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Abstract

In order to increase the hit rate of discovering diverse, beneficial protein variants via high-

throughput screening, we have developed a computational method to optimize combinatorial 

mutagenesis libraries for overall enrichment in two distinct properties of interest. Given scoring 

functions for evaluating individual variants, POCoM (Pareto Optimal Combinatorial Mutagenesis) 

scores entire libraries in terms of averages over their constituent members, and designs optimal 

libraries as sets of mutations whose combinations make the best trade-offs between average scores. 

This represents the first general-purpose method to directly design combinatorial libraries for 

multiple objectives characterizing their constituent members. Despite being rigorous in mapping 

out the Pareto frontier, it is also very fast even for very large libraries (e.g., designing 30 mutation, 

billion-member libraries in only hours). We here instantiate POCoM with scores based on a 

target’s protein structure and its homologs’ sequences, enabling the design of libraries containing 

variants balancing these two important yet quite different types of information. We demonstrate 

POCoM’s generality and power in case study applications to green fluorescent protein, 

cytochrome P450, and β-lactamase. Analysis of the POCoM library designs provides insights into 

the trade-offs between structure- and sequence-based scores, as well as the impacts of 

experimental constraints on library designs. POCoM libraries incorporate mutations that have 

previously been found favorable experimentally, while diversifying the contexts in which these 

mutations are situated and maintaining overall variant quality.
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1 Introduction

COMBINATORIAL mutagenesis enables facile construction and characterization of a 

targeted set of related protein variants that incorporate at each of a set of residue positions 

one of a position-specific set of amino acids (Fig. 1(a)). All combinations of the alternative 

amino acids are represented in a library, and experimental selection or screening methods are 

employed to identify variants with beneficial properties. In contrast to other methods for 

generating mutational diversity for experimental discovery, such as error-prone PCR [1] and 

site-saturation mutagenesis [2], combinatorial mutagenesis allows finer control over the 

variants being experimentally tested and thus the opportunity to better focus effort on 

variants likely to be favorable.

Computational methods have guided the development of combinatorial mutagenesis libraries 

yielding improved proteins for a variety of goals, including altered specificity, increased 

thermostability, improved spectroscopic properties, reduced immunogenicity, and improved 

catalytic activity [3]-[8]. Different metrics have been used for computationally assessing the 

quality of a library and thereby establishing a design objective. Sequence-based library 

design methods [9], [10], [11] leverage information from the evolutionary record regarding 

which mutations and combinations of mutations have been accepted. For example, our 

OCoM algorithm [9] optimizes libraries based on a one- and two-body statistical sequence 

potential derived from a multiple sequence alignment (MSA) of the target protein [12]. 

Significantly, while OCoM evaluates a library in terms of the average sequence potential of 

its constituent variants, it is able to do that efficiently, without having to explicitly enumerate 

the variants. Structure-based library design methods [6], [13], [14], [15] evaluate biophysical 

properties of library members, e.g., assessing potential impacts of mutations on stability. 

While some structure-based methods require explicit evaluation of each library member and 

can therefore only handle small libraries [6], [16], our SOCoM method [14] and the 

independently developed SHARPEN method [15] overcome that limitation by employing a 

Cluster Expansion (CE) technique [17], [18] to convert structure-based biophysical 

evaluations into protein-specific functions of amino acid sequence alone. That essentially 

reduces structure-based library design to sequence-based library design, rendering it 

amenable to much more efficient evaluation and design of libraries in terms of average 

scores over their constituents. We leverage here these key insights from both OCoM and 

SOCoM to enable large-scale but fast library optimization.

In order to utilize the complementary valuable information provided by sequence- and 

structure-based scores, we have developed a library design method called POCoM (Pareto 

Optimal Combinatorial Mutagenesis) that integrates two objectives, optimizing designs for 

the best tradeoffs between them (Fig. 1(b)). POCoM is thus the first general-purpose design 

method to directly optimize, in “library space”, combinatorial mutagenesis libraries for 

multiple objectives characterizing the constituent variants that they will generate. While 

