
1Cottrell T, et al. J Immunother Cancer 2021;9:e002642. doi:10.1136/jitc-2021-002642

Open access�

Evaluating T-cell cross-reactivity 
between tumors and immune-related 
adverse events with TCR sequencing: 
pitfalls in interpretations of 
functional relevance

Tricia Cottrell,1,2,3 Jiajia Zhang,2,4,5 Boyang Zhang,6 Genevieve J Kaunitz,7 
Poromendro Burman,2,4,5 Hok-Yee Chan,2,4,5 Franco Verde,8 Jody E Hooper,1 
Hans Hammers,4,9 Mohamad E Allaf,2,4 Hongkai Ji,6 Janis Taube,1,2,4,10 
Kellie N Smith2,4,5,10

To cite: Cottrell T, Zhang J, 
Zhang B, et al.  Evaluating T-cell 
cross-reactivity between tumors 
and immune-related adverse 
events with TCR sequencing: 
pitfalls in interpretations of 
functional relevance. Journal 
for ImmunoTherapy of Cancer 
2021;9:e002642. doi:10.1136/
jitc-2021-002642

►► Additional supplemental 
material is published online only. 
To view, please visit the journal 
online (http://​dx.​doi.​org/​10.​
1136/​jitc-​2021-​002642).

TC and JZ contributed equally.

Accepted 02 June 2021

For numbered affiliations see 
end of article.

Correspondence to
Dr Kellie N Smith;  
​ksmit228@​jhmi.​edu

Case report

© Author(s) (or their 
employer(s)) 2021. Re-use 
permitted under CC BY-NC. No 
commercial re-use. See rights 
and permissions. Published by 
BMJ.

ABSTRACT
T-cell receptor sequencing (TCRseq) enables tracking of 
T-cell clonotypes recognizing the same antigen over time 
and across biological compartments. TCRseq has been used 
to test if cross-reactive antitumor T cells are responsible 
for development of immune-related adverse events (irAEs) 
following immune checkpoint blockade. Prior studies have 
interpreted T-cell clones shared among the tumor and irAE 
as evidence supporting this, but interpretations of these 
findings are challenging, given the constraints of TCRseq. 
Here we capitalize on a rare opportunity to understand the 
impact of potential confounders, such as sample size, tissue 
compartment, and collection batch/timepoint, on the relative 
proportion of shared T-cell clones between an irAE and tumor 
specimens. TCRseq was performed on tumor-involved and 
-uninvolved tissues, including an irAE, that were obtained 
throughout disease progression and at the time of rapid 
autopsy from a patient with renal cell carcinoma treated with 
programmed death-1 (PD-1) blockade. Our analyses show 
significant effects of these confounders on our ability to 
understand T-cell receptor overlap, and we present mitigation 
strategies and study design recommendations to reduce 
these errors. Implementation of these strategies will enable 
more rigorous TCRseq-based studies of immune responses 
in human tissues, particularly as they relate to antitumor T-
cell cross-reactivity in irAEs following checkpoint blockade.

INTRODUCTION
PD(L)-1 checkpoint blockade is complicated 
by the development of immune-related adverse 
events (irAEs) in 5%–20% of treated patients.1 
Severe irAEs have been reported in up to 10% 
of patients and can result in hospitalization, 
interruption or discontinuation of therapy, and 
rarely, death.1 Notably, irAEs increase in preva-
lence and severity with combination immuno-
therapy, an approach likely required to improve 
disappointingly low response rates.2 Predic-
tion, prevention, and treatment of irAEs will 

require delineation of etiological mechanisms. 
One hypothesis is that irAEs are the result of 
cross-reactivity of an antigen-specific antitumor 
immune response. Supporting this hypothesis, 
improvements in response rates and survival in 
patients who develop irAEs have been observed 
in studies across tumor types.3–6 T-cell reper-
toire profiling with T-cell receptor sequencing 
(TCRseq) enables tracking of individual T-cell 
clones recognizing the same antigen.7 Multiple 
case series have identified shared T-cell clones 
in tumor and irAE tissues, thereby providing 
a foundation for shared antigen specificity 
between the tumor and irAE.8–10 Unfortu-
nately, these types of analyses may be subject to 
several sources of confounding that are rarely 
considered and are often difficult to address in 
the context of human immune-oncology.

