectral images after the background was removed. Canopy
area was defined as the total number of pixels in the multi-
spectral images. NDVI was calculated using Eq. (1). Canopy
temperature was calculated as the mean of pixel values of its
thermal image.

NDVI = NIR − R
NIR + R

, ð1Þ

where NIR, R, andG are the reflectance values in each pixel of
the NIR, red, and green bands of the multispectral images.

2.4. Data Analysis. Statistical analysis was performed in R
studio (Version 1.1.414, RStudio, Boston, MA, USA). A
one-way analysis of variance (ANOVA) with an honest
significant difference (HSD) Tukey test was conducted to
evaluate the differences in NDVI and temperature of each
plot collected at different flight heights. In addition, the
differences in canopy area, NDVI, and temperature among
soybean plots with different FISs were also analyzed.
ANOVA tests were conducted at a significance level of 5%
using the “aov” function, and the Tukey tests were performed
using the “TukeyHSD” function.

A feedforward neural network (FNN) model was
developed to classify the FISs with the five image features as
predictors. As one of the classic deep learning architectures,
FNN models automatically learn from input data by tuning
their trainable parameters hierarchically [32], and their
variance-bias tradeoff for different datasets can be easily
adjusted by controlling the numbers of neurons in the
models. It has provided intelligent solutions to various
agricultural applications, such as yield estimation [18, 33]
and disease detection [34, 35]. As shown in Figure 4, a feed-
forward network consists of a series of layers. The first layer
connects to the network input (five image features in this
study), followed by a few hidden layers that create trainable
parameters to be associated with the inputs. The final layer
connects to the network’s output (i.e., FISs in this study).
The trainable parameters (w and b) will be iteratively opti-
mized and updated to minimize model errors, according to
specific optimization rules (i.e., training functions).

In this study, the FNNmodel was built using the “feedfor-
wardnet” function in MATLAB with 10 neurons defined in
the hidden layers. The function provides a structured FNN
model and can be easily implemented by defining the num-
ber of hidden layers and training functions. The Levenberg-
Marquardt optimization algorithm was selected as the

Table 1: Ground sampling distances (mm/pixel) and the total
number of the multispectral and the IR thermal images at three
flight heights.

Image type
Ground sampling distances (mm/pixel)

and total image number
20m 50m 80m

Multispectral 13.2, 637 34.7, 4 55.6, 1

IR thermal 23.4, 497 68.0, 4 108.8, 1
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training function that is considered the fastest backpropa-
gation algorithm in the MATLAB Deep Learning toolbox
and is highly recommended as a first-choice supervised
algorithm [36, 37]. The model parameters and their set-
tings used in this study were listed in Table 2. The outputs
of the FNN model were categorized into five levels as
shown in Table 3, each corresponding to one score of
the five FISs. The 764 soybean lines were randomly split
into training (90%) and testing (10%) datasets to train
and validate the model during the training process. The
performance was evaluated using the classification accu-
racy of the testing set as calculated in Eq. (2). In this
study, all the computational analysis was performed on a
desktop PC (Dell Optiplex 5050). The PC was configured
as Intel (R) Core i7-7700 CPU (8 cores), 16GB RAM
memory, a 512GB solid-state drive. The training and val-

idating procedure for the FNN model was less than 2min
on the PC.

Accuracy =
No:of samples classified correctly in a test set

Total No:of samples in a test set
× 100%:

ð2Þ

3. Results and Discussions

3.1. Canopy Temperature at Three Flight Heights. Figure 5
shows the comparison of temperature values of soybean plots
and background extracted from the IR thermal images col-
lected at three flight heights. From Figure 5(a), a significant
difference was observed among three groups of soybean can-
opy temperature taken at different flight heights. The average
canopy temperature of all the soybean plots increased consis-
tently from 39.0 to 40.3°C and 41.1°C when flight height
increasing from 20 to 50m and 80m. However, it is noticed
in Figure 5(b) that the temperature of the background signif-
icantly decreased from 49.4 to 47.6 and 46.0°C as the flight
height increased. In addition, there were significant differ-
ences (p value < 0.001) in the average temperature values of
ten selected locations of bare soil (Figure 5(d)) at three
heights. The average temperature values of the ten soil
samples were 52.3, 50.9, and 48.5°C at 20, 50, and 80m,
respectively. Even though there was no evidence that the
variations of plant canopy temperature were caused by the
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fluctuations in radiation, air temperature, humidity, and
wind speed during data collection, this contradictory pattern
eliminated the possibility that the increase in temperature
values of plant canopies was due to an environmental tem-
perature surge.