POCoM is generic to the scoring functions, we focus here on structure-based assessment of 

energy, ensuring overall stability of variants, combined with sequence-based assessment of 

evolutionary constraints, accounting for additional properties (maintaining functional sites, 

folding pathways, etc.). A Pareto optimal design is undominated, in that no other design is as 

good for one objective without being worse for the other objective; such designs provide the 
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best balance between objectives and are thus a natural set to consider for experimental 

evaluation. Pareto optimization techniques have been developed for and proved valuable in 

other protein engineering contexts [3], [15], [19]–[22], and POCoM demonstrates, for the 

first time, how to leverage this principle in library design for an arbitrary pair of sequence- 

and structure-based scoring functions. It is important to note that, as discussed above, 

POCoM is efficient in its evaluation of a library, using averages to avoid enumeration of 

individual members. Furthermore, POCoM is efficient in its optimization of designs, 

identifying all and only the Pareto optimal ones without explicitly considering all those that 

are dominated by them. By defining the Pareto frontier of undominated designs, POCoM 

provides an unbiased characterization of the two-objective design space.

We demonstrate the generality, power, and efficiency of POCoM in case study applications 

to green fluorescent protein (GFP), cytochrome P450, and β-lactamase. Libraries were 

designed for a variety of experimental contexts: allowing mutations throughout a protein or 

focused in an active site region, planning for library construction using specified mutations 

or degenerate oligonucleotides, and allowing from 10 to 20 mutation sites and 

correspondingly different library sizes. These case studies demonstrate how POCoM 

libraries incorporate mutations balancing evolutionary favorability with energetic 

favorability. The designs include a number of mutations previously experimentally 

determined to be beneficial, along with diverse new combinations manifesting different 

balances of sequence and structural scores. POCoM provides a clear characterization of 

designs to consider for experimental evaluation, along with insights into how best to target a 

study according to its particular goals and constraints.

2 Methods

Fig. 2 overviews the main steps of POCoM. Each panel in the figure corresponds to one of 

the following subsections detailing the computational steps.

2.1 Input (step a)

We denote the sequence of the target as S = {s1, s2, …, sn}, where si, represents the amino 

acid at position i and N is the total number of amino acids. Depending on usage, in addition 

to S, POCoM also requires the structure of the target and an MSA of related proteins (Fig. 

2(a)). Mutation choices to consider at each position can be prespecified, or can be computed 

directly from these inputs, as is common and we have detailed elsewhere [23], e.g., amino 

acids with sufficient frequency at that position in the MSA or suitable in the local 

environment at that position in the structure. Details are provided in the Supplementary 

Material for the case studies in this paper. Additional parameters control the design process, 

in terms of the number of sites to mutate, the maximum number of mutations at each site, 

the total library size, and whether the library will be constructed with point mutations or 

degenerate oligos.

2.2 Amino Acid Potential (step b)

POCoM optimizes libraries for two complementary scores (Fig. 2(b). It is generic to the 

details of the scoring functions being used, but we focus here on optimizing a score based on 
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evolutionary information (“sequence homology” score) along with one based on molecular 

modeling (“structure energy” score). We further restrict the elaboration here to pairwise-

decomposable scores (i.e., one- and two-body terms), as commonly used in practice and 

sufficient to capture the key contributions needed for library design.

We employ as the sequence homology score Φ (Fig. 2(b.1)) a straightforward model also 

used in our earlier work [9], [24] and similar to many other sequence potentials. These 

potentials have been used in a wide range of practically useful applications; e.g., we (among 

others) have engineered stable, active enzyme variants based on optimizing this potential 

[25], [26], and others have used similar potentials in additional applications such as 

predicting residue contacts [27]–[29], predicting 3D structures of proteins and protein 

complexes [30], [31], and assessing allosteric mechanisms [32]. Given an MSA, the one-

body terms ϕi(si) capture conservation for individual positions (i.e., how common amino 

acid si is at position i), while the two-body terms ϕij(si, sj) capture correlated/compensating 

mutations for pairs of positions (i.e., how common it is for a sequence to have both amino 

acid si at position i while also having sj at j). Which terms to include in the potential and 

their position and amino acid specific contributions are derived from a statistical analysis of 

the MSA, computing log-frequencies so as to yield an additive model, and keeping only 

those that are statistically significant. We note that higher-order terms are possible [24], [33], 

and the method here generalizes to incorporate them, but in practice a pairwise deomposition 

often suffices.

