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MOTIVATION Single-cell RNA sequencing (scRNA-seq) techniques are transforming our understanding of
multicellular organisms, disease states, and cellular heterogeneity. The aggregation of two or more cells
into single droplets (doublets/multiplets) during the cell capture step of scRNA-seq resulting in hybrid tran-
scriptomes can lead to false discoveries of rare cell types, intermediate cell states, and disease-associated
transcriptomic signatures. Current methods do not sensitively identify many doublets/multiplets. Here, we
address this doublet/multiplet detection issue utilizing VDJ-seq and/or CITE-seq, and apply machine
learning to predict their presence based on transcriptional features associated with identified hybrid drop-
lets, and ultimately scRNA-seq data quality.

SUMMARY

The computational detection and exclusion of cellular doublets and/or multiplets is a cornerstone for the
identification the true biological signals from single-cell RNA sequencing (scRNA-seq) data. Current methods
do not sensitively identify both heterotypic and homotypic doublets and/or multiplets. Here, we describe a
machine learning approach for doublet/multiplet detection utilizing VDJ-seq and/or CITE-seq data to predict
their presence based on transcriptional features associated with identified hybrid droplets. This approach
highlights the utility of leveraging multi-omic single-cell information for the generation of high-quality data-
sets. Our method has high sensitivity and specificity in inflammatory-cell-dominant scRNA-seq samples,

thus presenting a powerful approach to ensuring high-quality scRNA-seq data.

INTRODUCTION

The use of single-cell RNA sequencing (scRNA-seq) techniques
has revolutionized the characterization of complex biological
systems in health and diseased states; however, its fundamental
success relies on the true representations of high-quality single
cells. Droplet-based scRNA-seq technologies have allowed for
the capture and analysis of 1,000s—100,000s of cells in single ex-
periments at reduced per-cell cost. The success of single-cell
experiments depends on the accurate capture of a single cell
from a prepared cell suspension. However, many scRNA-seq
techniques face significant limitations, including the capture of
doublets (or multiplets) and/or low-quality or dying cells, which
potentially confounds biological results. Doublets and multiplets
are defined as the aggregation of two or more cells into single
droplets during the cell capture step of scRNA-seq, resulting in
hybrid transcriptomes (Zheng et al., 2017; Wolock et al., 2019;
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McGinnis et al., 2019). Hybrid transcriptomes might be derived
from the aggregation of two or more intact cells and/or dying
and/or broken cells and can be homotypic (comprised of cells
that are transcriptionally similar) or heterotypic (comprised of
cells with dissimilar gene expression). Conditions resulting in a
propensity for cellular clumping might contribute to the formation
of cellular doublets or the non-specific binding of detection anti-
bodies. The aggregation of cells undergoing apoptosis is well
described in flow cytometry experiments (Cui et al., 2016; Kuo-
nen et al., 2010). Although most single-cell experiments perform
dead cell exclusion, the protocols can be protracted and result in
further cell death downstream. These processes can result in
false discoveries of rare cell types, intermediate cell states and
disease-associated transcriptomic signatures (Stegle et al.,
2015; llicic et al., 2016). Although prospective experimental plan-
ning might reduce the frequency of doublet/multiplet occur-
rence, such as capturing fewer cells during scRNA-seq library
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preparation, doublet and/or multiplet capture is a problem in all
experimental setups (Zheng et al., 2017; Wolock et al., 2019;
McGinnis et al., 2019).

The computational detection and exclusion of doublet or
multiplet artifacts is required to accurately analyze the true bio-
logical signals in single-cell data. Doublet detection might be
achieved experimentally through cell hashing (Stoeckius et al.,
2018) (pooling of multiple samples labeled with distinct oligo-
tagged antibodies against ubiquitously expressed surface pro-
teins) or through genotype-based multiplexing (Kang et al.,
2018) (genetic variation between multiplexed sample donors to
determine the sample identity of each cell and detect droplets
containing two or more cells); however, these data modalities
are not suitable or included in many scRNA-seq experiments.
Current methods for identification of same-sample
doublets and/or multiplets include DoubletFinder (McGinnis
et al., 2019), Scrublet (Wolock et al., 2019), DoubletDecon (De-
pasquale et al., 2019), and scds (Bais and Kostka, 2020), all of
which primarily identify only heterotypic doublets, and some
methods require the prior estimation of multiplet rate, which is
not possible to evaluate (McGinnis et al., 2019). There are no
robust identification methods for both heterotypic and homo-
typic doublets and/or multiplets.