Infrared thermography creates temperature images of an
object by detecting infrared waves (7.5 to 14μm) emitted by
an object and converting the radiation readings to tempera-
ture [38]. The variations in image temperature measure-
ments due to shooting distance changes could be caused by
combined effects of atmosphere composition, image resolu-
tion, and solar radiation [39]. The underestimation of soil
temperature in higher flight might be due to the absorption
of the infrared radiation (emitted by soil) by ambient gases
and particles in the atmosphere [40]. It was confirmed by
the observations of Ball et al. (2006) [41] that the temperature
of emerging lava from a volcano vent decreased by 53°C by
increasing the viewing distance from a thermal camera from
1.5 to 30m and a further decrease of 75°C at a viewing dis-
tance of 250m. Faye et al. [39] also reported a negative effect
of shooting distance on surface temperature.

The increase of plant temperature with the increase of
flight height might be because of the mixture effect of
radiation energy from both plants and soil at a higher alti-
tude. The temperature of bare soil was significantly higher
than that of plants, which made the mixed temperature
higher. Figure 5(d) shows an example image of a soybean plot
captured at 20m, and Figure 5(e) shows its thermal images at
three heights. With the increase of flight height, more pixels
of the image edge had a higher temperature that was close
to soil. Image pixels were getting less sensitive to variances
in soybean canopy and blurry at the boundaries between

canopy and background. The average temperature increased
due to the inclusion of pixels representing the background
(hotter than plants).

In addition, the temperature measurements are subject to
errors from atmospheric attenuation by atmospheric scatter-
ing caused by particulate material in the atmosphere [41].
Even though atmospheric attenuation corrections have been
applied using internal correction functions in cameras, these
corrections assume a uniform viewing distance across an
image and take a mean relative humidity and air temperature
from the frame into consideration. However, when the cam-
era viewing over large distances, the viewing distance across
an image varied due to camera movements and mounting
errors, leading to possible varied temperature and relative
humidity between the camera and the object under investiga-
tion over the image.

3.2. Canopy NDVI at Three Flight Heights. Figure 6 shows the
comparison of NDVI of all the soybean plots collected at
three flight heights. In Figure 6(a), NDVI values were calcu-
lated with the reflectance values converted by the unified-
factor method. There are significant differences observed
among the three heights. From 20 to 50m, the average NDVI
values over all the soybean plots decreased from 0.51 to 0.37
and then decreased to 0.34 at 80m. False-color images in
NDVI of a soybean example plot in Figure 5(d) display
similar patterns among three flight heights that higher NDVI
values dominated and gathered in the center of the plot.
However, NDVI images at 20m had a larger range than the
other two and captured more variances among leaves due
to the higher pixel resolution. It was noticed that the boxplot
at 50m had a long tail with some low NDVI values that were
from the image at the bottom left corner (Supplement
Figure S1a). As the unified-factor method assumes
consistent light conditions during each flight mission, a
sudden light change happened possibly when the drone was
over the corner but was not corrected in the conversion.

The difference among flight heights could be further
investigated using NDVI maps for the experiment field.
The map at 20m shows the most distinguishable patterns
for classifying FISs. The maps at 50 and 80m have similar
patterns with the one at 20m but with fewer variations,
which is consistent with the observations in Figures 6(a)
and 6(b). The maps in Figures 6(e) and 6(f) were generated
with each grid representing an averaged NDVI value of each
plot that was calculated using the max-min method. As in
Figure 6(g), no significant differences were observed in each
of the four regions covered two images at different corners,
indicating the effectiveness of the max-min method. As light
changes compensated by adjusting camera exposure time
during image formation (longer exposure time for darker
imaging conditions), low NDVI values were not observed
in the bottom left corner of Figure 6(e).

3.3. Relationships between Image Features and FIS. The dif-
ferences in each of the three image features among soybean
plots of different FISs at three flight heights are shown in
Figure 7. It can be seen that there are significant differences
in the means of each image feature obtained from all three

Table 2: FNN model parameters used to classify the FISs.

Parameters Definition Value

hiddenSizes The number of hidden layers 10

trainFcn Training function trainlm

Epochs Maximum number of epochs to train 1000

Goal Performance goal 0

max_fail Maximum validation failures 6

min_grad Minimum performance gradient 1e-7

mu Initial learning rate 0.001

mu_dec Decrease factor for the learning rate 0.1

mu_inc Increase factor for the learning rate 10

mu_max Increase factor for the learning rate 1e10

Table 3: Categorization of the FNN outputs.

FNN output Estimated FIS

[0, 1.5) 1

[1.5, 2.5) 2

[2.5, 3.5) 3

[3.5, 4.5) 4

[4.5, ∞) 5
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flight heights, respectively, indicating that the flight height
had a limited effect on the ability of image features to distin-
guish the FIS of soybean plots due to flood stress.