We derive the structure energy score Ψ (Fig. 2(b.2)) from the target protein’s structure by 

employing a Cluster Expansion (CE) technique [18] to accurately represent structural 

properties (here energy, as a surrogate for stability) as a protein-specific function of amino 

acid sequence. CE derives one-body ψi(si) and two-body ψi,j(si, sj) potentials from a large 

training set of <sequence, energy> pairs, determining which possible “clusters” (positions i 
for terms ψi and position pairs i,j for terms ψi,j) to include in the model. We employ Rosetta 

[34] to predict structures and calculate energies for a large set of randomly sampled 

sequences in the training set. Values for the potential terms are then optimized to construct a 

protein-specific model as previously described [35], enabling rapid and accurate prediction 

of the structure energy of any variant of the target based on only its sequence. The predictive 

quality of the trained potential model is assessed with a unique set of test sequences, 

typically reaching ~80% in our studies here, and previously demonstrated to be suitable for 

experimentally successful design of individual proteins [17], [18], [36] and SOCoM-based 

libraries [3].

2.3 Library Representation with Tubes (step c)

A combinatorial mutagenesis library is constructed from all combinations of specified amino 

acids (including wild-type) at specified mutation sites (Fig. 2(c)). We refer to an amino acid 

set Ti at position i as a “tube” [9], [14]. For the example in Fig. 2(c), with two amino acids 

possible at position 4 (T4 ={E4, G4}) and three at position 9 (T9 ={Q9, R9, H9}), there are 

six possible variants derived from the cross product of these two tubes: T4×T9 = {{E4,Q9}, 

{E4,R9}, {E4,H9}, {G4,Q9}, {G4,R9}, {G4,H9}}.
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In library design, each position has one or more different tubes to choose from; selecting 

exactly one tube at each site specifies a library design. The tube choices at a position are 

precomputed from the combinations of allowed amino acid choices at the position (an input 

from (a)). Only tube choices including the wild-type amino acid are considered (so the wild-

type is represented in the library); a position with no additional amino acid choices is 

assigned a single tube choice containing just the wild-type. Different library construction 

contexts give rise to different possibilities for tube choices. If the library is to be constructed 

by an arbitrary set of point mutations at each position, then the tube choices include all 

possible combinations of allowed amino acids up to a user-specified size of the amino acid 

set. If, as is common to save expense, the library is to be constructed using degenerate 

oligonucleotides (i.e., a mixture of nucleotides at each of the three positions in a codon), 

then tube choices are determined from degenerate oligos that encode combinations of 

allowed amino acids. Since nucleotide mixtures in a degenerate oligo may translate to extra 

amino acids beyond those desired, tubes are filtered to those with at most a user-specified 

amount of extras. We find that in practice, due to the typically small number of allowed 

amino acids at each position, along with constraints on overall library size, the potential 

combinatorial explosion of tube choices remains under control.

2.4 Library Scoring (step d)

In order to optimize a library, we need an efficient way to evaluate its overall quality for the 

two objectives. Each variant can be assessed by the given amino acid potentials. However, a 

library includes a combinatorial set of variants, so explicit scoring of each would be 

extremely inefficient for evaluating, much less optimizing, large libraries. Instead, we take as 

our objective the average quality over the library. This allows us to “lift” scoring functions 

for individual variants to average scoring functions for combinatorial libraries, as illustrated 

in Fig. 2(d). The key is that each amino acid in a tube occurs the same number of times in 

the library. Thus the contribution from a tube at a position to the average library score can be 

precomputed as a tube-averaged score, and similarly for pairs of positions and pairs of tubes 

[9], [14], [24], [37]. Then the library average score is simply the sum of these tube and tube-

pair average scores. We note that this technique works for the objective of optimizing 

average library quality, assuming that if the average is good enough, experimental screening/

selection will identify good candidates. It remains future work to optimize libraries for other 

overall metrics (e.g., score of a top percentile).

2.5 Library Optimization (step e)

Protein library design is an NP-hard problem [38], [9]; it follows that Pareto optimal design 

is also NP-hard, with the additional practical difficulty of needing to identify just the 

undominated designs. POCoM is based on an integer linear programming technique that has 

proven effective in practice for solving the core protein design problem in a number of 

related protein engineering contexts [9], [14], [21], [39]–[41].

Let us start by considering just one of the scores, say the library-average sequence homology 

score Φ. Let xi,t, be a single-position binary variable indicating whether or not tube t is 

present at position i. Let yi,j,t,u be a pairwise binary variable derived from the corresponding 

single-position binary variables, indicating whether or not both tube t is at i and u is at j. 
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Then the overall library score Φ is simply the sum of these binary variables, weighted by the 

corresponding coefficients φi(t) and φi, j(t, u).