Here, we describe approaches for the detection of both het-
erotypic and homotypic doublets and/or multiplets. This is
possible through the use of recent multi-omic approaches in
scRNA-seq experiments that characterize the proteomic
(Stoeckius et al., 2017) and immune receptor profiles of single
cells (Azizi et al., 2018) offering further modalities of multiplet
identification that build upon current gene expression-based
tools (Wolock et al., 2019; McGinnis et al., 2019). The use of bar-
coded oligonucleotide-conjugated antibodies that target cell-
surface markers (CITE-seq) can potentially identify cell multiplets
through the occurrence of co-staining for cell-type-specific ca-
nonical markers, such as CD3 and CD19, exclusive markers
for T and B cells, respectively. Similarly, the expression of
more than one clonally distinct T or B cell receptor (TCR or
BCR, respectively) chain in a single T or B cell is a rare occur-
rence. In B cells, double light chains occur at 2%-10% in murine
models (Casellas et al., 2007), whereas allelically inclusive
expression of double heavy chains is incredibly rare at reported
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frequencies of 0.01% (Barreto and Cumano, 2000). In T cells, the
expression of more than one distinct alpha chain (TCRa) has
been estimated to occur in 1%-10% of human peripheral
T cells (Padovan et al., 1993), whereas double beta chain
(TCRP) are rarer at frequencies of <1%. The possibility of a T
or B cell endogenously expressing the respective cell-type-spe-
cific receptor (Ahmed et al., 2019) remains controversial and has
yet to be reproduced. Therefore, droplets resembling a mixture
of B and T cell CITE-seq or VDJ-seq profiles might be enriched
in doublets and/or multiplets.

We therefore propose a computational cell doublet/multiplet
detection approach, MLtiplet, that leverages the additional gran-
ularity of multimodal scRNA-seq experiments using CITE-seq
and immune receptor profiling, respectively. This approach iden-
tified droplets that correspond to mixed-cell droplet profiles,
including those with mutually exclusive CITE-seq profiles or mul-
tiple TCR/BCR profiles. As these CITE-seq or TCR/BCR profiles
only identify a subset of possible doublets and/or multiplets, we
subsequently applied a generalized linear model to fit the profile
of these true doublets and/or multiplets compared with the
remainder of the droplets. The model was then used as a classi-
fier to detect doublets and/or multiplets for which the CITE-seq
or VDJ-seq data were not available or appropriate. This
approach incorporates features of the transcriptomic profiles
into a single model that statistically distinguishes doublets
and/or multiplets from true singlets. These transcriptional fea-
tures include the relative number of mMRNA molecules (nUMlIs),
and apoptosis-associated gene signatures. We show that
doublets and/or multiplets identified from both CITE-seq and
VDJ-seq data might be used as a combined training dataset
for MLtiplet for highest sensitivity and specificity.

RESULTS

Here, we propose a model-based classification of doublets
based on the profiles of identified mixed-cell droplets (Figures
1A and S1). We applied these approaches to publicly available
datasets containing RNA-seq, CITE-seq, and VDJ-seq modal-
ities of peripheral blood mononuclear cells (PBMCs) from three
healthy individuals (https://support.10xgenomics.com/single-
cell-vdj/datasets). These were pre-processed according to the

Figure 1. Multi-omics aids the identification of doublets and/or multiplets

(A) Schematic of approach to identify scRNA-seq doublets and/or multiplets using the CITE-seq and VDJ modalities. Droplets with a transcriptome resembling
non-B or non-T cells that captured BCR or TCR sequences, respectively, were considered as potential doublets and/or multiplets.

(B) Uniform manifold approximation and projection (UMAP) dimensionality reduction of three healthy PBMC datasets colored by cell type.

(C) Examples of the CITE-seq levels between CD3, CD4, and CD8 for the three individuals for the B cell cluster, with the red lines corresponding to the CITE-seq
positivity thresholds.

(D) UMAP dimensionality reduction of three healthy PBMCs colored by VDJ doublets (left, co-capture of discordant VDJs) or CITE-seq doublets (right, co-capture
of the corresponding mutually exclusive CITE-seq pair). Homotypic doublets were defined as those containing multiple BCRs or multiple TCRs, and the het-
erotypic doublets are defined as the remainder (droplets containing both BCR(s) and TCR(s) or droplets containing BCRs or TCRs that do not have transcriptional
profiles that resemble B or T cells, respectively).

(E) Generalized additive models fitted on percentage mitochondrial genes versus percentage ribosomal genes, R? values shown top right; from the HEK293 dataset.
(F) Mito-ribo ratio values per enriched HEK293 populations. p values were calculated across groups by using Wilcoxon test with Bonferroni correction for pairwise
comparisons.

(G) The relative numbers of genes (nGenes), number of RNA molecules (nUMI), mito-ribo ratio (mitoribo_ratio), and nUMIs_VDJ per droplet for the VDJ-identified
doublets and/or multiplets (left) and the CITE-seq identified doublets and/or multiplets (right). “Other” refers to droplets that were not identified as doublets and/
or multiplets from the VDJ-seq or CITE-seq data. The p values of the differences between the feature distributions of the doublet/multiplets detected and the
remainder of the droplets provided (two-sided Wilcoxon test). ****p < 0.00005 (Wilcoxon test). Abbreviation is as follows: CLR, centered log-ratio transformed.
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Seurat analysis pipeline to exclude low-quality droplets (with low
numbers of captured genes and RNA molecules) and were batch
corrected through harmony (see the STAR Methods). A total of
26,080 droplets were retained after filtering (7,024-11,382 per
sample), for which the broad immune cell types were annotated
through differential gene expression and CITE-seq marker
expression (Figures 1B and S1C).

