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SUMMARY The family Enterobacteriaceae has undergone significant morphogenetic
changes in its more than 85-year history, particularly during the past 2 decades
(2000 to 2020). The development and introduction of new and novel molecular
methods coupled with innovative laboratory techniques have led to many advances.
We now know that the global range of enterobacteria is much more expansive than
previously recognized, as they play important roles in the environment in vegetative
processes and through widespread environmental distribution through insect vec-
tors. In humans, many new species have been described, some associated with spe-
cific disease processes. Some established species are now observed in new infectious
disease settings and syndromes. The results of molecular taxonomic and phyloge-
netics studies suggest that the current family Enterobacteriaceae should possibly be
divided into seven or more separate families. The logarithmic explosion in the num-
ber of enterobacterial species described brings into question the relevancy, need,
and mechanisms to potentially identify these taxa. This review covers the progres-
sion, transformation, and morphogenesis of the family from the seminal Centers for
Disease Control and Prevention publication (J. J. Farmer III, B. R. Davis, F. W.
Hickman-Brenner, A. McWhorter, et al., J Clin Microbiol 21:46–76, 1985, https://doi
.org/10.1128/JCM.21.1.46-76.1985) to the present.

KEYWORDS Enterobacteriaceae, enterobacteria, insect vectors, liver abscess,
meninigitis, phylogeny, plant diseases, taxonomy, transmissible gastroenteritis virus

INTRODUCTION
Historical Aspects

No collective group of currently defined prokaryotic bacteria has had a greater med-
ical, public health, and veterinary impact on the global community than the family

Enterobacteriaceae (1–3). Not only are the enterobacteria associated with a wide range
of clinical syndromes, but the family is also a major causative agent of foodborne en-
teritis and zoonotic infections, which include sporadic to pandemic outbreaks of
human plague (1).

The impact of the family does not stop there. Widely dispersed in nature in many nat-
urally occurring ecosystems, members of the family are increasingly being implicated as
pathogens of piscine species (natural, aquaculture) (4) as well as the etiologic agent of a
variety of plant diseases (5). Finally, the family has been recognized for its impact on mo-
lecular and cell biology, gene structure and function, and microbial pathogenicity. An
excellent list of notable discoveries associated with the Enterobacteriaceae can be found
in the chapter by Farmer et al. (1) in the 10th edition of Topley & Wilson’s Microbiology &
Microbial Infections.

While current members of this family have long been recognized for well over
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100 years, the formalized origins of this family can be traced back to the 1937 publica-
tion of Rahn (6). The family Enterobacteriaceae was subsequently created with a single
type genus (Enterobacter) to house a collection of 112 species previously referred to as
the “colon-typhoid group” (2, 7). This group was originally defined by a set of unifying
phenotypic traits, including Gram stain reaction (negative), good growth on artificial
media, acid formation from D-glucose (often with gas), and production of nitrites from
nitrate. Many genera with current taxonomic standing were represented within the ge-
nus “Enterobacter” when the family was first proposed, including Escherichia, Klebsiella,
Shigella, and Proteus (2).

Over the next 201 years, considerable controversy occurred regarding the exact
number and names for delineated taxa that existed within the family Enterobacteriaceae
(8). Multiple issues caused these nomenclature problems, including taxonomic proposals
based upon minimal phenotypic data, a limited array of biochemical features available,
the use of nonstandardized test methodologies, and no Bacteriological Code to govern
the legitimacy or correctness of proposed taxa. By 1944, considerable difficulty was
reported on defining criteria for inclusion of members in this family, since the fifth edi-
tion of Bergey’s Manual of Determinative Bacteriology already contained such names as
Paracolobactrum, Colobactrum, Proshigella, and Shigella ambigua (8). Excellent historical
perspectives on this topic can be found elsewhere (1, 2).