Φ = ∑
i, t

xi, t . φi(t) + ∑
i, j, t, u

yi, j, t, u . φi, j(t, u) (1)

A similar formula gives ψ in terms of these same variables and the tube-averaged 

coefficients ψi(t) and ψi, j(t, u).

The variable values are constrained to allow exactly one tube at a position (Equation 2) and 

to enforce consistency between corresponding single and pairwise variables (Equations 3 

and 4). Furthermore, the number of mutated positions and total library size are constrained 

to user-specified ranges. Equation 5 ensures that between μ and M positions have a selected 

tube that is not just the wild-type residue, whereas Equation 6 ensures that the product of the 

number of amino acids in the selected tubes (expressed as the sum of the logs, so as to be 

linear) is between λ and Λ. An additional constraint, not shown due to lack of a simple 

expression, ensures that for each previous solution, at least one tube in the next solution is 

different.

∀i: ∑
t

xi, t = 1 (2)

∀i, t, j > i: ∑
u

yi, j, t, u = xi, t (3)

∀j, u, i < j: ∑
t

yi, j, t, u = xj, u (4)

μ ≤ ∑
i

∑
t ≠ si

xi, t ≤ M
(5)

log(λ) ≤ ∑
i

∑
t

xi, tlog( t ) ≤ log(Λ) (6)

In order to move from optimizing a single objective to mapping the Pareto frontier (all and 

only the undominated designs; see again Fig. 1), we follow a “sweep” approach inspired by 

our previous work on the design of deimmunized enzymes [3], [21], [39], [40] and protein-

protein interactions [17]. This optimization technique produces the Pareto frontier in the 

two-objective design space, without explicitly considering the dominated designs. As 

illustrated in Fig. 2(e), the algorithm starts from the homology optimal region (lower right) 

and traverses towards the energy optimal region (upper left). At each step, it optimizes only 

the sequence homology score, as described in the above integer linear program, but at each 

step it imposes successively tighter constraints to force better successively better structure 
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energy scores. It first identifies the optimal design for the sequence homology score. It then 

constrains the structure energy score to be better than that of the first design, and 

reoptimizes, finding a design with a somewhat worse sequence homology score (but best of 

all those with better structure energy scores, so undominated). Note that in order to 

implement a “better than” (<) constraint using the “at least as good as” (<=) constraint 

provided by the integer program solver, we use “at least as good as” epsilon better, where the 

epsilon is a small value precomputed from the library size to ensure that no solution is 

missed. The process is repeated to obtain additional designs with iteratively better structure 

energy scores but iteratively worse sequence homology scores. Thus the full Pareto frontier 

is generated, invoking the optimizer once per design.

POCoM is implemented in Python, specifying and solving the integer linear program by 

invoking CPLEX via the Python API. The source code is freely available for academic use 

by contacting the authors.

3 Results and discussion

We employed POCoM to optimize combinatorial mutagenesis libraries for three different 

proteins for different experimental contexts (point mutations vs. degenerate oligos, 

considering mutations anywhere vs. only near active sites, 10 vs. 15 vs. 20 mutational sites). 

After preprocessing and construction of scoring potentials, detailed in the supplementary 

material, POCoM was able to generate each set of Pareto optimal library designs in less than 

an hour on an off-the-shelf 2012 Macbook Pro. By way of calibration, optimizing a single 

design for just one of the objectives took under a minute; this relationship follows 

expectations because there may be hundreds of two-objective designs per Pareto curve. To 

push the limits, we also tried designing a 30-site GFP library and found that even that 

massive library design task required less than 6 hours on that same machine.

3.1 Green fluorescent protein

GFP and its derivatives provide powerful tools for biological research, with their unique 

fluorescent properties enabling researchers to track, visualize, and map subcellular structures 

and interactions [42]–[48]. The fluorescent protein field is constantly seeking additional 

proteins with different properties, and GFP is ideally suited for high-throughput 

characterization of large libraries that can produce such candidates. Here we design libraries 

for GFP from Aequorea victoria (UniProt ID GFP_AEQVI and PDB ID 1GFL), the same 

protein used in previous structure-only library studies [14], [6] seeking to modulate 

fluorescent properties by allowing mutations anywhere including the core of the protein. 