The first step for doublet/multiplet detection is to identify
mixed-cell droplet profiles that can be deduced from the data.
This might be achieved through the leveraging of CITE-seq and
immune receptor profiling. The CITE-seq approach allows for
the potential identification of cell multiplets through the occur-
rence of co-staining for cell-type-exclusive canonical markers
that are not expected to be co-expressed. For example, the ma-
jority of B cells identified from the scRNA-seq gene expression
do not have high CITE-seq levels for the T cell markers CD3,
CD4, or CD8 (Figures 1C, S1D, and S1E). However, of the B cells
that have high CITE-seq levels for these T cell markers, the CITE-
seq patterns reflect those expected for hybrid of B cells and
CD4" or CD8" T cells: high CITE-seq levels of CD3 and CD4 or
CD83 and CD8 together, but not CD4 and CD8 together. This is
suggestive of true doublets reflecting a mixture of CITE-seq pat-
terns that might be used to infer doublets and/or multiplets. From
26,080 filtered cells after quality control, 2,068 droplets were
identified with CITE-seq profiles resembling mixed-cell-type
doublet/multiplet droplets (Table S1). Each cell-type-specific
mutually exclusive CITE-seq pair is observed in different UMAP
clusters (Figures 1D and S2A), with B-T cell hybrids
(CD19*CD4*, CD19*CD8", and CD19*CD3" droplets) observed
primarily in the “B cell” cluster, and B-cell-myeloid hybrids
(CD19*CD16") and T cell-neutrophil/monocyte hybrids (CD4*
CD16"*) observed primarily in the “neutrophils/monocyte”
cluster.

Similarly, the VDJ-seq approach allows for the potential iden-
tification of doublets and/or multiplets through the occurrence of
droplet co-capture of multiple functional BCR heavy or light
chains (suggestive of two B cells captured), multiple functional
TCR alpha or beta chains (suggestive of two T cells captured),
or combinations of BCRs and TCRs (suggestive of a B cell and
a T cell captured). In addition, droplets with a transcriptome
resembling non-B or non-T cells that captured BCR or
TCR sequences, respectively, were considered as potential
doublets and/or multiplets. Given the common dual TCR alpha
chain expression, these droplets were not included as markers
of potential doublets and/or multiplets. From 26,080 filtered cells
after QC, 835 droplets were identified with VDJ-seq profiles
resembling doublet/multiplet droplets (Table S1), and are en-
riched in the B cell and T cell clusters (Figures 1D and S2B).

As these CITE-seq or TCR/BCR profiles will only identify a
subset of possible doublets and/or multiplets, the second step
is to then apply a model to fit the profile of these identified
doublets and/or multiplets to be used as a classifier to predict
doublets and/or multiplets in the remaining cells, such as for
those where the CITE-seq or VDJ-seq was not available/appro-
priate. This approach might incorporate any single-cell cellular,
transcriptional, CITE-seq, or VDJ-seq variable into a single
model that statistically distinguishes doublets and/or multiplets
from true singlets, such as the relative number of captured genes
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and RNA molecules per droplet that are expected to be elevated
in droplets that captured more than one cell.

We also consider a transcriptional marker for the identification
of low-quality or dying cells in scRNA-seq data given the propen-
sity of these cells to aggregate (Cui et al., 2016; Kuonen et al.,
2010), thus potentially providing a useful marker for dying/low-
quality cells that are more prone to forming doublet/multiplet ag-
gregates. Current computational identification of low-quality
cells relies on arbitrary thresholds of percentage representation
of mitochondrial gene counts (llicic et al., 2016); however, such
thresholds have been shown to perform poorly on ground truth
datasets (Ordonez-Rueda et al., 2020). We hypothesized that
downregulation of RNA encoding ribosomal proteins (rRNA),
associated with cellular stress (Albert et al., 2019) and apoptosis
(Linetal., 1994), is a technical droplet feature that might improve
sensitivity for detection of apoptotic or pre-apoptotic cells.
Indeed, principal-component analysis on a ground truth
scRNA-seq dataset of FACS sorted apoptotic HEK cells (Ordo-
nez-Rueda et al., 2020) revealed that the main variables driving
dead cell identification were low percentage ribosomal genes
and high percentage mitochondrial genes; representing 49.7%
of all variance explained by the first principle component (Figures
1E and S2C-S2E). Therefore, we created an additional variable
to be included in the doublet detection model, named the
mito-ribo ratio, calculated by the proportion of mitochondrial
RNA (mtRNA) divided by the sum of the proportion of rRNA
and mtRNA. Indeed, the mito-ribo ratio was elevated in
apoptotic cells (Figure 1F). By thresholding on the local minimum
(0.47) of a fitted Gaussian mixture model (GMM), we were able to
discriminate 84% of late apoptotic cells with >1,537 detected
genes, threshold for doublets identified by a GMM (traditional
arbitrary filter is >2,500 genes), and observed a trend toward
higher scores in early apoptotic cells (Figure 1F).