During the early and mid-1960s, a more formalized system was developed by the
U.S. Centers for Disease Control and Prevention (CDC), which included a standardized
set of 50 or more biochemical and phenotypic properties and computer-based soft-
ware programs employing numerical taxonomy that compared phenotypes of two
groups by matching similarities (Ssm) (9). By the mid-1970s, Don Brenner and his col-
leagues (10) at the CDC were defining existing and previously unrecognized taxa of en-
teric bacteria by using a polyphasic approach. This approach coupled 50 to 200 mor-
phologic, cultural, and biochemical features to genetic studies of DNA relatedness by
DNA-DNA hybridization (DDH) as well as mol% G1C content (10). Such pioneering
efforts led to classification changes, such as Enterobacter sakazakii (cloacae), Hafnia
alvei (Enterobacter hafniae), and Morganella (Proteus) morganii as examples. By 1985,
the CDC published a 30-page landmark study in the Journal of Clinical Microbiology
describing new species and biogroups within the family Enterobacteriaceae isolated
from clinical specimens (11).

Both the family name (Enterobacteriaceae versus Enterobacteraceae) and type
genus (Escherichia versus Enterobacter) have been unsuccessfully challenged over
the past several decades (7). For the purposes of this review, the family name
Enterobacteriaceae is used in the traditional or classic sense (pre-2016). Proposed
classification changes for members of the family are discussed below (see Nomenclature
and Taxonomy).

Traditional Phenotypic and Molecular Markers of the Family

From the family’s infancy in the late 1930s until the late 1980s, the primary means
of initially identifying potential taxa (genera, species) residing in the enterobacteria
was a series of collective properties almost exclusively associated with this family.
These taxonomic markers were key elements in recognizing unusual strains, new bio-
types, or potentially unnamed genomospecies prior to determining genetic related-
ness using DDH. The traits utilized for this purpose were gradually expanded and
refined over time and helped define the family from a taxonomic point of view.

The defining general reactions that have been used to identify true members of the
Enterobacteriaceae for decades are listed in Table 1. These biochemical markers have
provided the phenotypic definition for the family and have been used by many com-
mercial companies in developing semiautomated and automated biochemical plat-
forms for their recognition. DDH, which came into vogue in the 1970s, further helped
to refine this family on a genetic basis prior to modern-day phylogenetic studies and
full genome sequencing.

Several of the properties listed in Table 1 bear special mention. A key marker almost
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exclusively associated with this family is the enterobacterial common antigen or ECA
(12). ECA is a carbohydrate moiety whose exact function is presently unknown but which
is thought to play a role in maintaining the outer membrane permeability barrier (12,
13). ECA is almost exclusively associated with members of the Enterobacteriaceae and is
one taxonomic criterion for the transfer of Plesiomonas shigelloides, which is ECA positive,
to this family in 2005 (14). Only two nonenteric species, Actinobacillus equuli and
Actinobacillus suis, have been found to possess this antigen (15). Another point of demar-
cation used from the 1960s onward is G1C content. G1C content for bacteria varies
from 25 to 75mol% (16). In the case of the enterobacteria, the G1C content has a wide
range (38 to 60 mol%), which is not typically found for phylogenetically “tight” families
(Table 1). The family Moraxellaceae, as an example, has a much narrower G1C content
range of 38 to 50mol% (17). However, most genera in the family Enterobacteriaceae
have a G1C content of 49 to 59mol%, which is more in line with other families contain-
ing phylogenetically related genera (1).

When the characteristics listed in Table 1 were first established, few exceptions to
the metrics were noted. However, with the expansion in the family in both the number
of genera and species and the transfer of other taxa to this family (e.g., P. shigelloides),
more exceptions have been observed. Most of these exceptions have been detected in
more recently described taxa since 2010 which are rarely associated with clinical infec-
tions or public health issues (Table 1, exceptions).

Major Clinical and Public Health Aspects of the Family

Foodborne disease and outbreaks. Infectious diarrhea is a leading cause of mor-
bidity and mortality on a worldwide basis. The most recent figures released by the
Global Disease Burden (GBD) Diarrheal Diseases Collaborators (18) estimate that there
were 2.39 billion episodes of diarrheal disease in 2015, almost 1 billion of which
occurred in children under 5 years of age. The World Health Organization (WHO) fur-
ther estimates that from 550 to 600 million of these cases of diarrhea are foodborne
infections (19, 20). Projections that 70% of all diarrheal disease are food related (21)
translates to between 350 to 420 million episodes of gastroenteritis being of bacterial
etiology (19, 20). The figures are staggering.