POCoM builds upon that work by complementing structural information with sequence 

homology information and thereby enabling libraries to balance these criteria. Moreover, the 

resulting GFP libraries are much larger and more diverse than those produced by other 

library design methods [6].

POCoM elucidates sequence-structure design tradeoffs—We first designed 15-

site libraries for construction by point mutation. The shape of the resulting Pareto frontier 

(Fig. 3(a)) highlights the complementarity between the sequence homology and structure 

energy scores. Plans toward the lower-right corner are optimized primarily for sequence 
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homology, whereas plans toward the upper-left corner are more structurally optimized. 

Moving from the lower-right incurs only a small penalty to the sequence homology score for 

a substantial improvement in structure energy, suggesting that there are many possibilities 

for variants to achieve the same degree of sequence acceptability with substantial stability 

implications. This also suggests that optimizing for the homology dimension alone could 

result in libraries with poor energies, illustrated by the distribution of enumerated variants in 

the homology score optimized library (green contours in Fig. 3(a)). Similarly, when 

optimizing a library for energy score alone, the variant distribution suggests that a significant 

portion of the library is wasted in unproductive portions according to the homology score 

(orange contours in Fig. 3(a)). But POCoM also designs libraries with more balanced 

criteria, as illustrated with the “elbow” library plan (i.e., that closest to the origin when 

scores are normalized to 0–1). Variants enumerated from the elbow plan (yellow contours in 

Fig. 3(a)) manifest a strong anti-correlation between the two objectives, suggesting that here 

the sequence record contains information complementary to energy minimization in 

producing folded and functional proteins.

Differences in plan composition reflect sequence-structure implications of 
mutational combinations—For exploration of plan details, the Pareto frontier was 

divided into seven intervals and mutation frequencies computed separately for the plans in 

each interval (Fig. 3(b)). While some mutations (e.g., S208M) contribute to plans in all 

intervals, others are more common in the sequence homology intervals (e.g., H25I) or 

structure energy intervals (e.g., N121V), and still others are predominant in intervals around 

the balanced elbow (e.g., T62A). Some positions employ different choices in different 

portions of the curve, for example, V or I at position 96. These differences in library 

composition elucidate the power of POCoM to uncover a diverse set of alternative designs 

for consideration.

A number of mutations – S30I, T62A, R80Q, V93I, L221V, and E222V – have been 

experimentally found in GFP variants, accounting for their improved or different color 

fluorescent properties [6], [49]–[53]. Strikingly (blue boxes in Fig. 3(b)), these mutations 

tend to be in designs near the balanced elbow plan, though some permeate all plans and 

others also span one side or the other of the sequence-structure trade-off.

POCoM explicates impacts of experimental constraints—We varied two input 

parameters, the number of mutational sites to employ (10, 15, or 20) and how the library is 

to be constructed (point mutations or degenerate oligos); for the sake of comparison 

purposes the tube size was limited to 2 (wild-type plus one alternative). Fig. S1 illustrates 

that, as would be expected, relaxed constraints (point mutations, larger library) yield better-

scoring libraries. Tubes in degenerate oligo libraries are constrained by the genetic code, and 

thus can’t readily pair disparate amino acid types that might have better scores. Likewise, a 

higher mutational load enables libraries to use more conservative mutations to achieve the 

same energy score. While not required by the optimization approach, we found that, 

regardless of construction method, the positions targeted in 10-mutation site libraries are a 

subset of those targeted in 15-mutation site libraries which are in turn a subset of positions 

targeted in 20-mutation site libraries. This suggests that POCoM targets more productive 
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sites at lower mutational loads and augments them with additional beneficial ones at higher 

mutational loads. There are differences at the level of amino acid selections, though; e.g., 

T62A occurs only in the 15- and 20-site libraries.