We next tested whether these features might discriminate the
identified doublets and/or multiplets from the remainder of the
droplets (which should be enriched for singlets). As expected,
the relative number of genes (nGenes) and mRNA molecules
(nUMIs) detected was significantly higher in the identified
doublets and/or multiplets through the VDJ-seq and CITE-seq
approaches than in the remainder of droplets (p < 1e—10, Fig-
ure 1G). The mito-ribo ratio varied significantly between droplet
types and by cell cycle (Figure S2F) (p < 1e—10, ANCOVA using
sample as an additional covariate), which was consistent across
independent samples. However, the mito-ribo ratio was signifi-
cantly elevated in droplets identified as doublets and/
or multiplets (Figure 1G, p < 1e—10), supporting this as an infor-
mative metric to identify doublets and/or multiplets in combina-
tion with other droplet features.

We then applied a logistic regression by using the general-
ized linear model to fit the profile of these identified
doublets and/or multiplets compared with the remainder of
the droplets (enriched for true singlets), using the mito-ribo ra-
tio, the per-sample centred log-ratio transformed nUMI counts
and the module scores for each cell type or cluster as model
inputs (Figure S1A). The module score is a per-cell score repre-
senting the relative likelihood of a cell being a member of a
particular cell type/cluster (using the Seurat AddModuleScore
function of the top 5 differentially expressed genes for each
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Figure 2. Machine learning applied to doublets and/or multiplet training data captures both homotypic and heterotypic doublets and/

or multiplet
(A) Schematic of the MLtuplet applied to the healthy PBMC data.

(B) UMAP dimensionality reductions of three healthy PBMCs colored by MLtiplet-predicted singlets and training and predicted doublets across the VDJ-seq,
CITE-seq, DoubletFinder training sets, and a training set combining all three approaches.

(C) The proportion of VDJ and CITE-seq identified (true) doublets and/or multiplets that were identified as doublets by MLtiplet and DoubletFinder, grouped by
doublet type. The doublets highlighted in orange are homotypic doublets (comprised of multiple cells of similar transcriptional types, namely B or T cells). *p < 0.05
(two-way Wilcox test, corrected for multiple testing). p values are calculated between the MLtiplet-predicted doublets and/or multiplets and singlets by using two-

sided Wilcoxon test, and *p < 0.05.

cell type/cluster). This provides the model with parameters
associated with cell-type mixing as a result of hybrid transcrip-
tomes present in droplets containing more than one cell. This
model was then used as a classifier to detect the remaining
doublets and/or multiplets for which the CITE-seq and/or
VDJ-seq was not available/appropriate (Figure S1A), named
MLtiplet. This model approach allows for the input of different

training doublet/multiplet datasets, depending on the data
available (Figures 2A and 2B). This provides a doublet/multiplet
probability for each droplet based on their droplet features (Fig-
ures S2H, S3A, and S3B). MLtiplet was able to identify 791,
2,332, and 2,283 doublets and/or multiplets in the healthy
PBMCs by using the VDJ-seq, CITE-seq, and DF training
sets, respectively, primarily in the “B cell CD5*GZMB~

Cell Reports Methods 7, 100008, May 24, 2021 5




¢ CellPress

OPEN ACCESS

Cell Reports Methods

A B C
>
- : N R Z o 100 il T P Y
Remove predicted doublets from | © < 80 TS+ o 2 2 @ET¥ LU F =
215 > By T 3
scRNAseq data 5 =2 60
g = = E
} : ¥
- 10 T o 20
e - N 3 n <
Add simulated doublets through © o5 O
. - = = N ¥¥Y = 5= O¥¥ == O¥ == O¥X =0 5 O =
random cell sampling across £ 5 B 8528£8528852885283:238
= Z z Z z
datasetat1,2,510&15% | 8 23 D S BEES S5 s2 00 SB8EEEST
I X SSem8z52852¢e Zger-8gze
° 0 mS molsow 2 S S °gos5 8
= = ?5=22% = 3 oS E
0 5 10 15 = coyso ¥ = c g 2
[ c € 5s ¢ = Q Qo & €
o c o 5] [e} o c <] 8
Doublet Doublet True doublet % @ 52s = = 3 EL
. o (] .
detection by ; ) P 2 -
MLtiol - detection by DoubletFinder S §
tiplet (usmg . MLtiplet: VDJ training set = T
VDJ, CITE-seq or DoubletFinder| MLtivlet. CITE crain . s
, iplet: -seq training se 1 9% doublets Q

both as training
sets)

