Recently, an inverse association between testosterone concentrations and disease severity in male but not female COVID-19 patients was reported [1]. COVID-19 is characterized by systemic inflammation and men are more likely to be severely affected than women. However, it is unclear whether lower testosterone levels predispose men towards a severe course in COVID-19, or that more severe COVID-19 infections induce a stronger decrease in circulating testosterone concentrations. Causality is difficult to establish in observational studies, as premorbid testosterone levels are not available and testosterone levels may already be reduced at hospital presentation. We investigated whether systemic inflammation lowers testosterone levels in men in vivo.
Following written informed consent, 6 healthy male volunteers (median [interquartile range] age of 24 [21 − 25] years and BMI of 29.1 [20.0–31.5] kg/m2) received a bolus of 1 ng/kg E. Coli-derived endotoxin, lipopolysaccharide (LPS). Detailed study procedures are described elsewhere [2]. Circulating concentrations of testosterone, luteinizing hormone (LH), follicle-stimulating hormone (FSH) and estradiol were measured in lithium heparin plasma using liquid chromatography-tandem mass spectrometry. Plasma cytokine levels were measured in ethylenediaminetetraacetic acid plasma using a Luminex assay (Milliplex, Millipore).
Experimental human endotoxemia induced systemic inflammation illustrated by increased plasma concentrations of several cytokines (Fig. 1A). Baseline testosterone levels were within reference for all subjects (median [IQR] 22.4 [18.8–26.5] nM) and decreased significantly following LPS administration (Fig. 1B), most prominently after 6 h (median [IQR] 14.0 [8.3–20.4] nM, − 37%). Interestingly, LH, FSH and estradiol levels were not affected by endotoxemia-induced inflammation (Fig. 1B, C). Levels of the adrenal glucocorticoid cortisol were strongly increased after LPS administration peaking after 2 h (median [IQR] 463 [354–563] nM, + 75%), Fig. 1B).
Within hours, systemic inflammation in healthy men is associated with a decrease in testosterone levels. This observation suggests that the low testosterone levels observed in COVID-19 patients are the result of inflammatory processes rather than a predisposing factor. The absence of an effect of endotoxemia on estradiol levels suggests that estradiol may be less sensitive to inflammation induced by a low dosage of LPS in our study.
It remains unclear whether the decrease in testosterone levels is an adaptive or maladaptive response in COVID-19. Although clinical trials into hormonal interventions in COVID-19 patients are already ongoing (e.g. the HITCH trial (clinicaltrials.gov identifier NCT04397718), it is unclear at this point whether interventions should be aimed at a further reduction or a supplementation of testosterone in men suffering from COVID-19.
Acknowledgements
We thank Aron Janssen, Niklas Bruse and Jelle Gerretsen for their contributions to this manuscript.
Authors' contributions
RFS drafted the manuscript en performed statistical analyses, MvB performed the LCMS-measurements, MK supervised the study procedures and performance of Luminex assay. HvL, MK, MvB, HdB en PP critically revised the manuscript. All authors read and approved the final manuscript.
Funding
None.
Availability of data and materials
Individual data will be provided upon reasonable request.
Declarations
Ethics approval and consent to participate
The experiment was performed in accordance to the declaration of Helsinki after approval of the local ethics committee of the Radboud University Medical Centre. Participants provided written informed consent.
Consent for publication
All authors have read the manuscript and approved submission.
Competing interests
None declared.
Footnotes
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
References
- 1.Dhindsa S, Zhang N, McPhaul MJ, Wu Z, Ghoshal AK, Erlich EC, et al. Association of circulating sex hormones with inflammation and disease severity in patients with COVID-19. JAMA Netw Open. 2021;4(5):e2111398. doi: 10.1001/jamanetworkopen.2021.11398. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.van Lier D, Geven C, Leijte GP, Pickkers P. Experimental human endotoxemia as a model of systemic inflammation. Biochimie. 2019;159:99–106. doi: 10.1016/j.biochi.2018.06.014. [DOI] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Data Availability Statement
Individual data will be provided upon reasonable request.