Potential contributions govern amino acid selections—Each mutation in a specific 

library plan on the Pareto curve can be characterized by energy and homology score 

contributions. We selected the structurally most optimized plan, with mutations S30IS, 

T49NT, R96VR, N105VN, N121NV, L125IL, N149VN, N164VN, R168VR, H169YH, 

I171GI, N185TN, T203VT, L221VL and I229GI, and compared its side-chain placements 

with those in the original structure. Fig. 4 illustrates the impact of POCoM’s optimization at 

position 169, whose side chain interacts with the chromophore core region, a location that 

can affect GFP’s spectroscopic properties. The figure also illustrates the contributions to 

homology and energy scores for each of the allowed mutations from the MSA. Homology 

scores suggest that L is highly conserved (lower scores are better) and should be favored for 

library construction. However, energetically more favorable Y is chosen over L for this plan 

because it can form a strong hydrogen bond interaction with P58 in the GFP core, which is 

also indicated by the best averaged two-body homology score. Such two-body interactions 

are reflective of coevolution, which in addition to physical proximity [28] in a structure may 

also capture indirect relationships, e.g., for allosteric propagation [54]. The example 

presented here clearly demonstrates a strong interplay between sequence homology and 

structure energy, suggesting that both potentials may be important for developing favorable 

variants.

3.2 Cytochrome P450

Cytochrome P450 enzymes play major roles in the synthesis and breakdown of molecules in 

cells. Some P450s synthesize molecules including fatty acids (including cholesterol) [55], 

vitamins, and steroid hormones, while others are involved in the breakdown of external 

(medication) and internal (cellular toxins) substances [56]. Reengineered variants of P450 

are widely used in the biotechnology industry, medicine, and bioremediation [57]. 

Constructing diverse P450 libraries can yield variants with new properties facilitating 

synthesis and breakdown of additional molecules.

We designed degenerate oligo libraries of Bacillus subtilis cytochrome P450 (UniProt ID 

CYPC_BACSU and PDB ID 2ZQJ), which catalyzes hydroxylation of long-alkyl-chain fatty 

acids. Previous library studies for this P450 have focused on sequence information [58], 

whereas POCoM integrates sequence and structure to construct diverse libraries allowing 

mutations anywhere on the protein that have the potential to modify its catalytic and 

thermostability properties.

POCoM elucidates sequence-structure design tradeoffs and impacts of 
experimental constraints—The Pareto frontier of 15-site P450 libraries (Fig. 5(a)) is 

less curved than for 15-site GFP libraries (Fig. 3(a)), suggesting a stronger sequence 

homology and structure energy relationship. The trends in variant distribution remain the 

same, however, with the homology-optimized library (green contours) tightly distributed, the 
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energy-optimized library (orange contours) exploring a large region of non-conserved 

mutations, and the elbow library (yellow contours) maintaining a balance of both objectives.

We constructed additional P450 libraries targeting 10 or 20 sites, and also explored the 

differences between point mutation and degenerate oligo library construction methods. As 

illustrated in Fig. S2, the curves for P450 are less sparse and more distinct than those for 

GFP (Fig. S1). The larger size of P450 provides relatively more positions for mutations, 

leading to more possible plans with slightly different scores. As observed for GFP, higher 

mutational loads can explore a larger design space and thus achieve better scores, and 

degenerate oligos are restricted by the genetic code in possible mutation combinations and 

thus obtain worse scores. Also as observed for GFP, smaller libraries select highly 

productive sites that remain in use and are augmented in larger libraries.

Differences in plan composition reflect sequence-structure implications of 
mutational combinations—Fig. 5(b) illustrates the 15-mutation Pareto optimal 

degenerate oligo plans, binned into intervals as for GFP. Out of 48 targeted positions, 43 

positions have only one alternative amino acid type and the remaining 5 having two 

alternatives. 44 mutated positions are on the surface, including 25 hydrophilic and 19 

hydrophobic. Interestingly, none of the buried residues were targeted in the homology biased 

library plans, whereas 4 core hydrophobic residues were targeted for mutation in the 

structure energy biased library plans. Considering the mutations of all plans in the elbow 

region, we see that they are enriched with mutations from homology- and energy-biased 

potentials as well as the potentials balanced on both the criteria: out of 22 targeted sites, 7 

mutations are homology-biased, 8 are energy-biased, and the remaining 7 mutations are 

balanced between the criteria. Fig. 6 further elaborates this trend, highlighting mutations 

selected for the sequence-only optimized plan vs. the structure-only optimized plan vs. the 

elbow plan. Only position 123 is shared among all three plans, while two positions are 

shared between sequence-only and elbow, and eight between structure-only and elbow, with 

the elbow plan having four unique sites. Pareto optimization thus includes many important 

mutations that would be missed by sequence-only or structure-only design, either because 

they derive from the other scoring function, or because they balance and complement both.