Among major foodborne bacterial pathogens, the family Enterobacteriaceae is well

TABLE 1 Traditional markers associated with inclusion in the family Enterobacteriaceae

Characteristic Trait Typical reaction or value Exceptions
Gram stain Structural Negative
Flagella (polar) Structural Negative Plesiomonas, Tatumella
ECAa Structural Positive Dickeya chrysanthemi
Spore formation Structural Negative Serratia marcescens subsp. sakuensisb

Oxidase Biochemical Negative Alterococcusc, Franconibacterd, Plesiomonas
Catalase Biochemical Positive Chania, Shigella dysenteriae 1, Xenorhabdus
Nitrate reductase Biochemical Positive Photorhabdus, Erwinia, Lonsdalea, Rosenbergiella, Yersiniae

O/129 susceptibility Biochemical Positive Plesiomonas
D-Glucose Biochemical Positivef

D-Mannitol Biochemical Positive Edwardsiella tarda, Providencia rustigianii, Rosenbergiella,
Shigella dysenteriae type 1, among others

D-Xylose Biochemical Positive Cedeceae, Cosenzea, Edwardsiella, Izhakiella, Lonsdalea, Morganella,
Plesiomonas shigelloides, Yersinia ruckeri, among others

G1C (mol%) Genetic 38–60%

DNA relatednessg

Core Genetic 40–50% Salmonella, Klebsiella, Citrobacter, Enterobacter
Periphery Genetic 5–20% Edwardsiella, Morganella, Proteus, Providencia, Yersinia

aECA, enterobacterial common antigen.
bThe legitimacy of this subspecies and its ability to produce spores have been questioned (275).
cThis genus and species is listed in the family Enterobacteriaceae by the Editorial Board in the 2nd edition of Bergey’s Manual of Systematic Bacteriology (276).
dWeak reaction.
eSome isolates.
fRare strain exceptions.
gDNA relatedness to the type species Escherichia coli. Core and periphery members are based upon phylogenetic analysis.
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represented by several groups, including Salmonella, Escherichia coli (O157, non-O157),
Shigella, and Yersinia enterocolitica (19, 21–23). The CDC Foodborne Diseases Active
Surveillance Network (FoodNet) provides active surveillance and epidemiologic studies
in conjunction with 10 state health departments regarding the above-listed agents
(21). FoodNet covers approximately 15% of the U.S. population. Not included in this
list are other members of the family Enterobacteriaceae such as Cronobacter sakazakii
(23). In addition to its association with neonatal meningitis and powdered infant for-
mula (24, 25), C. sakazakii has been implicated in a large-scale foodborne outbreak of
gastroenteritis in high school students and school employees (26).

The latest data from FoodNet for years 2016 to 2019 reported over 25,000 cases of
laboratory-diagnosed infections for 9 major bacterial and parasitic pathogens surveyed
by 10 state health departments. These cumulative infections resulted in over 6,000
hospitalizations and 122 deaths (27). High incidence rates (per 100,000 population)
were recorded for Salmonella (17.1 cases), Shiga toxin-producing E. coli (STEC) (6.3 cases),
and Shigella (4.8 cases), which ranked these three pathogens, after Campylobacter, as the
second, third, and fourth most common foodborne pathogens in incidence. For all mem-
bers of this family (including Yersinia), the incidence numbers remained unchanged or
increased in comparison to 2006-2017 figures, suggesting that progress in controlling
such infections has stalled (27, 28). Prior CDC investigations have found nontyphoidal
Salmonella to be the leading cause of hospitalizations and death from foodborne infec-
tions (29). Comparable numbers for 26 member states in the European Union (EU) for
2015 included over 4,000 foodborne and waterborne outbreaks and 45,874 cases of ill-
ness (23). The most common bacterial pathogen responsible for foodborne outbreaks in
the EU was Salmonella (;34% of all bacterial outbreaks).

