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Abstract

We consider the scenario where there is an exposure, multiple biologically-defined sets of 

biomarkers, and an outcome. We propose a new two-step procedure that tests if any of the sets of 

biomarkers mediate the exposure/outcome relationship, while maintaining a prespecified Family-

Wise Error Rate (FWER). The first step of the proposed procedure is a screening step that removes 

all groups that are unlikely to be strongly associated with both the exposure and the outcome. The 

second step adapts recent advances in post-selection inference to test if there are true mediators in 

each of the remaining, candidate sets. We use simulation to show that this simple two-step 

procedure has higher statistical power to detect true mediating sets when compared with existing 

procedures. We then use our two-step procedure to identify a set of Lysine-related metabolites that 

potentially mediate the known relationship between increased BMI and the increased risk of ER+ 

breast cancer in post-menopausal women.
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1 Introduction

Mediation analysis explores how an exposure (E) is associated with an outcome (Y) 1,2. 

Traditionally, mediation analysis assumes the exposure influences a single mediating 

variable (M) which, in turn influences the outcome (Figure 1A), and then aims to decompose 

the total effect of the exposure into a direct and indirect (i.e. via M) effect 2–4. Initial 

methods explored this decomposition using parametric models 5,6, while more modern 

methods use a counterfactual framework 2,7. Recently, epidemiological studies have 
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considered high-dimensional biomarkers as potential mediators linking an exposure and 

disease 8–10. Here, we focus on the scenario when the biomarkers can be split into disjoint, 

biologically defined sets (i.e. groups) and the specific goal is to test whether any of these 

predefined sets potentially mediate the exposure/outcome relationship (Figure 1B). By 

pooling signals from multiple biomarkers within a set, these group level tests may increase 

the power to detect true mediators. Group level tests have already been demonstrated to 

increase the power18–20 for testing associations when looking at groups of rare-variants in 

genes12,13, groups of genetic variants in pathways14,15, and groups of biomarkers with 

shared function or structure16,17. We note, however, that we can only increase power when 

the mediating biomarkers belong to the same group, a condition that will strongly depend on 

the type and quality of set definitions.

There is a growing body of literature exploring how high-dimensional biomarkers can be 

used in mediation analysis, specifically discussing how to identify sets of biomarkers that 

collectively mediate the exposure/outcome association9,21,22, test if individual biomarkers 

mediate the association 8,21,23,24, and test if predefined groups of biomarkers mediate the 

association 10,25. Here, we add to the literature by proposing a new procedure for testing 

groups of biomarkers. Our motivating study 26 is a 843-individual case-control study of ER+ 

positive breast cancer where the goal is to identify if one of the 38 biologically defined sets 

of metabolites mediates the relationship between higher body mass index (BMI) and the 

increased risk of breast cancer.

The first step of our two-step (TS) procedure is a screening step that removes all sets 

unlikely to be strongly associated with both the exposure and the outcome. The second step 

of the procedure adapts a method for post-selection inference 27–29 to attach a corrected or 

conditional p-value to each biomarker in the remaining sets. We then claim a set to be a 

mediating set if one of the included biomarkers is a statistically significant mediator based 

on this conditional p-value. Specifically, we define our p-value for a set of biomarkers to be 

the minimum of these conditional p-values. This approach builds upon two recent advances 

in the genetics literature, improved group tests of rare variants30,31 and post-selection 

inference to identify specific associated variants within the group27–29. This approach, 

screening by group and testing individual biomarkers, has higher power to detect mediating 

sets than the standard methods used to test groups. Moreover, our approach has the 

additional benefit of identifying the specific biomarkers in a set that are the actual mediators. 

We note that we defined our set-level p-value to be the minimum p-value, as opposed to 

using Fisher’s method, because the statistical distribution for the sum of the logged-

conditional p-values could not be easily described.

The remainder of the paper is organized as follows. In the Materials and Methods, we 

describe the proposed TS procedure, the simulations used to evaluate the procedure, and the 

motivating study of breast cancer. In the Results, we compare the performance of the TS 

procedure with comparators in the simulations and report our findings from the breast cancer 

study. Finally, in the Discussion, we offer insights about the differences between the TS and 

other procedures.
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2 Materials and methods

2.1 Notation

Let us consider n individuals. For individual i, let Ei be the exposure, Y i be the outcome, and 

M⃑i = Mi1, …, Mim ′ be a vector of m biomarkers or potential mediators. For a given 

biomarker j, we denote the m-1 set of biomarkers without j by 

M⃑i\j = Mi1, …, Mij − 1, Mij + 1, …Mim ′. For this paper, our potential mediators will always 

be biomarkers and we will use the terms interchangeably. We classify all m biomarkers into q
predefined disjoint sets, where the ms biomarkers of set s ∈ 1, …, q} are indexed by 

Gs = s1, …, sms ⊂ 1, …, m , and we then define M⃑is = Mij′: j′ ∈ Gs  and 

M⃑i\s = Mij′: j′ ∉ Gs . Finally, we let s j  be the set containing biomarker j, Gs j \j be the 

indices for all biomarkers, other than j, in the set s j  and M⃑is j \j = Mij′: j′ ∈ Gs j \j .

2.2 Causal Inference

We introduce counterfactual notation. We define M⃑i e = Mi1 e , …, Mim e ′ to be the value 

of the biomarkers in subject i if Ei is set to e and we define Y i e, M⃑i e′  to be the value of 

the outcome if Ei is set to e and M⃑i is set to M⃑i e′ . Given the number of biomarkers and 

their unknown and potentially bidirectional relationships, we cannot allow the biomarkers to 

be functions of each other (i.e. Mij ∙  is only a function of e) when using counterfactual 

notation.