3.3 β-lactamase

The β-lactamase family of enzymes provide bacteria with antibiotic resistance by 

hydrolyzing the β-lactam ring of penicillin-like drugs [59]. The inexpensive screening of β-

lactamase coupled with its diversity in extended spectrum recognition [60] has allowed 

researchers to characterize functional and stability contributions of active site residues [61], 

and provided insights regarding the hydrolysis activity of β-lactam derivatives. Constructing 

diverse active site libraries can generate variants with highly modified substrate specificities 

that can elucidate structure-activity relationships and antibiotic drug resistance properties 

[62], [63].

Previous library design methods have targeted TEM-1 β-lactamase from Escheridia coli for 

sequence-only [9] and structure-only [14], [64] optimized libraries, allowing mutations in 

the active site or throughout the protein. Here, in contrast, we integrate sequence and 
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structure information (from UniProt BLAT_ECOLX and PDB 1BT5) [65] and explore the 

impact of targeting the active site region vs. allowing mutations anywhere.

Active site residues are more sensitive to mutations—Libraries were designed to 

target any of 32 residues within CB-CB 8Å of catalytic residues S70, K73, S130, and E166. 

Fig. 7(a) illustrates the difference between Pareto frontiers for 15-site libraries focused on 

the active site vs. considering the whole protein. With limited choices available for focused 

design, large energy and homology penalties are incurred at both ends of the Pareto frontier 

(see inset in Fig. 7(a)), also suggesting that a very small portion of the curve offers libraries 

with balanced sequence and structure objectives. In comparison to the Pareto frontier for full 

protein libraries, that for focused libraries is less curved in the elbow region, suggesting 

strong sequence-structure complementarity around the active site. Comparing their elbow 

plans, 4 mutation sites (68, 69, 165, and 236) are shared between full and focused libraries 

of which 3 have identical mutation selections (M69N, W165N, and G236A). The difference 

in mutation at site 68 is due to the existence of residue-residue interaction between positions 

68 and 71 in the focused elbow library. Overall, the focused elbow plan exhibits 8 residue-

residue mutation site interactions in comparison to just 2 in the full-protein elbow plan, 

which is freer to spread out and decouple mutations.

Mutations are highly constrained at catalytic sites—The seven representative 

regions in Fig. 7(b) illustrate mutation choices used for the variable positions in targeted 

library designs. One additional choice at catalytic sites S70 and K73, and two additional 

choices at catalytic sites SI30 and E166 were allowed for mutation. In spite of these 

additional choices, three of the catalytic sites remained unmutated across the full Pareto 

frontier. The only mutation chosen at a catalytic site, S130G, captures a mutation that has 

been experimentally verified to be functional [66]. Also, we note that focused elbow plans 

capture mutations at active site residues T71E, I127V, and I127L, which previous 

experimental studies have revealed to maintain stability and functional activity [61], [64], 

[66], [67].

Other experimental evidence—We found an experimentally validated mutation 

W165Y[68] that POCoM did not select, opting instead for W165I and W165N instead (Fig. 

7(b)). While tyrosine was considered as a choice, both isoleucine and asparagine had better 

sequence potential scores and asparagine had the best structure energy score. This analysis 

suggests that the selection of choices for library construction is a function of Pareto 

optimality and the interplay between the potentials.

4 Conclusions

We have introduced a novel method called POCoM that aims to improve the hit rate of 

discovering beneficial variants in combinatorial mutagenesis studies by enriching the 

libraries with complementary information assessing the quality of constituent variants. 

POCoM designs directly in “library space,” choosing sets of mutations whose combinations 

make the best library-averaged trade offs between two criteria. This approach enables 

POCoM to quite quickly design massive libraries expected to have good variants. By 
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generating the entire Pareto frontier of libraries, POCoM elucidates, in an unbiased fashion, 

the trade offs between the complementary criteria.

In case study applications to GFP, cytochrome P450, and β-lactamase, we instantiate 

POCoM to integrate sequence homology and structure energy scores and explore the trade-

offs between these scores as well as the impacts of experimental constraints. GFP and 

cytochrome P450 designs reveal that libraries constructed from point mutations achieve 

better potential scores in comparison to libraries constructed from degenerate 

oligonucleotides which are constrained by the genetic code. Subsequent analyses of specific 

designs provide insights into energy and homology contributions that lead to selection of 

specific amino acids for mutation. β-lactamase active-site focused libraries suggest that 

POCoM appropriately accounts for functional site mutation sensitivity during the design 

process by simultaneously considering evolutionary and structure energy information.