MLtiplet: VDJ+CITE-seq training set

Homotypic doublets
2 % doublets

5 % doublets
10 % doublets
15 % doublets

Figure 3. MLtiplet is both sensitive and specific on simulated doublets datasets, and scales with doublet proportion
(A) Schematic of the comparison of the doublet detection methods using simulated data.
(B) The estimated proportion of doublets across the simulated datasets using either DoubletFinder or the classifier based on VDJ-identified doublets, CITE-seq

identified doublets, or both. The black line corresponds to y = x.

(C) The percentages of doublets identified by MLtiplet per cell type across the different simulated datasets. The point shapes correspond to the simulated dataset
for which the percentage of true doublets was either 1%, 2%, 5%, 10%, or 15%. The homotypic doublets are highlighted in orange.

memory,” “B cell CD5 GZMB*CD27~,” and “unconventional
monocyte” clusters (Table S1).

Assuming that the identified doublets and/or multiplets are en-
riched for true doublets and/or multiplets, then the sensitivity of
doublet detection might be quantified through the proportion of
correctly labeled identified doublets and/or multiplets (Figure 2A).
The sensitivity of doublet/multiplet detection of MLtiplet was
significantly higher than the established DoubletFinder method
(using default parameters, Figure 2C), both for heterotypic
doublets and/or multiplets (such as those identified from CITE-
seq or TCR-BCR discordance) and homotypic doublets and/
or multiplets (such as those with multiple BCRs or TCRs). Indeed,
DoubletFinder was only able to identify <20% of homotypic
doublets and/or multiplets with multiple BCRs or TCRs,
compared with >70% using MLtiplet. The droplet features of
the predicted doublets and/or multiplets using MLtiplet have
elevated numbers of nUMIs and mito-ribo ratios (Figures S3B-
S3D). Furthermore, the differentially expressed genes between
droplets predicted to be doublets and/or multiplets compared
with those predicted to be singlets per cluster revealed signals
of mixed-cell populations (Figures S3E and S3F), such as
elevated CD3E and CD3D in the doublets that clustered with
the B cells, TRBC2 CD69 and MS4A1 in the doublets that clus-
tered with the monocytes/neutrophils.

In general, the larger the training dataset the greater statistical
power for pattern recognition for doublet detection (Vabalas
et al.,, 2019). Therefore, we determined the effect of different
types and sizes of doublet/multiplet training datasets on the
doublet prediction. Decreasing the number of droplets per
training dataset also reduced the proportion of doublets and/
or multiplets classified. However, using only 139 CITE-seq iden-
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tified doublets and/or multiplets (comprising only 20% of VDJ-
seq identified doublets and/or multiplets, Table S2) as the training
set resulted in 435 droplets classified as doublets and/
or multiplets (36% of that from the full VDJ-seq training set).
Only including VDJ- and CITE-seg-identified doublets and/
or multiplets from a single sample in the training set resulted in
the prediction of, on average, 41% of droplets classified as
doublets and/or multiplets compared with using total
corresponding training set across all samples. This suggests
that datasets without the VDJ-seq and/or CITE-seq modalities
datasets can be combined with datasets from which some
doublets and/or multiplets can be identified to predict the major-
ity of doublets and/or multiplets through machine learning of the
droplet features.

Given that many currently used doublet detection methods
require the prior estimation of multiplet rate, which is unknown
in most scRNA-seq experiments, we compared the performance
of MLtiplet and DoubletFinder on simulated data to assess how
the doublet detection varies with true doublet proportions. Simu-
lated RNA-seq, CITE-seq, and VDJ-seq data were generated to
contain 1%, 2%, 5%, 10%, or 15% doublets, containing both
heterotypic and homotypic doublets (see the STAR Methods,
Figure 3A). Indeed, using the default parameters for Doublet-
Finder (with a prior of 7.5% doublets), the estimated doublet
proportion remained constant irrespective of the true doublet
proportion (Figure 3B). However, using either the VDJ-seg-iden-
tified doublets, CITE-seq-identified doublets, or both, as the
training sets for MLtiplet, the estimated proportion of doublets
scaled with the true proportion, with combined “VDJ-seq- and
CITE-seqg-identified doublets training set” performing best.
Furthermore, MLtiplet accurately detected both heterotypic
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Figure 4. Validation of MLtiplet on an NSCLC tumor dataset

Doublet detection on a non-small cell lung cancer (NSCLC) dataset.
(A-C) Shown are the (A) schematic of the training datasets for doublet/multiplet prediction by MLtiplet. UMAP plots of (B) the annotated cell types and (C) VDJ-seq

heterotypic doublets.
(D) Venn diagram showing the numbers of droplets used as the combined identified doublets and/or multiples using both DoubletFinder and VDJ-seq (green), and

the predicted doublets and/or multiplets from MLtiplet using the DoubletFinder-derived training dataset (blue), VDJ-seq-derived training dataset (orange), and
DoubletFinder plus VDJ-seq-derived training dataset (pink).