We can then define the total effect from changing e to e′ to be 

TE = E Y i e′, M⃑i e′ − Y i e, M⃑i e , the Natural Indirect Effect (NIE(s)) through a given set 

s to be NIE s = E Y i e, M⃑is e′ , M⃑i\s e – Y e, M⃑i e , and the Natural Indirect Effect 

(NIE(j)) through a given biomarker j to be 

NIE j = E Y i e, Mij e′ , M⃑i\j e – Y i e, M⃑i e ..

We would like to claim s to be a mediating set if NIE(j) ≠ 0 for at least one j ∈ Gs. We 

emphasize that, as shown below, this statement would differ from claiming that s is a 

mediating set if NIE(s) ≠ 0. Our formal definition of mediating set is offered in Section 2.3.

2.3 Continuous Outcome

We will first assume that the biomarkers and outcome are continuous random variables 

defined by

Mij = β0j + βjEi + ϵMji for j = 1, …, m, (3)

Y i = γ0* + γE*Ei + ∑j = 1
m γj*Mij + ϵY i* (4)

where ϵ ⃑Mi = ϵ1i, …, ϵmi ′ ∼ N 0⃑, ΣM , ϵY i* N 0, σY
*2 , and ϵ ⃑Mi ⊥ ϵY i* . Equation (4) further 

implies that for any set s
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Y i = γ0
s + γE

s Ei + ∑j ∈ GsγjMij + ϵY i
s

(5)

We can define the causal effects from Section 2.2 in terms of the parameters from equations 

3–5: TE = e′ − e γE*βj + ∑j = 1
m γj*βj , NIE s = e′ − e ∑j ∈ Gsγj*βj, and 

NIE j = e′ − e γj*βj. When equations 3–5 hold, we also note that the following 

assumptions, provided by Imai et al 32, will also hold and allow all causal effects to be 

estimable.

Assumption 1 (Sequential ignorability)

Yi e′, m⃑ , M⃑i e ⊥ Ei Xi = x,

Yi e′, m⃑ ⊥ M⃑i e Ei = e, Xi = x,

Mij e′ ⊥ M⃑i\j e Ei = e, Xi = x for any j = 1, …, m,

where X denotes the vector of observed pre-treatment covariates.

However, when m > n, we may not be able to estimate the parameters in equation (4). 

Therefore, we may not be able to estimate NIE j  and test for its presence. Instead, as a 

pragmatic compromise, we will use the parametric models from equations (3) and (5), and 

formally define s to be a mediating-set if γjβj ≠ 0 for at least one j ∈ Gs, or equivalently, if 

∑j ∈ Gs βjγj
2 ≠ 0. We offer three comments regarding this definition. First, although not 

easily stated using the language of causal inference, our definition for a mediating-set is still 

well defined. Second, when the biomarkers from different sets are independent given 

Ei, NIE j = e′ − e γj*βj = e′ − e γjβj and our definition has the desired meaning. Third, we 

note that there are other powerful methods for detecting NIE s = 0. One approach10 would 

be transforming the biomarkers using spectral decomposition and then individually testing 

each of the resulting linear combinations

We will fit models (3) and (5) using linear regressions to obtain the Maximum Likelihood 

Estimates (MLE) for set s. We denote the MLE by β⃑s = βs1, …, βsms
′ and γ ⃑s = γs1, …, γsms

′; 

we denote the combined vector by θ⃑s = βs1, …, βsms, γs1, …, γsms
′. Furthermore, we denote 

the estimates of the covariances for β⃑s, γ ⃑s, and θ⃑s by Σβs, Σγs, and ΣΘs, the standard errors 

of the jth element of β⃑s by σβsj and the standard error of the jth element of γ ⃑s by σγsj. Note, 

the cor βj, γj′ = 0 for all j, j′ ∈ Gs . The latter is true because the likelihood, f Y , M E; β, γ , 
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can be factored into two components, f Y , M E; β, γ = f Y M, E; γ f M E; β , each 

containing only one set of parameters, as described in previous literature 8,10,24.

We can define biomarker-level p-values to test the null hypotheses H0E
j :βj = 0 and 

H0Y
j :γj = 0 by pE, j = FZ − ZEj  and pY , j = FZ − ZY j , where 

ZE, j = βj/σβj, ZY , j = γj/σγj, and FZ is the Cumulative Distribution Function (CDF) for the 

standard normal distribution. We choose the normal distribution as opposed to the t-

distribution because relevant studies of high dimensional biomarkers typically have 

significantly more subjects than markers in per set, n >> ms.

We can further define a weighted set-level p-value to test the set’s association with the 

exposure and outcome using one of two variance component tests 30,31. For the first method, 

we test for an association between the group of biomarkers and E or Y using the following 

pooled test statistic

TY , β
s = TE, γ

s = ∑j ∈ Gs βjγj
2, (10)

where the complementary effect estimates are used as weights. Thus, when testing for the 

association between the set of biomarkers and the exposure, we treat γ ⃑s as fixed weights and, 

similarly, when testing for the association with the outcome we treat β⃑s as fixed weights. 