3.3.1. Canopy Temperature. It can be seen that at all three
flight heights, the canopy temperature values were signifi-
cantly different among the soybean plots with different FISs.
Less injured genotypes had lower canopy temperature than
the severely injured ones. One of the major causes of the
difference in crop canopy temperature is leaf transpiration
[42] during which the openings of leaf stomata allow the dif-
fusion of carbon dioxide gas from the air for photosynthesis
[43]. Transpiration cools plants. The transpiration rate is reg-
ulated by controlling the size of the stomatal apertures and is
also influenced by evaporative demands [44]. Flood-sensitive
plants reduce their water absorption [45, 46] as a conse-
quence of the reduction of root hydraulic conductivity under
flooding [8, 47, 48]. In response to flooding, plants decrease

stomatal conductance and transpiration rate by stomatal
closing to regulate the water balance of plants and prevent
leaf dehydration [45], consequently leading to high leaf
temperature.

Leaf canopy temperature is a proxy to assess variations in
leaf transpiration rate caused by environmental treatments or
genetic variations [42]. Hou et al. [49] estimated soybean
transpiration rate under four irrigation treatments using
canopy temperature acquired by a high-resolution hand-
hold thermal imager, and the results strongly correlated with
field-based transpiration measurements. Spatial variations of
leaf transpiration rate could also be visualized with the assis-
tance of image-based temperature measurements. Lapidot
et al. [50] estimated the transpiration rates of five tree species
using ground thermal images and compared them to the
direct measurements of a gas exchange system. It was
reported that leaf temperature and the measured transpira-
tion rates were significantly and negatively related, and the
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estimated transpiration rates yielded low errors (mean abso-
lute errors ranged between 0.99 to 1.51mmol H2Om

-2 s-1)
with the measured ones.

Leaf canopy temperature has also been considered as a
promising indicator of water/heat-related plant stresses. For
example, Li et al. [51] evaluated canopy temperature and
transpiration rates of two rice genotypes under heat stress,
and the results show that the heat-tolerant genotype had sig-
nificantly leaf higher transpiration rates as well as lower tem-
perature. Zhou et al. [21] investigated the potential in
classifying drought-tolerant and sensitive soybean genotypes
using a machine learning method with canopy temperature
and other image features as predictors. The drought-
tolerant genotypes had significantly lower canopy tempera-
ture than the sensitive ones, and the model reached an
average classification accuracy of 80%.

3.3.2. NDVI and Canopy Area. It can be seen from
Figures 7(b), 7(e), and 7(h) that there were significant differ-
ences among NDVI values of soybean plots with different
FISs showing a trend that NDVI values decreased as FISs
increased. The low NDVI values in flooding sensitive geno-
types might be caused by their low leaf chlorophyll contents
attributed by low photosynthesis [52, 53]. In the short term
of flooding, plant photosynthesis decreases as a result of a
restriction of CO2 uptake due to stomata closing [54–56]. If

flooding continues in time (a week or so), a decrease in the
photosynthetic capacity of mesophyll cells [53, 57] leads to
a further reduction of photosynthesis.

The NDVI measures differences of reflectance in the red
and near-infrared regions of the spectrum [14] and is widely
used to quantify the plant phenotypic performance [21]. The
leaves of a healthy plant absorb more red light and reflect
more near-infrared light, resulting in higher NDVI values
than plants under stress [58]. NDVI has been used to esti-
mate leaf chlorophyll contents [58], photosynthetic activity
[59, 60], plant biomass [61, 62], yield [63, 64], and responses
to stresses, such as salt [65] and drought [21]. This study
demonstrated a potential alternative for quantifying plant
damage due to flood stress in field conditions.

The negative effects of flooding on photosynthesis lead to
a low growth rate in flooded plants [8], and consequently
early leaf senescence and reductions in leaf area [66]. In this
study, a significant difference in canopy area is observed
among soybean plots with different FISs (Figures 7(c), 7(f),
and 7(i)). Though the decreased rates of canopy area were
not quantified due to the lack of canopy area before flooding,
our observation could be supported the reductions in leaf/
canopy area induced by flooding found in other plant species,
such as kenaf [67] and sorghum [68].

Based on the observation by Striker et al. [56], negative
effects on both flood-tolerant and sensitive species caused
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by flooding did not occur until a week of flooding. However,
when flooding was discontinued, the flood-tolerant geno-
types recovered their stomatal behavior and transpiration
rates similar to those under the control group. Therefore,
crop features representing their postflooding recovery is
more conclusive for assessments of its tolerance [8].