The current study evaluates notable sources 
of confounding in the analysis of T-cell receptor 
(TCR) repertoire overlap between tumor-
involved and irAE specimens in a patient who 
developed a refractory irAE (dermatitis) while 
receiving PD-1 blockade for metastatic renal 
cell carcinoma (RCC). We demonstrate how 
these analytical pitfalls could lead to erroneous 
interpretation of TCRseq data obtained from 
distinct biological compartments and time-
points within the same patient. These factors 
have previously been considered as potentia-
tors of confoundment in large-scale genomic 
datasets11 but have not been evaluated or 
implemented in TCR studies.

CASE REPORT
A woman in her early 70s underwent radical 
nephrectomy for clear cell RCC followed by 
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systemic therapy, including anti-PD-1. The patient’s clin-
ical course, including development of an irAE in the form 
of a lichenoid dermatitis (LD),12–16 and biospecimen 
collection are shown in figure 1. The immune-related LD 
(irAE) persisted despite two treatment breaks and systemic 
prednisone (figure  1). Anti-PD-1 therapy was discon-
tinued because of the severity of the irAE. Progressing 
metastases in the small bowel and a new brain metastasis 
were confirmed by biopsy. The patient died approxi-
mately 2 months after cessation of anti-PD-1 therapy and 
a rapid autopsy was performed. Findings included meta-
static RCC involving the brain (specimen TM1), jejunum 
(specimen TM2), and mesentery (specimen TM3). Of the 
three mediastinal lymph nodes (LNs) sampled, one was 
histologically unremarkable (LN1); one showed multiple 
large fibrotic nodules (LN2); and one showed multiple 
small subcapsular fibrotic nodules (LN3). An inflamed 
seborrheic keratosis (benign skin lesion) was sampled 
from the skin (SK) as well as uninvolved normal tissues 
from the left kidney and normal small bowel (NSB).

To test for possible T-cell cross-reactivity among the 
tumor and irAE (figure 1D), TCR Vβ CDR3 sequencing 
was performed on all specimens (online supplemental 
table S1).17 18 The irAE shared 147 unique clonotypes 
(4.7%) with the pretreatment primary tumor (Tp) and 
118 unique clonotypes (3.7%) with jejunal metastasis 
(TM2) (online supplemental figure S1A,B). In total, 127 
unique T-cell clones present in the irAE (4.0%) were also 
found in at least one tumor specimen and absent in all 
healthy, non-lymphoid specimens (online supplemental 
figure S1C). We next tested if library size (the total number 
of productive sequencing reads) influences T-cell reper-
toire overlap among specimens. The number of clones 
shared with a given specimen was highly correlated with 
library size, illustrated for the irAE (Spearman’s rho, 
R=0.7, p=0.031; online supplemental figure S1D, left) 
and LN2 (R=0.78, p=0.012; online supplemental figure 
S1D, right). Random subsampling weighted by clonal 
abundance within each specimen was used to equalize 
library sizes to eliminate this confounding (online supple-
mental figure S1E).7 11 Not surprisingly, a strong correla-
tion was observed between library size and the number 
of unique clonotypes (R=0.93, p<2.2e−16; online supple-
mental figure S2). The degree of clonal sharing was also 
correlated with the number of unique clonotypes in each 
specimen (R=0.85 and p=0.0035 for the irAE, and R=0.92 
and p=0.00047 for LN2; online supplemental figure 
S3A). Using weighted downsampling,7 11 we normalized 
specimens to the same library size, which eliminated the 
correlation between the number of unique clonotypes 
in a specimen and clonal sharing (online supplemental 
figure S3B). Therefore, we used weighted downsampling 
for the remainder of our analyses.