Both test statistics TY , β
s and TE, γ

s  explicitly upweights biomarkers that have large effects with 

exposure or outcome. The corresponding p-values for the set s, pE, γ
s = 1 − FχE, s

2 TE, γ
s  and 

pY , β
s = 1 − FχY , s

2 TY , β
s , are calculated from two functions, FχE, s

2  and FχY , s
2 , that are the 

CDFs for a linear combinations of χ2 distributions with weights determined by γ ⃑s and β⃑s. 

For the second method, we test for an association between the group of biomarkers and the 

exposure or outcome without any weighting, using the statistics

TE, 1
s = ∑j ∈ Gs βj

2
(11)

TY , 1
s = ∑j ∈ Gs γj

2 . (12)

The corresponding p-values for the set s, pE, 1
s = 1 − FχE1, s

2 TE, 1
s  and 

pY , 1
s = 1 − FχY 1, s

2 TY , 1
s , are now calculated from two functions, FχE1, s

2  and FχY 1, s
2 , that are 

the CDFs for a linear combination of χ2 distributions with weights set to 1. Note that sets of 

biomarkers only associated with the outcome or exposure will have relatively small values of 

TY , β
s and TE, γ

s , compared to TY , 1
s and TE, 1

s , making the former potentially more powerful at 

detecting true signals. However, we incorporate the unweighted tests TY , 1
s and TE, 1

s  in parts 

of proposed methodology because of their statistical independence with each other.
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2.4 Binary Outcome

Although we have thus-far considered continuous outcomes, we will also consider the 

scenario where the outcome is a binary random variable. We define the binary outcome, Y i*, 

by the probit model Y i* = 1 Y i > 0  and Y i following equations (4) and (5). Here, our 

definitions of the null hypotheses (i.e. equations 7–9), test statistics, and p-values remain 

essentially the same. The exception is that we estimate γ by probit regression and for 

retrospective sampling (i.e. case/control models), we estimate β by weighted linear 

regression, where the weights are proportional to the probability of being sampled. Note, the 

choice of the probit model ensures both that equations (4) and (5) are consistent and that the 

hypotheses stated in equations (2) and (7) are identical, although the only true requirement is 

for E γj = 0 for biomarkers satisfying H0Y
j . We note that, in practice, the procedure 

performs equally satisfactorily when the coefficients and p-values for the outcome 

associations are calculated using logistic regression, a model more familiar in epidemiology 
24.

2.5 Testing procedures for groups of biomarkers

We first describe existing procedures and then introduce our new, more powerful, two-step 

procedures for testing sets of biomarkers.

2.5.1 Minimum-P Procedure (MIN)—This procedure is a direct modification of the 

approach introduced by Sampson and others 24. We start by calculating the FWER-corrected 

p-value for each biomarker using the MCPS approach. Briefly, define ωE = j: pE, j ≤ 0.025
and ωY = j: pY , j ≤ 0.025 . Let ωE  and ωY  be the cardinality of each set (i.e. the number of 

elements in that set). We define a FWER-corrected p-value for each biomarker by 

pj
FW ER = 2max ωE pE, j, ωY pY , j  if j ∈ ωE ∩ ωY  and 1 otherwise. The MIN procedure then 

claims a set s to be a mediating set if minj ∈ Gs pj
FW ER < α. In other words, the MIN 

procedure claims a set to be a mediating set if one of the biomarkers included in that set 

qualifies as a mediator after adjusting for multiple testing.

2.5.2 Linear Procedures (LIN)—These procedures were introduced by Huang 25.They 

suggest two test statistics, each with a normal distribution under the null hypotheses and 

some additional assumptions. For set s, the two statistics are 

ZL1
s = β⃑s

′γ ⃑s/ β⃑s
′Σβs

−1β⃑s + γ ⃑s′Σγs
−1γ ⃑s

1
2  and ZL2

s = β⃑s
′γ ⃑s/V max

1/2 , where 

V max = maxw ∈ Ωw ν ⃑s′ΣΘsν ⃑s , ν ⃑s = wY 1γs1, …, wY msγsms, wE1βs1, …, wEmsβsms
′, and the max 

is over all binary 2ms-length vectors 

Ωw = wY 1, …, wY ms, wE1, …, wEms ′:wEj ∈ 0,1 , wY j ∈ 0,1 , wEj + wY j = 1 . The LIN-1 

and LIN-2 procedures will, respectively, claim a set s to be a mediating set if 

pL1
s = FZ − ZL1

s < α/q and pL2
s = FZ − ZL2

s < α/q. For the comparison below, we 

consider only the more powerful, LIN-2, which we abbreviate by LIN. We note that the LIN 
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procedure is designed to answer a slightly different problem and test the null hypothesis that 

NIE s = 0.

2.5.3 Quadratic Procedure (QUAD)—This procedure was introduced by Huang and 

Pan 10. To account for the possibility of effects in different directions, they suggest the 

statistic TQ
s = ∑j ∈ Gs βjγj

2 and a novel parametric bootstrap to obtain the corresponding p-

value. Specifically, they randomly generate B bootstrap replicates of θ⃑
b

= β⃑
b
, γ ⃑b  from a 

normal distribution with mean θ⃑s and variance ΣΘs. They then calculate 

TQ, b
s = ∑j ∈ Gs βj

bγj
b − 1

B ∑bβj
bγj

b 2
 for each boostrapped set and define the p-value to be 

pQ
s = 1

B ∑b1 TQ, b
s < TQ

s . The QUAD procedure will claim a set s to be a mediating set if 

pQ
s < α/q. We note that the original QUAD procedure offered modified methods that could 

handle large sets, with ms > n, a scenario not considered here.