Overall, the modular nature of POCoM, its ability to quickly optimize large libraries 

enriched for complementary protein objectives, and the insights it provides into the library 

design space promise a high success rate of discovering beneficial variants in high 

throughput protein engineering experiments.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1: 
Combinatorial mutagenesis libraries, (a) A tiny example combinatorial mutagenesis library, 

with two possible amino acids at one position and three possible amino acids at another 

position, yielding six variants representing all combinations of these choices, (b) POCoM 

optimizes libraries to balance two objectives, here sequence homology and structure energy, 

each to be minimized. It evaluates a library in terms of the average score of its variants. 

Pareto optimal designs, comprising the Pareto frontier (on the black curve), make the best 
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trade-offs between the two objectives, while dominated designs (blue Xes) are worse on 

both.
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Fig. 2: 
POCoM overview, (a) Input data are collected and preprocessed, (b) Amino acid potentials 

are extracted from the target’s sequence and structure, (c) Possible sets of amino acids are 

determined at each position, thereby defining choices representing a library, (d) Scores for 

each position-specific amino acid set, or “tube”, are averaged in order to assign contributions 

to the sequence homology (Φ) and structure energy (Ψ) library scores, (e) Pareto optimal 

libraries are optimized with a sweeping technique that repeatedly finds the next undominated 

design as that with the best Φ while constrained to have reduced Ψ.
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Fig. 3: 
(a) Pareto frontier of 15-site point mutation GFP libraries. Selected library plans in 

sequence-optimized (green), structure-optimized (orange) and sequence-structure-optimized 

(yellow) regions are enumerated (random 1000 variants in each) and displayed as contours, 

(b) Amino acid composition of Pareto optimal 15-site point mutation GFP libraries. The 

seven panels represent different regions of the Pareto frontier, green for sequence-optimized, 

orange for structure-optimized and yellow for sequence-structure-optimized. The height of 
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sequence logos corresponds to the abundance of mutations in the plans (wild-type not 

shown). Experimentally observed mutations are highlighted in blue.
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Fig. 4: 
(a) Comparison of sequence homology and structure energy scores of available choices at 

position 169 that lead to the selection of tyrosine in GFP. Lower scores correspond to more 

favorable contributions. Comparison of (b) wild-type GFP and (c) structure energy 

optimized 15-point mutation plan variant illustrating formation of a favorable hydrogen 

bond with P58 upon H169Y mutation.
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Fig. 5: 
(a) Pareto frontier of 15-site degenerate oligo P450 libraries. Selected library plans in 

sequence-optimized (green), structure-optimized (orange) and sequence-structure-optimized 

(yellow) regions are enumerated (random 1000 variants in each) and displayed as contours, 

(b) Amino acid composition of Pareto optimal 15-site degenerate oligo P450 libraries. The 

seven panels represent different regions of the Pareto frontier, green for sequence-optimized, 

orange for structure-optimized and yellow for sequence-structure-optimized. The height of 
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sequence logos corresponds to the abundance of mutations in the plans (wild-type not 

shown).
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Fig. 6: 
Comparison of sites targeted by sequence-only optimization (green spheres), structure-only 

optimization (orange spheres) and sequence-structure optimization (yellow spheres) for 

P450 15-site degenerate oligo library plans. Balanced sequence-structure optimization 

(elbow plan) sites that overlap with sequence-only and structure-only sites are shown by 

green and orange circles, respectively. Position 123, targeted by all three plans, is shown by 

a yellow sphere with a blue circle.
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Fig. 7: 
(a) Pareto frontiers comparing 15-site point mutation (β-lactamase active-site (black curve) 

and complete (grey curve) libraries. (b) Amino acid composition of Pareto optimal 15-site 

point mutation β-lactamase active-site libraries. The seven panels represent different regions 

of the Pareto frontier, green for sequence-optimized, orange for structure-optimized and 

yellow for sequence-structure-optimized. The height of sequence logos corresponds to the 
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abundance of mutations in the plans (wild-type not shown). Experimentally observed 

mutations are highlighted in blue.
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