Tumor-specific T cells can be detected in paired unin-
volved tissue, even when the normal tissue is collected 
10–15 cm from the tumor itself.19–21 Likewise, clono-
type sharing analyses could be confounded by bypassing 
viral-specific T cells. We performed a reanalysis of a 

previously published functional assay20 21 and found that 
viral-specific T-cell clones showed notable clonotype 
sharing across multiple tissue compartments, including 
the tumor, in a patient with non-small cell lung cancer. A 
similar pattern was previously observed with neoantigen-
specific T-cell clones,20 21 suggesting that T cells can traffic 
across tumor involved/uninvolved compartments regard-
less of the presence of antigen (online supplemental 
figure S4A,B). Indeed, after mapping the TCRs from our 
present study to a public TCR database with annotated 
antigen specificity (vdjdb, https://​vdjdb.​cdr3.​net/), we 
found an Epstein-Barr Virus (EBV)-specific clone that 
was detected in tumor-involved tissues from our study 
participant (online supplemental figure S4C–D). This 
emphasizes that clonotype sharing alone is not neces-
sarily associated with biological relevance. Additional 
abundance measurement and antigen specificity analyses 
are warranted to assist further interpretation. The SK 
and LN outliers in online supplemental figure S1D (red 
arrows) also indicate increased T-cell repertoire sharing 
between specimens from the same tissue compartment, 
even when collected at different locations and timepoints 
(ie, the irAE and SK). Tissue compartment confounding—a 
greater degree of T-cell repertoire overlap between 
specimens collected from the same tissue site—is illus-
trated with pairwise comparisons in online supplemental 
figure S5A,B. While T-cell repertoire sharing is reduced 
in samples from different tissue compartments, shared 
clones are still detected between seemingly unrelated 
specimens. These could reflect circulating clones at the 
time of tissue collection and are not necessarily reflective 
of biologically meaningful clonal sharing, (ie, batch effect 
confounding). We used the Morisita Overlap Index (MI), 
which incorporates relative clonal abundance and is not 
influenced by library size in our dataset (online supple-
mental figure S6A), to calculate the overlap between the 
irAE and all other specimens. The relative clonal sharing 
among all specimens is illustrated in a chord diagram 
(online supplemental figure S6B), in which the width of 
the bands is proportional to the MI values. The highest 
MI was observed between specimens collected from 
the same batch and from the same tissue compartment 
(online supplemental figure S6C). These population-
level comparisons likely capture a combination of biolog-
ical and batch effects, which cannot be distinguished in 
this dataset.

We next tested for evidence of cross-reactive T cells in 
the tumor and irAE while accounting for the sources of 
confounding identified previously (figure 1E). Within the 
limitations of specimen availability, tissue compartment 
and batch effect were considered in selecting compar-
ator specimens for meaningful analyses. First, the T-cell 
repertoire overlap between the primary tumor and the 
metastases was quantified using MI, which demonstrated 
a significantly higher overlap among the progressing 
metastases relative to the mediastinal LNs and normal 
tissues (p=0.044; figure 1F,G). A chord diagram highlights 
population-level sharing among all tumor specimens 
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Figure 1  Clinical course and assessment of TCR repertoire overlap among tumor specimens and the irAE. (A) Timeline 
shows the clinical course from RCC resection to autopsy. Therapies included pazopanib (yellow bar), nivolumab (green bar), 
and prednisone (blue bars), with treatment dates shown below the bars. Radiographical assessments (gray boxes) included 
mediastinal metastases with partial response to nivolumab followed by PD in the bowel and brain. Tissue specimens collected 
(blue boxes) included the resected RCC (photomicrograph shown), biopsies of the immune-related lichenoid dermatitis (irAE), 
and multiple specimens collected at the time of rapid autopsy (see online supplemental table S1). The anatomical sites of the 
collected specimens are illustrated, including the primary renal tumor (black diamond), two sites of irAE (black pentagons), 
mediastinal LNs at the site of tumor regression (green circles) and progressing lesions in the jejunum, mesentery, and brain (red 
circles). (B) Intravenous contrast-enhanced CT of the chest demonstrated right lower paratracheal adenopathy which resolves 
after nivolumab treatment (red arrow). (C) A photograph (left) and photomicrograph (right) of the irAE, the latter showing the 
brisk lichenoid lymphocytic infiltrate and necrotic keratinocytes. (D) Diagram illustrating two hypotheses for the development 
of irAEs following immune checkpoint blockade: (i) the cross-reactivity hypothesis proposed that T cells activated as part of 
the antitumor immune response cross-react at the site of the irAE; this would be supported by detection of overlapping TCR 
repertoire signatures between the tumor and irAE; (ii) in contrast, if the irAE and antitumor immune responses were independent 
of each other, it was unlikely significant TCR repertoire overlap between the two sites would be detected. All photomicrographs 
Figure 1  (Continued)
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(figure  1G), with the greatest TCR repertoire overlap 
observed between the metastases from the brain (TM1) 
and mesentery (TM3, MI 0.47). Although batch effect 
is a potential confounder, this degree of overlap is not 
observed with the small bowel metastasis (TM2, MI 0.03 
and 0.04 with TM1 and TM3, respectively), also collected 
at autopsy. Since the primary tumor and metastases were 
collected at different time points and from different 
tissue sites, batch and tissue compartment effects could 
not be confounders in this analysis. We recognize that a 
small sample size limits interpretation of the aforemen-
tioned findings, given that TM1 and TM3 have the smallest 
library sizes (online supplemental table S1), even though 
they satisfied our criteria for inclusion. Consequently, 
we focused on the metastasis with the largest library size 
(TM2, 6945 reads) for additional analyses.