2.5.4 Marginal Procedure (MARG)—This procedure, the first to be introduced here, is 

a set-level modification of the MCPs statistic 24. Importantly, for reasons discussed at the 

end of this section, we do not suggest that this overly-simplified approach controls the 

FWER and include it because it provides a reference for the maximum possible power that 

can be reasonably expected from a test. MARG is based on p-values pE, 1
s  and pY , 1

s

calculated from the unweighted pooled association test statistics TY , 1
s and TE, 1

s . Define 

ωE
G = s: pE, 1

s ≤ 0.025  and ωY
G = s: pY , 1

s ≤ 0.025  so that they are the sets potentially 

associated with the exposure and outcome. Let ωE
G  and ωY

G  be the cardinality of each set 

(i.e. the number of elements in that set) and the marginal p-value be 

pM
s = 2max ωE

G pE, 1
s , ωY

G pY , 1
s  if s ∈ ωE

G ∩ ωY
G and 1 otherwise. The MARG procedure will 

claim a set s to be a mediating set if pM
s < α. However, the problem is that this procedure 

only marginally tests if the set is associated with both the exposure and the outcome; the 

procedure does not ensure that there is a common set of mediating biomarkers associated 

with both the exposure and the outcome (i.e. that s is a true mediating set). We do note that 

MARG uses p-values from group tests without weights (i.e. pE, 1
s  and pY , 1

s ) because the p-

values pE, γ
s  and pY , β

s  are not independent under the null hypothesis (see Proposition 1 in 

Supplemental Material) and therefore can occasionally have lower power than the TS 

method proposed below. We note that Huang proposed another marginal procedure, JTV-

comp33, which again tests for sets associated with both the exposure and the outcome 

without ensuring that there are true mediators in that set. We offer comparisons with JTV-

comp in Supplementary Material Section 4.6 and note that the method did tend to have 

higher statistical power, albeit with a slightly inflated type-I error rate.

2.5.5 Two-Step Procedure (TS)—This novel procedure is described in Figure 2. In 

parallel analyses, we identify biomarkers associated with the exposure and we identify 

biomarkers conditionally associated with the outcome. Note, in each of these analyses, we 
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perform two steps: (i) a screening step to remove sets of biomarkers that are unlikely to be 

strongly associated with both the exposure and outcome (ii) a testing step that assigns 

individual p-values to each biomarker in the remaining sets. After these parallel analyses, we 

define the mediating sets to be those sets with biomarkers associated with both the exposure 

and outcome. Below we describe the links in Figure 2 for identifying the biomarkers 

associated with the exposure, while omitting the near identical descriptions for identifying 

biomarkers associated with the outcome.

Step 1: Define SE = s: pE, γ
s ≤ 0.025, pY , 1

s ≤ 0.1  based on p-values from weighted and 

unweighted group test statistics. Here, we screen out those sets that are unlikely to be 

strongly associated with both the exposure and outcome. Note, this set differs from SY . 

Further note that choices of 0.025 and 0.1 can be modified, but we have found these 

thresholds to work well in practice for the FWER-corrected p-value of 0.05.

Step 2a: For each biomarker in one of the remaining sets, GE1 ≡ ∪ s ∈ SEGs, we calculate a 

conditional p-value for association (i.e. conditioned on its set passing the screening step). 

Here, we define pE, j
C = 1 − FZE, j

T βj  for jGE1 where FZE, j
T  is the truncated normal 

distribution described in the Supplementary Material Section 1.3, and, for completeness, 

define pE, j
C = 1 for j ∉ GE1.

Step 2b: We then divide GE1 into two complementary sets of biomarkers, GE1 = GE2 ∪ GE2
C , 

where GE2 = j: pY , j < 0.025  is the set of candidate biomarkers. Let mE be the number of 

biomarkers in GE2.

Step 2c: For each biomarker in GE2, we now calculate an adjusted conditional p-value, 

where the adjustment is needed to account for multiple testing. In its simplest form, the 

adjusted p-value would be pE, j
A = min mEpE, j

C , 1 .  However, we find it beneficial to 

decrease the multiple-testing penalty for those biomarkers strongly associated with the 

outcome (i.e. potentially true mediating biomarkers). Therefore, we define the adjusted p-

value to be pE, j
A = min mE, jpE, j

C , 1 , mE, j = ∑ j ∈ GE2 γj
2 /γj

2, if j ∈ GE2 and, for 

completeness, define pE, j
A = 1 for j ∉ GE2 .

Step 2d: After completing steps 2a-2c for both the exposure and the outcome, we can now 

define an adjusted p-value for mediation by pjM = 2max pE, j
A , pY , j

A  for markers j ∈ GE2 ∩ GY 2

and, for completeness, define pjM =1 for j ∉ GE2 ∩ GY 2. We then say a set, s, is a mediating 

set if PTS
s ≡ minj ∈ GspjM < α. Let us formally define the FWER for the TS procedure by 

FWERTS ≡ P mins PTS
s < α . Then, in Supplementary Material Section 1.5, we prove the 

following theorem.

Theorem 1.: If M⃑is ⊥ M⃑is′ given Ei for ∀ s, s′ ∈ 1, . . , q , then lim
n ∞

FW ERTS ≤ α .
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We note that the assumption, M⃑is ⊥ M⃑is′ Ei, is unlikely to hold in practice and violations of 

this assumption can lead to the TS procedure having an inflated type I error. Consider the 

example where E affects Mj j ∈ Gs) and a second biomarker Mj′ j′ ∈ Gs′) also affects Mj. 