(E) UMAP plots of the training and predicted doublets and/or multiples using each approach.
(F) The relative numbers of RNA molecules (nUMI) and mito-ribo ratio (mitoribo_ratio) per cell for the VDJ-identified doublets and/or multiplets, CITE-seq-

identified doublets and/or multiplets, MLtiplet-predicted doublets and/or multiplets, and the remainder (predicted singlets by MLtiplet).
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and homotypic doublets at a rate of >68% across all doublet
combinations (Figure 3C). Therefore, we show that VDJ-seg-
and CITE-seqg-identified doublets might be used individually or
in tandem for scalable detection of doublets and/or multiplets
without prior knowledge of doublet proportions, and these
methods outperform current doublet detection methods.

We next tested this approach on a sample derived from solid
tissue, namely from a non-small cell lung cancer dataset (https://
support.10xgenomics.com/single-cell-vdj/datasets, Figure 4).
Here, we compare different input training doublet datasets for
MLtiplet using VDJ-seg-identified doublets and/or multiplets,
DoubletFinder-identified doublets and/or multiplets, or a combi-
nation of the two (Figure 3A). The three approaches identified
similar distributions of doublets and/or multiples, with the com-
bined input training datasets resulting in the highest number of
predicted doublets (Figure 3B). Although we show that the num-
ber of doublets and/or multiplets identified in the B and T cell
clusters are lower using DoubletFinder than using VDJ-seq (Ta-
ble S3), running these doublet and/or multiplet training datasets
through MLtiplet resulted in comparable numbers of predicted
doublets and/or multiplets in each cell-type cluster. Differential
gene expression analysis between the predicted doublets and/
or multiplets compared with the predicted singlets per droplet
cluster (Figure S3G) confirmed the mixed transcriptomic profiles
of the predicted doublets and/or multiplets. This is exemplified
by the elevated CD3D and CD3E expression in predicted
doublets and/or multiplets within the "B cell", “DC,” and
“plasma cell” clusters, which is indicative of T cell contamina-
tion. This demonstrates that the input training datasets for
MLtiplet might be broadly generalizable to other inputs when
VDJ-seq or CITE-seq are not be available. We further demon-
strate this approach on a murine dataset derived from the
PBMCs from two mouse strains (BALB/c and C57BL/6, https://
support.10xgenomics.com/single-cell-vdj/datasets) (Figures
S4A-S4F).

We also observed an enrichment of doublets and/or multiplets
in specific cell clusters: (1) the majority of the “non-conventional
monocyte” cluster were identified as doublets and/or multiplets
in the healthy PBMC dataset (Figure 1D), suggesting that this
cluster predominantly represents a subset of related hybrid tran-
scriptomes. (2) Both homotypic doublets (containing >1 BCR
chain type) and heterotypic doublets (containing BCRs and
TCRs) were observed in the B cell cluster, suggesting that B-T
cell hybrid transcriptome co-cluster with the true singlet B cell
transcriptome populations. It is noted that there is an enrichment
of some IGHV genes within the doublet droplets, suggesting that
these cell-cell doublets are potentially as a result of cell-cell in-
teractions that are enriched for certain antigen specificities
(Figure S4G).

DISCUSSION

Overall, we demonstrate a doublet/multiplex droplet detection
approach by using machine learning to predict doublets based
on the features associated with identified hybrid droplets that
can be applied to scRNA-seq datasets containing only VDJ-
seq or CITE-seq information, or both. In theory, this might also
be applied to scRNA-seg-only datasets through the identifica-
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tion of gene expression profiles that resemble hybrid transcrip-
tomes, such as those identified through Scrublet or Doublet-
Finder to then feed into the doublet prediction model. The
deficiency of previous doublet prediction methods for identifying
homotypic doublets and/or multiplets is highlighted here by the
CITE-seq and VDJ-seq analyses, and it is recommended to
leverage these multi-omic single-cell data types for the genera-
tion of high-quality datasets. Thus, this presents a powerful
approach, particularly for inflammatory cell-dominant scRNA-
seq samples, to ensure high-quality scRNA-seq minimizing false
discoveries of rare cell types from both homotypic and hetero-
typic doublets and/or multiplets or differential gene expression
signatures, and finally ensuring the reproducibility of biological
findings.