Following library size normalization, 9.1% of unique 
primary tumor clonotypes are shared with TM2 relative to 
5.8% (95% CI 5.2% to 6.8%) and 3.7% (95% CI 3.3% to 
4.3%) of Tp clonotypes shared with LN2 and NSB, respec-
tively (figure 1H). Clonal expansion of shared clones in 
the primary tumor was greatest for those shared with TM2, 
with shared clones representing 27.1% of total primary 
tumor reads. The TCR repertoire overlap between the 
primary tumor and LN2 may suggest an antitumor signa-
ture in the mediastinal LNs, a site of radiographical 
tumor regression. The same approach was used to eval-
uate TCR repertoire overlap between the irAE and tumor 
specimens. The irAE repertoire was most similar to TM3, 
TM1, and the regression site LNs (figure  1I), with inter-
mediate overlap with Tp and the least overlap with the 
normal control specimens. Although the relative degrees 

of overlap with the irAE potentially suggest a biologi-
cally relevant pattern, the magnitude of population-level 
TCR repertoire sharing is quite small relative to values 
observed among other specimens (figure 1J).

Specimen libraries were then normalized to allow 
direct pairwise comparison of clonal sharing with the 
irAE. Sharing between the irAE and Tp (largest library 
size of 12,588 reads) was compared with LN2 and NSB. 
A similar degree of irAE clonotype sharing was observed 
in Tp and LN2, which was greater than that observed for 
NSB (figure 1K). There was no evidence of clonal prolif-
eration in the irAE or Tp (figure 1K). Finally, we evalu-
ated the most abundant clonotypes in each specimen 
for overlap with the irAE, given that prior studies have 
implicated the highest-frequency intratumor clonotypes 
in mediating antitumor immunity.22 There was no enrich-
ment of irAE-shared clones in the tumor relative to the 
non-tumor specimens (online supplemental figure S7).

Based on observations that antigen specificity may be 
determined by limited contact sites in the TCR CDR3, we 
applied the grouping lymphocyte interactions by para-
tope hotspots 2 (GLIPH2) algorithm23 24 to identify and 
cluster TCR sequences into possible antigen specificity 
groups. In order to be included in downstream analyses, 
clusters had to contain ≥3 unique CDR3s, ≥10 reads for 
each CDR3, a variable gene beta (vb) score of <0.05, and 
a length score <0.05. One cluster with significant enrich-
ment in the irAE was identified. Notably, the primary 
tumor (3.66%) had the highest abundance of T-cell clones 
in the ‘SSQD’ CDR3 motif cluster (figure 1L), followed 
by the irAE (2.42%), which were both higher than repre-
sentation of this motif in non-diseased TCR repertoires 