Furthermore, of the two biomarkers, only Mj′ affects the outcome. Then, s may be 

mistakenly classified as a mediating set. In Supplementary Material Section 3.1, we offer 

simulations to show that the effect of Mj′ on Mj must be large for there to be an inflated 

type I error rate. We note that when n ≫ m, we can modify our approach so that its 

performance does not require this assumption (Supplementary Material Section 2).

We offer a couple of remarks. First, the initial screening uses a quadratic (i.e. 

TE, γ
s = ∑j ∈ Gs βjγj

2), as opposed to a linear (i.e. TL
s = β⃑s

′γ ⃑s ), test statistic. This choice 

offers increased power when the proportion of associated biomarkers is low or biomarkers 

within a set have opposing effects. Second, the initial screening steps select sets using one 

weighted and one unweighted test statistic. Ideally, we would have used two weighed 

statistics but that would greatly complicate post selection inference because of the 

dependence between TY , β
s , TE, γ

s  (see Supplemental Material Section 1.2). Post-selection 

inference in the second step of TS allows to quantify mediating effects (i.e. NIE j ) for 

detected potential mediators (see Supplemental Material Section 1.4).

2.6 Simulations

We compared the performance of the five previously defined procedures (MIN, LIN, QUAD, 

MARG, TS) for testing sets of biomarkers. Specifically, we used simulations to estimate the 

power to detect a mediating set of biomarkers in various scenarios defined by equations (3–

5) and the parameters in Table 1.

We assumed there were a total of q ∈ 15, 20, 50  sets of biomarkers, each containing 

ms ∈ 15, 20, 50  biomarkers.

We assumed that there was qm = 1 mediating set, qOD ∈ 0, 4, 6  one-dimensional sets, and 

qTD ∈ 0, 4, 6  two-dimensional sets, where we say a set is one-dimensional if it contains 

mD = 6 biomarkers associated with only the exposure or only the outcome and two-

dimensional if it contains mD/2 = 3 biomarkers associated with only the exposure and 

mD/2 = 3 biomarkers associated with only the outcome. For the one mediating set, we 

assumed there were mM ∈ 1, 3, 5  true mediators, mE ∈ 0, 2, 4  “noise” biomarkers 

associated with only the exposure, mY ∈ 0, 2, 4  “noise” biomarkers associated with only 

the outcome, and mEY = mE + mY . In Supplemental Figure S1, we provide additional details 

on the simulation model.

Unless otherwise designated, we used the default parameters highlighted in black for the 

simulations.

In all scenarios, the exposure followed a normal distribution defined by Ei N 0,1  and the m
biomarkers followed a multivariate normal distribution defined by equation 3. The 
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correlation (i.e. off-diagonal element in ΣM) for metabolites within a set was chosen to have 

AR(1) structure (i.e. ρij = ρM
i − j ) with ρM ∈ 0,0.25,0.5 . For continuous outcomes, the 

sample contained a total of n = 2500 individuals and the outcome followed the normal 

distribution defined by equation 4. For non-null associations, we let the magnitudes of all 

effects be the same with βj = γj* = 0.065. For a binary outcome, the sample contained 

n = 2500 cases and n = 2500 controls retrospectively sampled from a large cohort with 

outcomes generated from a logistic model logit P Y i Ei, M⃑i = γ0* + γE*Ei + ∑j = 1
m γj*Mij and 

the incidence defined by γ0* = log 0.01
099 = − 4.6, the non-null exposure effects defined by 

βj = 0 . 045  and the non-null outcome effects defined by γj* = 0.085. The choice of effect 

sizes ensured similar power when testing continuous and binary outcomes. We generated 

1000 simulations per scenario to estimate power of five methods at a FW ER = α = 0.05 .

We also conducted additional sensitivity analyses. We explore the effect of confounding in 

Supplementary Material Section 3.1. Specifically, we consider the scenario where there are 

no mediators, but there are confounders that link the exposure, biomarkers, and outcome. We 

also explore the methods under a wider set of parameter values in Supplementary Material 

Section 3.2. Specifically, we further explore the power when varying the proportion of 

biomarkers in a set that are mediators and the strength of the biomarkers’ combined 

association with both the exposure and outcome.

2.7 Metabolomic Study of Breast Cancer

Our motivating study aims to identify metabolites that mediate the known relationship 

between high BMI and the increased risk of estrogen-receptor positive (ER+) breast cancer. 

This study nested inside the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Study 

(PLCO), includes 410 (ER+) breast cancers and 433 controls matched on study age (+/− 2 

years), date of blood collection (+/− 3 months), and hormone therapy use at baseline. The 

study collected serum samples at the first follow up visit, one-year post-baseline, and using 

these specimens, measured the serum metabolites (< 1 Kilodalton molecular weight) with 

liquid chromatography-tandem mass-spectrometry. Metabolite peaks were normalized by 

dividing by batch median and then log transformed. Of the 1057 measured serum 

metabolites, we consider the 481 metabolites that have known identities and are present in at 

least 90% of the case-control population. These 481 metabolites can be divided into 38 

disjoint sets defined by their biologic properties 34. Details on the study have been 

previously published 26.