Several alarming trends appear to be occurring with foodborne pathogens in the
family Enterobacteriaceae. First, in addition to traditional sources of foodborne out-
breaks associated with enterobacteria (dairy, poultry, beef, pork, melons, sprouts), an
increasing number of other consumable products or condiments are being linked to
outbreaks. These include basil (Shigella), bagged salad (Y. enterocolitica), cookie dough
and sprouted seeds (E. coli), and peanut butter and jalapeno and serrano peppers
(Salmonella) (22). C. sakazakii has also been isolated from various retail foods, including
legumes, nuts, dried flour, and spices (23). A second issue is the recent appearance of
enterobacterial strains with “hybrid” virulence characteristics causing foodborne out-
breaks. In 2011, a major outbreak of food-related illness associated with E. coli O104:H4
occurred in Germany (22). This outbreak was linked to the consumption of sprouts
(30). Of the more than 3,186 infections, approximately 22% of patients developed he-
molytic-uremic syndrome and 54 persons (1.7%) died (22). Subsequent molecular anal-
ysis of the infecting strain revealed that it contained properties of enteroaggregative E.
coli and also had the capacity to produce Shiga toxin 2 (22). Two more recent
California outbreaks involving 56 patients were found to be caused by a Shiga toxin 1-
producing strain of Shigella sonnei (31). This genotype is rarely found in shigellae other
than Shigella dysenteriae type 1. Finally, in addition to CDC data, in Europe (GBD collab-
orators) Shigella has become the most common bacterial foodborne pathogen associ-
ated with mortality in children under the age of 5, with an estimated 54,900 deaths
annually (18). The wide distribution of enterobacteria in foods coupled with hygiene
and sanitation issues poses serious problems for developing nations (19).

HAI. The WHO estimates that there are over 4.5 million episodes of health care-
associated infections (HAI) in Europe each year, with a projected 37,000 deaths
annually (https://www.who.int/gpsc/country_work/gpsc_ccisc_fact_sheet_en.pdf).
Comparable figures last reported for the United States include 99,000 deaths and
$6.5 billion in costs associated with extra days of hospital stay.

Genera in the family Enterobacteriaceae are important pathogens for three of the
four major HAI categories according to the CDC, namely, central line-associated blood-
stream infections (CLABSI), catheter-associated urinary tract infections (CAUTI), and sur-
gical site infections (SSI) (https://www.cdc.gov/hai/index.html). One investigation
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studied the relative frequency of HAI pathogens within the University of North
Carolina Health Care database over a 28-year period (1980 to 2008) (32). Based upon
overall frequency, E. coli, Klebsiella, and Enterobacter ranked 2nd, 7th, and 8th, respec-
tively, in number of infections reported, with the genera Proteus, Serratia, and
Citrobacter ranking between 11th and 16th (32). A recent CDC study summarizing data
collected from 2011 to 2017 on CLABSI found the Enterobacteriaceae to be causing
23% to 31% of HAI in adult, pediatric, and oncology wards (33).

To further complicate the health care setting with enterobacterial infections is
the fact that over the last 10 to 15 years, antimicrobial resistance to carbapenem
compounds has emerged, dramatically restricting treatment options for serious life-
threatening infections (34). A variety of Ambler class A, D, and B enzymes inactivate
carbapenems, including Klebsiella pneumoniae carbapenemase (KPC), New Delhi me-
tallo-b-lactamase (NDM), and Verona integron-encoded metallo-b-lactamase (VIM),
among others (34). Enteric species most commonly associated with these drug re-
sistance patterns are the most common HAI-associated species, such as E. coli, K.
pneumoniae, and Enterobacter cloacae complex. Increasing numbers of carbapene-
mase-resistant Enterobacteriaceae (CRE) have been thought to be due to expansion
of clonal groups and horizontal gene transfer. However, a phylogenetic analysis of
many CRE strains at three hospitals in the Boston area suggest not only remarkable
genetic diversity but also limited clonal expansion (35). This suggests that CRE trans-
mission is occurring at multiple unsampled transmission points throughout the
health care process. This rapid rise has been recently documented in a National
Healthcare Safety Network (NHSN) summary report of 5,626 acute care facilities
from 2015 to 2017 (36). In that epidemiologic survey of antimicrobial-resistant bac-
teria, E. coli and K. pneumoniae were the most common and the third most fre-
quently reported HAI pathogens, respectively (36).