at ×400 magnification, scale bars 50 um. (E) Proposed approaches to maximize interpretive value and minimize confounding in 
TCR sequencing data analysis, including (i) the MI for quantifying global TCR repertoire sharing among multiple specimens in a 
sample size-independent manner, (ii) proportional downsampling for library size normalization to enable relative interpretations 
of clonal sharing, and (iii) normalization to relative clonal abundance in each specimen to assess relative sharing among the 
most abundant T-cell clones across multiple specimens. (F) The Morita index demonstrates that the three metastatic lesions 
consistently showed a greater degree of sharing with the Tp (MI median 0.014, range 0.012–0.088) relative to the normal control 
tissues (NSB MI 0.004, NK MI 0.003). (G) Chord diagram illustrates TCR repertoire overlap among the Tp and multiple post-
treatment progressing metastases (red). Non-tumor specimens are shown in gray. (H) Following library size normalization, a 
metastasis (TM2, left), LN (LN2, middle), and NSB (right) were evaluated for T-cell repertoire overlap with the primary tumor 
(TP). Clonal expansion of clones shared with TM2 is suggested by 9.1% of shared TP clonotypes representing 27.1% of TP 
reads. Subsampled comparisons are indicated (*) and the 95% CIs for shared TP clones were 5.2% to 6.8% for LN2 (middle, 
representing 4.9%–15.8% total TP reads) and 3.3% to 4.3% for NSB (right, representing 3.5%–14.7% total TP reads). (I) The 
Morita Index demonstrates an overall low degree of TCR repertoire between the irAE and the other specimens, although the 
relative sharing with two of the three metastatic lesions (MI median 0.02, range 0.0003–0.026) and the three regression site 
LNs (MI median 0.025, range 0.021–0.027) was higher than with the normal tissues (NSB MI 0.00004, NK MI 0.003). (J) Chord 
diagram highlighting sharing with the irAE as assessed by the MI in red (sharing among other specimens shown in gray for 
reference). (K) Following library size normalization, pairwise quantification of shared clones shows that while 4.7% of irAE clones 
were shared with the primary tumor and a regression site LN (LN2, 95% CI 4.6% to 5.9% irAE clones), the shared clones were 
not expanded in the irAE (representing 4.5% and 4.7%, 95% CI 4.7% to 6.4% of the total irAE reads, respectively). Sharing 
between the irAE and NSB shown for comparison, 1.6% shared clones (95% CI 1.3% to 2.2%) represent 1.8% total irAE reads 
(95% CI 1.3% to 2.2%). Subsampled comparisons are indicated (*). (L) The GLIPH2 clustering algorithm was used to detect and 
quantify potential specificity clusters based on TCR CDR3 sequencing information. Motif clusters were included in downstream 
analysis if there were ≥3 unique CDR3s, ≥10 reads for each CDR3, a vb score <0.05, and a length score of <0.05. The barplot 
shows the clonal abundance of the significantly enriched ‘SSQD’ motif in the dermatitis and respective clonal abundance in 
other tissue compartments. GLIPH2, grouping lymphocyte interactions by paratope hotspots 2; irAE, immune-related adverse 
event; LN, lymph node; MI, Morisita Overlap Index; NK, normal tissues from the left kidney; NSB, normal small bowel; PD, 
progressive disease; RCC, renal cell carcinoma; SK, skin; TCR, T-cell receptor; Tp, pretreatment primary tumor.
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from four healthy donors (range: 0.03%–1.67%, online 
supplemental figure S8).25 Though the human leukocyte 
antigen (HLA) information is unknown, three of the 
four healthy donors had common clonotypes shared with 
the patient in our study, indicating that at least one HLA 
allele was shared among them. By querying additional 
published skin/tumor-reactive TCR data, the specific 
motif SSQD was reported in a T-cell clone recognizing an 
epitope derived from Maspin, which functions as a tumor 
suppressor gene in epithelial cells.26 Collectively, this 
indicates that, though analyses of the total TCR reper-
toire and a subset of high abundance clones do not show 
a signature of enriched sharing between the irAE and 
tumor specimens relative to non-tumor specimens at the 
clonotype level, more ‘antigen-driven’ approaches may be 
useful to identify potential specificity clusters, especially 
when coupled with functional assays to confirm antigen 
specificity and cross-reactivity between irAEs and tumors.

