Skip to main content
. 2021 Jun;11(3):911–923. doi: 10.21037/cdt.2020.03.09

Table 2. Selected applications of ML algorithms applied to the ECG.

Application ML model Training dataset (patients) Testing dataset (patients) AUC Sensitivity (%) Specificity (%) Accuracy (%) Publication (Ref. #)
Screening hyperkalemia from a 2-lead ECG in patients with CKD CNN 449,380 61,965 0.88 90.2 63.2 Galloway et al. (16)
Detecting asymptomatic LV dysfunction from a 12-lead ECG CNN 44,959 52,870 0.93 86.3 85.7 85.7 Attia et al. (17)
Predicting AF in asymptomatic patients in sinus rhythm from a 12-lead ECG CNN 126,526 54,396 0.90 82.3 83.4 83.3 Attia et al. (18)
Detecting LV hypertrophy from a 12-lead ECG CNN 12,648 5,476 0.87 61.3 89.6 85.1 Kwon et al. (19)
Predicting gender & age from a 12-lead ECG CNN 499,727 275,056 0.94 87.8 86.8 87.0 Attia et al. (20)
Diagnosing arrhythmia from a single lead ECG CNN 29,163 328 0.97 78.0 80.9 Rajpurkar et al. (21)
Detecting MI from a 12-lead ECG CNN 290 93.3 89.7 Strodthoff et al. (22)

ML, machine learning; CNN, convolutional neural network; AUC, area under the curve; AF, atrial fibrillation; CKD, chronic kidney disease; LV, left ventricular; MI, myocardial infarction; ECG, electrocardiogram.