3 Results

3.1 Simulations

In general, TS successfully controlled the FWER at the targeted level (0.05). The MIN, LIN, 

and QUAD procedures similarly controlled the FWER. However, we note that all four 

procedures tend to have conservative FWERs when most biomarkers are associated with 

neither the exposure nor the outcome. The conservative nature of the tests observed here is 

consistent with previous observations when testing individual biomarkers21. As expected, 
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the MARG procedure had inflated FWER when the number of two-dimensional sets was 

greater than 0 (Supplemental Figures S3F and S8F). Again, this inflated type I error results 

from falsely declaring a set as a mediating set if it is marginally associated with both the 

exposure and outcome, regardless of whether true mediating biomarkers are present. 

Additionally, TS, MIN, LIN and QUAD were relatively robust to the presence of 

unmeasured confounders affecting the biomarkers, exposure and outcome (see Supplemental 

Figures S3-S12).

The simulations demonstrate that the newly proposed TS procedure has comparable or better 

performance characteristics then the competing methods in all tested scenarios. Note, we 

show the results for only a selection of illustrating scenarios in the main text and show 

additional results in the supplementary material. We focus on a baseline scenario with 

q = 20  disjoint sets of size ms = 20, qm = 1 mediating set, qOD = 0  one-dimensional sets, 

qTD = 0 two-dimensional sets, mM = 3 mediating biomarkers, mE = 0 and mY = 0 noise-

biomarkers, and a correlation of ρM = 0. We then vary individual parameters to assess their 

specific impact on the relative performance of the five procedures (Figures 3, 4 and 

Supplemental Figures S13-S22).

The MARG procedure unexpectedly did not have the highest power under all settings. The 

main disadvantage of MARG is that it uses suboptimal statistics TE, 1
s  and TY , 1

s  to detect 

associations between the group of biomarkers and either the exposure or outcome. 

Nevertheless, MARG did have the highest power in most settings, and performed 

significantly better when the number of associated markers, mM, mE, mY , and mEY , in the 

mediating set was large (Figure 3D and 3G-1I and Figure 4D and 4G-2I). JTV-comp33, a 

similar procedure to MARG, also had high, if not the highest power, when included in 

simulations (see Supplemental Figure S21). However, this study not only had an inflated 

type I error when the number of two-dimensional sets was greater than 0 but also in some 

scenarios when the number of one-dimensional sets was greater than 0 (see Supplemental 

Figure S22).

QUAD generally had the lowest power to detect the mediating set in all our simulations. The 

power tends to be low because the parametric bootstrap procedure 10 is known to be overly-

conservative. LIN generally has power only slightly lower than TS. However, LIN has 

higher power when either the number of mediators in a set is large (see Figure 3D and 4D 

for setting with mM = 5  and Supplemental Figures S15 and S16) or the number of test sets 

is small (see Figure 3A and 4A for setting with q = 15). The power for LIN was significantly 

affected by the number of noise biomarkers in a mediating set (Figures 3G-1I and 4G-2I) 

because large values of βs and γs increase the variance in the denominator of the statistic. We 

note that we did not evaluate LIN in examples where the biomarkers in the mediating set 

have opposing effects (i.e. β⃑s
′γ ⃑s ≈ 0) as clearly LIN would have little to no power in this 

potentially unrealistic scenario.

The MIN procedure had reasonable power, achieving more than 80% of the power of the TS 

procedure for the baseline scenario. Moreover, the MIN procedure had the highest power 
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when there was only mM = 1 mediating biomarker and q =  20 disjoint sets (Figures 3D and 

4D). However, even when there was only a single mediating biomarker, increasing the 

number of sets and, therefore, biomarkers, decreased the difference in power achieved by the 

MIN and TS procedures (see Supplemental Figures S13 and S14).

The final observation is that the TS procedure had consistently higher power than the other 

methods for the realistic scenarios evaluated here. We note that changing the number of one- 

and two- dimensional sets did not have a meaningful impact on the overall or relative 

performance of the TS procedure (Figures 3E-3F, 4E-4F). We note that increasing the 

number of noise biomarkers resulted in a slight loss of power for the TS procedure but had 

no effect on the MIN procedure (Figures 3D-3I, 4D-4I). In contrast to other tests, increasing 

the total number of sets had minimal effect on the TS procedure, but greatly reduced the 

power of the MIN, LIN and QUAD procedures. In the supplementary material, we compared 

the four procedures in a wider set of scenarios that have been more rarely observed in 

practice. We note that when the proportion of mediating biomarkers (mM /ms) was large or 

close to 1, LIN and QUAD did have higher power (see Supplemental Figures S17 and S18). 

However, we also note that when the proportion was low or the number of sets was large, the 

TS procedure had notably higher power. Specifically, when q =  100 disjoint sets and 

ms = 100, the TS procedure had power above 80% while the other procedures had power 

below 40% (see Supplemental Figures S13 and S14). As expected, the power for all 

procedures, including TS, is significantly improved by increasing the number of mediating 

biomarkers in the set and/or reducing the correlation between biomarkers (Figures 3C, 4C). 

We also saw similar results when the overall effect of mediators increased (i.e. 0.1% to 2% 

of phenotypic variation) while the number of mediators remained constant (see 

Supplemental Figures S19 and S20). We note that for our TS procedure, which is based on 

the minimum conditional p-value, this increase in power can be mainly attributed to the 

increased probability that the set is selected in the first step.