Limitations of the study

Although identification of unseen homotypic and heterotypic
cell multiplets using MLtiplet appears both sensitive and spe-
cific in our hands, the a priori assumptions do pose some lim-
itations. Firstly, the definitive validation of mutually exclusive
markers in the literature remains in evolution. Modeling multi-
modal cell doublets and/or multiplets, first required the curation
of mutually exclusive CITE-seq markers and VDJ-seq chains
based on best evidence to date (CD19 + CD3, CD19 + CD4,
CD19 + CD8a, CD19 + CD56, CD19 + CD16, CD19 + CD14,
CD19 + CD127, CD19 + CD56, CD4 + CD16, CD127 + CD16,
STAR Methods). However, as the granularity of single-cell char-
acterization improves, novel bona fide mixed-phenotypes
arising from cellular plasticity or invariant VDJ-seq allelic inclu-
sion might be revealed. To counter this limitation, we designed
MLtiplet to allow the user to make heuristic decisions regarding
which mutually exclusive markers to feed into the model, thus
futureproofing for novel discoveries. Secondly, biological differ-
ences that might affect the absolute number of transcripts per
cell, such as the physical cell size and proliferation status,
cannot be modeled reliably. The use of nUMIs counts assumes
a degree of homogeneity across these variables at the true sin-
gle-cell level; therefore, physically large cells that are compara-
ble in size to true multiplets might be incorrectly classified as
doublets. Indeed, this is also a limitation for traditional exclu-
sion of potential multiplets or poor-quality cells by thresholding
on nUMIs, therefore it remains an unaddressed issue of cell
size identification at the pre-bioinformatic level. Thirdly, due
to the predominant use or commercial availability of CITE-seq
antibodies targeting inflammatory cell markers, we have only
been able to benchmark MLtiplet for identification of cell multi-
plets within these limitations. However, in theory, MLtiplet
might take any custom barcode-conjugated antibodies target-
ing cell-surface markers that are mutually exclusive between
two or more cell types. Finally, our proposed method’s perfor-
mance scales proportionally to the breadth of multi-omic data
available. Although single-cell experiments are becoming
more cost-effective, they remain prohibitively expensive with
the addition of other modalities. Where mutually exclusive
markers and/or VDJ chains are not present in the dataset,
the sensitivity and specificity of the model reduces and thus
this is a limitation that is proportional to the available resources
at hand.
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REAGENT or RESOURCE

SOURCE

IDENTIFIER

Deposited data

10X 5’ GEX + VDJ-seq of healthy human
PBMCs
10X 5" GEX + VDJ-seq of healthy human
PBMCs
10X 5’ GEX + VDJ-seq of healthy human
PBMCs
10X 5’ GEX + VDJ-seq of human NSCLC
sample
10X 5’ GEX + VDJ-seq of healthy mouse
PBMCs

10X 5’ GEX + VDJ-seq of healthy mouse
PBMCs

https://support.10xgenomics.com/
single-cell-vdj/datasets
https://support.10xgenomics.com/
single-cell-vdj/datasets
https://support.10xgenomics.com/
single-cell-vdj/datasets
https://support.10xgenomics.com/
single-cell-vdj/datasets
https://support.10xgenomics.com/
single-cell-vdj/datasets
https://support.10xgenomics.com/
single-cell-vdj/datasets

vdj_v1_hs_pbmc

vdj_v1_hs_pbmc2

vdj_v1_hs_pbmc3

vdj_v1_hs_nsclc

vdj_v1_mm_c57bl6_pbmc

vdj_v1_mm_balbc_pbmc

Software and algorithms

DoubletFinder https://www.sciencedirect.com/science/ https://github.com/chris-mcginnis-ucsf/
article/pii/S2405471219300730#sec4 DoubletFinder

Seurat https://www.nature.com/articles/nbt.3192 https://github.com/satijalab/seurat

MLtiplet This paper https://github.com/rbr1/MLtiplet

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Rachael
Bashford-Rogers (rbri@well.ox.ac.uk).

Materials availability
This study did not generate new unique reagents.

Data and code availability
The code generated during this study are available at https://github.com/Bashford-Rogers-lab/MLtiplet. Original scRNA-seq data for
the paper is available from https://support.10xgenomics.com/single-cell-vdj/datasets.

METHOD DETAILS

scRNA-seq pre-processing and batch correction

The 10X Genomics’ Chromium scRNA-seq output data from three healthy donors’ PBMCs (https://support.10xgenomics.com/
single-cell-vdj/datasets) was merged using the Seurat package in R. First, we filtered low-quality cells using Seurat (version
2.3.4), retaining cells with detected gene numbers >500, detected number of RNA molecules (>1000 unique molecular identifiers
(UMIs) and <25% mitochondrial UMIs). We then normalised the gene counts for each cell using the ScaleData function in Seurat
with the default parameters. Integration and batch correction were performed using the harmony package(Korsunsky et al., 2018)
with default parameters, and using sample ID as a variable to regress out. The resulting harmony embeddings were used in the
data visualized using a Uniform Manifold Approximation and Projection (UMAP) projection and subsequent clustering of cell types.