DISCUSSION
As immune checkpoint blocking agents become first-line 
and second-line therapies for a growing number of tumor 
types, we are faced with an increasing number of diverse 
irAEs that may develop during or after treatment. The 
association of cutaneous irAEs with clinical benefit in some 
patients suggests that there may be a common antigen 
that may underlie both durable antitumor responses and 
clinically significant irAEs. It is conceivable that T cells 
with a common TCR could mediate both tumor regres-
sion and irAE development and progression, as has been 
evidenced by prior studies evaluating clonal overlap of 
TCR clonotypes between tumor and irAE tissues8–10 and 
that expansion of peripheral blood T-cell clones prior to 
irAE onset positively correlates with irAE severity during 
checkpoint blockade treatment.27

The large number and circulating nature of T cells 
predispose these studies to detecting false positive signals, 
that is, detection of differential or statistically signifi-
cant clonal overlap that is not necessarily of pathogenic 
relevance. Biological differences exacerbate this issue, 
including variation in T-cell numbers and clonality in 
different tissue types. In addition, due to differences in 
sampling, clonotype detection can be limited, particularly 
for rare/low-frequency clonotypes. The analysis pitfalls 
and mitigation strategies identified in this study are 
summarized in table 1, and we present considerations for 
prospective specimen collection in online supplemental 
figure S9. Many of these factors are already considered 
as a standard part of large-scale genomic analyses, but 
they are not yet routinely applied to immune receptor 
sequencing datasets and, to date, no studies have demon-
strated the differential outcomes when these important 
sources of confounding are not acknowledged. Strengths 
of this study include the rare opportunity to analyze the 
TCR repertoire in the same patient across time, tissue 
compartments, and disease states, and the ability to 
compare with published tumor-reactive/skin-reactive 

TCRs and non-irAE skin TCRs. We recognize that we are 
limited in our ability to comprehensively dissect all poten-
tial sources of confounding owing to limited sample avail-
ability. Lastly, the data-driven recommendations made in 
this study highlight the scientific value of rapid autopsy to 
answer complex questions using human tissue specimens.

METHODS
Case selection
Specimens from the underlying primary tumor and/or 
metastatic site and from skin affected by the cutaneous 
irAE were collected from the Johns Hopkins Hospital 
surgical pathology archives and the Rapid Autopsy 
program and Franklin Square Hospital. Overall patient 
response to anti-PD-1 therapy was classified according to 
Response Evaluation Criteria in Solid Tumors V.1.1.

TCRseq and bioinformatic analysis
DNA extraction from formalin-fixed paraffin-embedded 
(FFPE)-preserved tumor and skin biopsy specimens 
was performed using the DNeasy Blood and Tissue Kit 
(Qiagen). The TCR-B locus was amplified and sequenced 
using the ImmunoSEQ assay (Adaptive Biotechnologies). 
Non-productive TCR CDR3 sequences (premature stop 
or frameshift), sequences with amino acid length less 
than 7, and sequences not starting with ‘C’ or ending with 
‘F/W’ were excluded from the final analyses. Specimens 
with at least 1000 reads were included in the final anal-
ysis. To focus on T cells recognizing the same antigen, we 
analyzed amino acid clonotypes exclusively.

The degree of clonality for each specimen was assessed 
by the productive clonality matrix, which is defined as 
1-Pielou’s evenness.28 Values near one represent samples 
with one or a few predominant clones (monoclonal or 
oligoclonal samples), whereas values near 0 represent a 
polyclonal population.

A random subsampling approach weighted by clonal 
abundance was used to equalize library sizes for relative 
comparisons of TCR repertoire overlap. For subsampling, 
each clonotype at amino acid level was treated as a sample 
and specimens were randomly sampled with replacement 
and weighted by clonal abundance (or frequency) until 
the total read count equaled that of the comparator 
library. To account for subsampling variation, the proce-
dure was repeated 100 times and the 95%CIs for all subsa-
mpled comparisons are reported.