Increased correlation reduces the power for all tests because σγ increases significantly when 

the regression for the outcome includes highly correlated biomarkers. Moreover, for the TS 

approach, the p-values from post-selection inference tend be larger because, in theory, an 

association with an outcome may be caused by the association to another mediating 

biomarker. Finally, compared to MIN, the TS identified a larger number of true mediators 

(see Supplemental Figures S23 and S24), consistent with the overall improvement in power 

(see Figure 3 and 4).

3.2 Breast Cancer Study

We tested the 38 sets of metabolites to determine if any mediated the relationship between 

BMI and risk of breast cancer. We observed that TS selected three pathways associated with 

the exposure and seven pathways associated with the outcome at step one, but only one 

pathway, Lysine metabolism, was identified as a mediating set with adjusted p-value 

PTS
s = 0.043. TS identified that the specific mediating biomarker, 3-

Methylglutarylcarnitine-1, drove the association with pjM = 0.043 .  LIN and MIN also 

detected the same pathway with adjusted p-value of 0.0001 and 0.041. Associations detected 
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by LIN, TS and MIN were large driven by the single biomarker 3-Methylglutarylcarnitine-1 

(see Table 2). On the other hand, MARG discovered a different Sterol/steroid pathway 

(pM
s = 0.038) that contains several sex hormones, suggesting that non-overlapping sets of 

hormones may be associated with the exposure and outcome. Lastly, QUAD did not identify 

any pathways that are potential mediators. However, the lowest adjusted p-value of 0.18 was 

for the Lysine metabolism group. In Table 2, we present the metabolites in the pathway 

discovered by LIN, TS and MIN and we present similar results for the Sterol/steroid 

pathway in the Supplementary material (Table S2).

4 Discussion

We introduced a new procedure, TS, to test if sets of biomarkers mediate the relationship 

between an exposure and an outcome. The TS procedure is computationally efficient, 

controls the family-wise error rate (FWER), and has high statistical power for detecting 

potentially mediating sets of biomarkers. Additionally, the TS also identifies individual 

biomarkers that are potential mediators. The strength of the method comes from the first, 

screening, step that removes all sets that are unlikely to be strongly associated with both the 

exposure and the outcome. As compared with standard association tests this screening step 

removes a significantly larger number of sets (e.g. 100 x (1–0.025 × 0.1) = 99.75% of sets 

removed compared to 100 x (1–0.025)=97.5% of sets removed). The statistical complication, 

which was solved and discussed in the supplementary material, is to calculate the adjusted, 

conditional p-values based on this screening approach. In addition to higher power, the 

added benefit of our approach is that it identifies the individual mediating biomarkers and 

allows practitioners to make more precise claims about the underlying biology by measuring 

effects mediated through biomarkers. In the remainder of this section, we focus on providing 

insight into the trends observed in our simulations, potential extensions to the TS procedure, 

and a discussion on the benefits of group testing.

One observation is that the QUAD and LIN procedures had lower power in many tested 

scenarios. Here, we offer some comments about those tests. First, importantly, we note that 

these procedures were not designed for scenarios where only a small subset of the 

biomarkers in the mediating set qualify as actual mediators. Second, despite having lower 

power, these procedures still have the advantage of offering a set-level p-value. In contrast, 

the TS procedure offers biomarker-level p-values for elements of the set, and then uses the 

minimum biomarker-level p-value as the set-level p-value. Third, the test statistic used in the 

QUAD procedure is similar to those statistics use in the first step of the TS procedure, 

TQ
s = TY , β

s = TE, γ
s = ∑j ∈ Gs βjγj

2 and therefore the similarity in procedures’ statistics 

needs to be reconciled with the dissimilarity in their performance. For the null distribution, 

the QUAD procedure assumes that both of the estimated vectors, βs and γs, follow 

multivariate normal distributions with non-zero means, while the TS procedure assumes one 

vector is a group of fixed weights and the other vector follows a multivariate normal variable 

with zero means. As further illustrated by an example in Supplementary material of the 

original paper 10, the variance of TQ, b
s  under its associated null is an order of magnitude 

larger than the variance of TY s or TEs under their associated nulls. Fourth, when testing a set 
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of biomarkers, the quadratic version of the test statistics (see corresponding references 30,31) 

generally have higher statistical power than their linear counterparts when only a subset of 

biomarkers are true positives regardless of the sign of effect. A second observation, which 

applies to all procedures, is that testing groups will only have higher power, as compared to 

testing individual biomarkers, when the groupings combine mediators together. Albeit not 

explicitly stated, our examples showed the cost if the groups were formed randomly. In this 

extreme scenario, a set would likely have at most one mediating biomarker (i.e. mM = 1). As 

Figures 3D, 4D, S17, and S18 illustrate, the power of all group tests are noticeably lower 

than the power of MIN, where we recall that MIN is equivalent to testing each biomarker 

individually. A third observation is that TS and MIN had low power when the majority of 

biomarkers in a set each had a small mediating effect. The last point, which we did not show 

by simulation, is that in the presence of alternating effects, where βjγj can be both positive 

and negative, LIN will clearly have lower power to detect mediating sets.