CITE-seq-identified doublet/multiplet training set

The raw CITE-seq data were normalised through centred log-ratio transformed (CLR) per sample (Figure S1B). Cells/droplets that
were positive for each CITE-seq antibody were determined using the following method (Figures S1B and S2): for each CITE-seq anti-
body, the normalised CITE-seq levels between cell populations with high corresponding gene expression (such as T cells for CD3)
and low corresponding gene expression (such as B cells and myeloid cells for CD3) were the input into a linear classifier (linear
discriminant analysis, LDA). This was then used to determine the optimal threshold for distinguishing the threshold between
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CITE-seq positive and CITE-seq negative cells/droplets. Each cell/droplet was then classified to determine whether they are positive
or negative. This was performed for each CITE-seq antibody. Mutually exclusive CITE-seq markers for the healthy PBMC dataset
was: CD19 + CD3, CD19 + CD4, CD19 + CD8a, CD19 + CD56, CD19 + CD16, CD19 + CD14, CD19 + CD127, CD19 + CD56,
CD4 + CD16, CD127 + CD16. Downstream analyses were performed on only the CITE-seq probes with classification of correspond-
ing gene expression positive cells with a sensitivity of >70%.

The training set using the CITE-seq identification therefore relies on the co-positivity of mutually exclusive cell marker antibodies
(cell-type-specific mutually exclusive CITE-seq pairs). This mutually exclusive list can be determined through either a literature
search or comparison of the gene expression/CITE-seq levels between cell subtypes.

VDJ-seq-identified doublet/multiplet training set

The raw VDJ sequencing was filtered to remove VDJ sequences with non-productive sequences and fewer than 6 UMIs. VDJ-seg-
identified doublets/multiplets were defined as droplets containing either (a) a BCR chain (IGH and/or IGK/L) and a TCR chain (TRA
and/or TRB), (b) multiple BCRs (2 or more IGH chains and/or 2 or more IGK/L chains), (c) multiple TCRs (2 or more TRA chains and/or
2 or more TRB chains), (d) droplets that do not co-cluster with B cells via gene expression and contain a BCR chain (IGH and/or IGK/
L), and (e) droplets that do not co-cluster with T cells via gene expression and contain a TCR chain (TRA and/or TRB).

Mito-ribo ratio
As a discriminant of singlets from doublets/multiplets, the mito-ribo ratio was used as a covariate, denoted by:

>m
S (m+r)

Where m is the per cell mtRNA UMI percentage and r is the rRNA UMI percentage.

mito.ribo ratio =

MLtiplet model fitting

A generalised linear model was used to fit the profile of these identified doublets/multiplets compared to the remainder of the droplets
(enriched for true singlets), using the mito-ribo ratio, the per-sample CLR transformed nUMI counts and the module scores for each
cell type as model inputs. The module score is a per-cell score representing the relative likelihood of a cell being a member of a partic-
ular cell type (using the Seurat AddModuleScore function of the top 5 differentially expressed genes for each cell type). This provides
the model with parameters associated with cell-type mixing as a result of hybrid transcriptomes present in droplets containing more
than one cell. First the identified doublets/multiplets and the remainder of the cells were each filtered to include only those within 2
standard deviations of the mean for each variable used (mito-ribo ratio and per-sample CLR transformed nGenes, nUMIs, and VDJ
UMI counts). Then the generalised linear model was fitted in R using g/m function using logistic regression, and used to predict dou-
blets across the total dataset.

Simulated data containing known proportions of doublets

The doublet simulated data were based on the scRNA-seq, CITE-seq and VDJ dataset from the 3 healthy PBMC samples. First, the
experimental data were “cleaned” to remove droplets with nUMI counts > median + interquartile range per sample. Then simulated
doublets were introduced through random cell sampling and sum their gene expression, VDJ BCR UMI, TCR UMI and CITE-seq
counts, and were classified with the combined original cell type annotation labels. 5 simulated datasets were generated that incor-
porated either 1, 2, 5, 10 or 15% simulated doublets. Each simulated dataset was then pre-processed as described in “scRNA-seq
pre-processing and batch correction”, and doublet detection methods were applied to the resulting datasets as described. MLtiplet
accuracy of detected both heterotypic and homotypic doublets was calculated on all outputs for which there were >5 doublets.

QUANTIFICATION AND STATISTICAL ANALYSES

Statistical analyses were performed with R (https://www.r-project.org/). Data were presented as mean + interquartile range. A p value
of less than 0.05 was considered significant. *p < 0.05; " p < 0.005, ** p < 0.0005. Statistical tests were performed via ANOVA for
comparing differences in nUMIs, nGenes, or mito-ribo ratio between groups of cells. Heatmaps of gene expression and fold change
between singlets and predicted doublets/multiplets were made with DoHeatmap in Seurat in R. Volcano plots of log p value against
log fold change were done using ggplot2.
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