The degree of T cell clone overlap at the species level 
was evaluated using the Morisita overlap index.29 30 This 
measurement accounts for differences in library size and 
diversity per specimen, values near one the species occur 
in the same proportion in both samples, whereas values 
near 0 implies the two samples do not overlap in terms of 
species. Clonotypic sharing at the individual clone level 
was assessed in pairwise biological compartments before 
and after normalization to the same library size. Clones 
that were copresented in any of the compartment pairs are 
defined as shared clones. Based on the clonal frequency 
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distributions (online supplemental figure 4), we assessed 
the top 40 clones in each specimen for overlap with the 
irAE repertoire. GLIPH223 24 was used for antigen-specific 
clustering. The motif significantly-enriched in the irAE 
was queried in a published dataset of tumor-reactive/
skin-reactive TCRs in lung cancer26 and in a dataset of 
dermal/epidermal TCRs from healthy donors.25

Statistical analysis
Statistical analysis was performed using R software. 
The Mann Whitney U test was used for comparison of 
2-group data. For analysis of >2 group data, Kruskal-
Wallis was used. Spearman’s rho correlation was used to 
determine correlation significance. TCR preprocessing 
was performed using tcR package. Chord diagram was 
performed using the circlize package.31 32 p<0.05 was 
considered significant.

Data and code availability
Bulk TCR Vβ sequencing data generated by Adap-
tive Biotechnologies are available in the Adaptive 

Biotechnologies ImmuneACCESS repository at DOI: 
10.21417/TRCJZ2021JITC. The code to perform downs-
ampling of the TCR repertoire to the same library size 
and relevant figures are available online (https://​github.​
com/​BKI-​immuno/​dermatitis/).
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Table 1  Mitigating pitfalls and approaches for interpretation of TCRseq data

Potential 
confounders Pitfall Mitigation

Batch effect Circulating T-cell clones may be ‘shared’ by 
multiple specimens collected at the same 
time point.

Control normal tissue(s) collected at the same timepoint can 
be used to identify these background clones.

Blood During active immune responses,* both 
relevant and non-relevant clones circulate 
in blood.

Functional assays enable identification of disease-relevant 
clones (vs batch background).

Tissue 
compartment effect

Specimens from the same organ share 
tissue resident T cells, including antitumor 
clones.19

Clonotype sharing with ‘paired’ normal tissue does not 
preclude biological relevance. Measurements such as 
abundance and antigen specificity (antigen-driven clustering/
functional assays) are needed for further discernment.

Library size 
variation

Increased read count→more clones 
sampled→a larger proportion of shared 
clones

Analyses must correct for sample size variation (eg, Morisita 
Overlap Index, normalization, etc)

LNs/lymphoid-rich 
tissues

Increased probability of repertoire overlap 
given large, diverse T-cell populations

Avoid analysis of background lymphoid tissue in LN 
metastases; interpret LN data with caution.

Interpretation Definition Approach

Clonal abundance
(relative read count)

Relative proportion of sequencing reads 
for a unique clonotype (surrogate for clonal 
proliferation)

Assess for signals of clonal proliferation in relevant tissues to 
suggest functional relevance.†

Low abundance Meaningful threshold for exclusion 
of ‘background’ clones has not been 
rigorously defined

Exclude specimens with <1000 reads. Sample size informs 
interpretation of low-read clones.

High abundance Increasing abundance suggests clonal 
proliferation (and antigen exposure) in a 
given tissue.*

Proliferation of shared clones in disease-relevant tissues 
supports potential mechanistic overlap.

TCR repertoire 
sharing

Mechanistic interpretations of TCR 
repertoire overlap are limited by several 
confounders.

Multispecimen analyses, antigen-driven clustering (such as 
GLIPH2), and functional assays maximize interpretability of 
TCRseq data.

*During tumor killing (early in treatment) or active autoimmunity (immune-related adverse events).
†Assuming systemic clonal proliferation (batch effect) has been excluded.
GLIPH2, grouping lymphocyte interactions by paratope hotspots 2; LN, lymph node; TCR, T-cell receptor; TCRseq, T-cell 
receptor sequencing.
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