There are potential modifications to the TS procedure. First, as remarked previously, in the 

initial step of TS method, we used a combination of weighted statistics, 

TY , β
s = TE, γ

s = ∑j ∈ Gs βjγj
2 and unweighted statistics, TE, 1

s = ∑j ∈ Gsβj
2 and 

TY , 1
s = ∑j ∈ Gsγj

2, to test the marginal null. The more powerful approach would be to select 

candidate sets by weighted tests only (i.e. S = s: pE, γ
s ≤ 0.025, pY , β

s ≤ 0.025 ). However, in 

the second step of our new procedure, the adjustment of p-values would need to take into 

consideration selection by both of these test statistics, a complication that requires further 

thought. The second modification of TS would be to calculate the adjusted p-values by 

computing them under the global null 28. Such a test can provide better power when the 

proportion of mediators in a set is very low. A third modification is to allow one biomarker 

to appear in multiple sets. However, such a modification is not straight-forward, as the 

assumptions in Theorem 1, would clearly fail to hold. Another potential modification is to 

allow there to be exposure/biomarker interactions in the outcome model. As a final note, we 

refer to each selected set as a potentially mediating set, as opposed to simply referring to it 

as a mediating set. We note that the test for an association between a set of biomarkers and 

the outcome ignores biomarkers from all other sets. Therefore, for these association tests, 

the other biomarkers are “unmeasured” confounders that could potentially bias our findings. 

Note, for large m, such bias is difficult to avoid because models cannot easily include all 

biomarkers.

We expect there to be growing interest in testing whether groups of biomarkers are 

mediators. In some scenarios, we might expect the exposure to affect an underlying, latent 

process that affects both the individual biomarkers and the outcome22. In other scenarios, we 

might expect the exposure to directly affect the biomarkers and the biomarkers to directly 

influence the outcome8,10,22,33. Recently, for example, Chen and colleagues9 investigated 

whether a thermal stimula excited a region of the brain (e.g. sets of fMRI voxels in common 

areas), which in turn affected the reaction. Huang33 recently investigated whether smoking 

affected methylation levels in a gene (e.g. sets of probes linked to a common gene), which in 

turn affected cancer risk. As another example, a study8 investigated whether high intake of 

fish, as measured by a questionnaire, influenced serum levels of sets of metabolites (e.g. sets 
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that were associated with consumption of specific fish), which in turn were associated with a 

reduced risk of colorectal cancer.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Causal graphs of the mediation models.
A) Traditional mediation analysis focus on the exposure influencing individual biomarkers, 

B) Mediation analysis tests whether any of these predefined q sets mediate the exposure/

outcome relationship.
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Figure 2: Diagram of Two-Step procedure (TS).
In the first step, we select sets of biomarkers that are potentially associated with the both the 

exposure and outcome. In the second step, we test individual biomarkers to identify 

mediators.
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Figure 3: Simulations for Continuous Outcome.
The bar-plots show the power to detect the mediating set when using the TS (yellow), MIN 

(green), MARG (orange), LIN (red), and QUAD (brown) procedures. The baseline scenario 

includes ms =  20 biomarkers per set, q =  20 disjoint sets, qm =  1 mediating set, qOD =  0 

one-dimensional sets, qTD =  0 two-dimensional sets, mM =  3 mediating biomarkers, 

mE =  0 noise-biomarkers, and a correlation of ρM =  0. We evaluate the effect of varying a 

single parameter, keeping all other parameters set to their baseline value.
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Figure 4: Simulations for Binary Outcome.
The bar-plots show the power to detect the mediating set when using the TS (yellow), MIN 

(green), MARG (orange), LIN (red), and QUAD (brown) procedures. The baseline scenario 

includes ms =  20 biomarkers per set, q =  20 disjoint sets, qm =  1 mediating set, qOD =  0 

one-dimensional sets, qTD =  0 two-dimensional sets, mM =  3 mediating biomarkers, 

mE =  0 noise-biomarkers, and a correlation of ρM =  0. We evaluate the effect of varying a 

single parameter, keeping all other parameters set to their baseline value.
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Table 1:

Simulation Parameters

Parameter Interpretation Possible Values

q Number of sets of biomarkers 15, 20, 50

qOD, qTD Number of one- or two-dimensional sets 0, 4, 6

ms Number of biomarkers per set 15, 20, 50

mM Number of mediating biomarkers in the mediating set 1, 3, 5

mE Number of noise biomarkers in the mediating set associated only with exposure 0, 2, 4

mY Number of noise biomarkers in the mediating set associated only with outcome 0, 2, 4

mEY Number of noise biomarkers in the mediating set with half associated only with the exposure and half 
associated only with the outcome 0, 2, 4

mD Number of associated biomarkers in one- or two-dimensional sets 6

ρM Correlation between biomarkers within a set 0, 0.25, 0.5

βj Non-null effect of exposure on metabolite
0.065

A
, 0.045

B

γj* Non-null effect of metabolite on outcome
0.065 

A
, 0.085

B

A
Models with a continuous outcome

B
Models with a binary outcome

Bold values indicate default settings.
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Table 2:

Individual biomarker results for Lysine metabolism group pathway

Metabolite P-value for association with risk of breast cancer P-value for association with BMI

2-Aminoadipate 0.43 5.3∙10−4

3-Methylglutarylcarnitine-1
* 9.5∙10−5 2.0∙10−8

3-Methylglutarylcarnitine-2 0.02 0.31

Glutarate pentanedioate 0.82 0.96

Lysine 0.35 0.25

N6-Trimethyl-L-lysine 0.13 0.02

N2-Acetyl-L-lysine 0.28 0.09

N6-Acetyl-L-lysine 0.17 0.55

Pipecolate 0.64 0.26

3-Methylglutaconate 0.62 0.82

*
Metabolite discovered by TS and MIN to mediate effect of BMI
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