3.4. Classification of FISs Using the FNN Model with Canopy
Temperature, NDVI, Area, Length, andWidth. The classifica-
tion accuracy on the testing set (72 samples) using the FNN
model with the five image features collected at 20, 50, and
80m is shown in Figure 8. From the confusion tables of the
five-level FIS, the model at 20m reached the highest accuracy
(90%), followed by that at 50m (79%) and 80m (67%). The
results confirmed the effects of flight heights on individual
image features and also reflected a negative effect on the
accuracy of the prediction of FIS. In 20m, only one or two
samples were misclassified between adjacent classes. As flight
height increases, more samples were observed in wrong clas-
ses, especially for those who were damaged severely (class 3
to 5). However, no sample was classified to nonadjacent
classes in all three heights, implying the ability of the image
features to distinguish flooding injuries.

Figures 8(d)–8(f) show the histograms of the FNN out-
puts on the testing sets. The continuous predictions allow
breeders to select any percentage of soybean plots. For exam-
ple, eight samples (top 10%) or 15 samples (top 20%) of the

testing set could be selected based on the predicted FIS.
Among the top 10% ranks of these predictions, six level-1
plots and one level-2 plot were selected by the model at
20m, eight level-1 plots by the 50m model, and five
level-1 and two level-2 plots by the 80m model.

The selection of flight height lies in the trade-off between
costs and accuracy. At the 20m flight height, 637 five-band
multispectral images and 497 IR thermal images were col-
lected in 12min to cover the whole field (0.22 ha), while four
shots were taken at 50m and only one shot at 80 to cover the
field. During image preprocessing, it took over 2 h to stitch
images at 20m for each camera. Although the classification
performance at 20m outcompeted those at higher flight
heights, errors could be introduced in other studies by
potential light changes during data collection due to increas-
ing screening time (not observed in this study) and the
stitching procedures. Additionally, costs increased with the
increase of collection time, such as labor costs and the need
to invest more batteries and storage. Even though open-
source algorithms are available, the most popular stitch-
ing applications require an expense to purchase licenses,
such as Pix4D mapper, Agisoft PhotoScan Pro, and Sony
Fast Field Analyzer.

Effective evaluation of germplasm and mapping popula-
tions for crop injuries under flooding conditions is essential
to identify DNA elements (genes or markers) that underlie
or are associated with flooding tolerance [7]. By marker-
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assisted selection and genomic selection in breeding pro-
grams, these stress-tolerance elements could be introduced
into elite breeding lines to improve diversity and to support
the sustainability of crop production during the current pat-
terns of extreme climatic shifts [11]. Traditional visual evalu-
ations of FIS are laborious often biased by the examiner and
may not be sufficiently accurate [69]. Image-based features
have been studied to quantify phenotypic traits of plant
shoots and estimate flooding-induced injuries under field
conditions [14]. However, none has been reported to esti-
mate FIS effectively. Results from this study indicate the
model performance at 50m is acceptable in soybean breeding
programs. Compared to previous studies, our study exam-
ined the efficiency of image-based canopy temperature,
NDVI, and canopy area in differentiating FISs, explored the
rationale behind these features, and proposed a deep learning
algorithm to estimate FISs for practical use. The methods
used in this study could be scaled up to other crops that are
sensitive to flooding stress.

4. Conclusion and Future Study

The potential of estimating soybean plant injury caused by
flooding stress using UAV-based image features under field
conditions was investigated in this study. FISs of 724 soybean
plots were taken using visual ratings when soybeans show
flooding symptoms. Aerial images were taken when the soy-
bean lines were scored using a five-band multispectral and an
IR thermal camera at 20, 50, and 80m above ground. Five
image features, i.e., canopy temperature, NDVI, canopy area,
width, and length, were extracted from the images at three
flight heights. A deep learning model was proposed to classify
FIS using the features. Image features showed significant dif-
ferences at three flight heights and those collected at higher
height were less powerful in explaining variations in target
objects due to decreasing ground sampling distances. There
was still a significant difference in each of the three image fea-
tures among soybean plots with different FISs at three flight
heights. The best classification performance was reached by
the model at 20m with 0.9 for the five-level FIS, followed
by the model at 50m with 0.79 and 0.67, respectively. The
selection of flight height lies on the trade-off between costs
and accuracy.

In this study, we investigated the concept that the UAV-
based images and deep learning models can effectively detect
soybean flooding responses to the flooding stress and accu-
rately classify the FIS by visual observations. Yet, the pro-
posed image processing pipeline is not fully automated to
output tabulated image features for each line. The FNN
model was trained by data collected in one environment
and not yet ready for breeding practices. We will improve
our pipeline with full automation and enhance the model
using more data of genetic and environmental variations in
the future. In addition, genetic analyses, e.g., genome-wide
association studies (GWAS), will be conducted to identify
functional gene loci regulating the flooding tolerance in soy-
beans that could be transferred into the current germplasm
by marker-assisted selection.
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