THE FAMILY ENTEROBACTERIACEAE
Post-1980 Era: The Family That Wasn’t

Modern bacterial nomenclature and taxonomy was born on 1 January 1980 with
the publication of the Approved Lists of Bacterial Names (AL) in the International Journal
of Systematic Bacteriology (IJSB) (37). The AL was created based upon currently valid
names of bacteria that were cultivatable and those published in the International
Journal of Systematic Bacteriology prior to 1 January 1978 (37). What many microbiolo-
gists and scientists do not recognize is the fact that with the publication of the AL, the
family name Enterobacteriaceae automatically became invalid and technically could
not be used in subsequent publications because the name had been omitted under
the rank of “family.” Subsequently, the matter was considered sub judice (under judicial
review) because of a challenge to the legitimacy of the name by Lapage (38, 39), who
recommended changing the name to Enterobacteraceae. However, it was immediately
recognized that the AL had serious exclusions to it and that validly published legiti-
mate names had been arbitrarily omitted (40). In companion articles, the CDC opposed
rejection of the family name (7) and Ewing and coauthors (40) validly published and
proposed reviving the name Enterobacteriaceae under rules defined by the
Bacteriological Code. The Judicial Commission subsequently determined that the fam-
ily name Enterobacteriaceae Rahn 1937 with Escherichia Castellani and Chalmers 1919
as the type genus did have standing and belonged on the AL (39). While other pro-
posals such as changing the family name to Escherichiaceae have appeared, they have
almost always been uniformly opposed by subcommittees on the enterobacteria (41).

Genus and Species Expansion (1980 to 2020)

The original AL contained 2,366 valid prokaryotic names, of which 2,213 were at the
rank of genus (n=290), species (n=1,792), and subspecies (n=131) (42). While these
numbers are sizable, they pale in comparison to the computational prokaryotic diver-
sity in the global biosphere, estimated to range between 2 and 4 million species (43).
This figure may actually be much higher (43). Thus, like other families in the
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prokaryotes, given the above projected numbers, it is not surprising that membership
in the family Enterobacteriaceae has also increased dramatically over the past 40 years.

The history of taxon expansion in the family Enterobacteriaceae post-1980 has for
the most part mirrored that of other large prokaryotic families. Those increases again
paralleled technical developments in the characterization of prokaryotes which
enabled taxonomists to more easily assess both the uniqueness (new species) and
relatedness (phylogeny) of sets of strains to other named groups. From the early 1980s
to the mid-1990s, the main systematic approach involved the use of polyphasic taxon-
omy, that is, a combination of phenotypic (culture, biochemical, serology, cellular fatty
acids) and genetic (DDH, G1C mol%) characteristics. Polyphasic taxonomy is still used
today but is less in vogue. Groups spearheading the description of new species in the
family Enterobacteriaceae during this period included the CDC in Atlanta, the Institute
of Pasteur (IOP) in France, and the National Institutes of Health in Japan (NIH Japan)
(44–47). Virtually all of the named species during this period were accompanied by
extensive biochemical profiles, which allowed laboratories to differentiate on a pheno-
typic basis a new taxon from previously named species. When a significant number of
strains were not available to clearly define an unnamed taxon, they were typically
given a generic name, such as CDC enteric group 58 (11).

The “gold standard” for defining these new species during this period was DDH (48,
49). However, DDH has a number of limitations. The traditional technique was expen-
sive, labor-intensive, time-consuming, and subject to technical errors (temperature,
ionic strength) (48–50). Only a few large international laboratories (CDC, IOP, NIH
Japan) had the personnel and resources to employ such technologies on a routine ba-
sis. Additionally, DNA studies indicated that many existing species in the family
Enterobacteriaceae were polyphyletic, that is, composed of genetically distinct species
that could not easily be resolved by simple biochemical tests, the principal mechanism
most clinical microbiology laboratories used for final species identification. Thus, such
organisms as Enterobacter cloacae, Pantoea (Enterobacter) agglomerans, and Hafnia
alvei (Enterobacter hafniae) were known by DDH to be composed of multiple hybridiza-
tion groups (HGs), each representing a unique genomospecies although they all exhib-
ited common characteristics and could not be separated phenotypically from each
other (51). Such species in actuality were at that time “phenospecies” or a “complex” of
species rather than, for instance, E. cloacae sensu stricto.

Family expansion due to newer technology. In the 1990s, sequencing of house-
keeping genes, such as the 16S rRNA gene, was thought at that time to be a major
breakthrough in bacterial systematics (48, 50, 52). The 16S gene could be sequenced
with relative ease on different platforms and could provide informatics more quickly
than DDH (53). Threshold values were determined for comparing a proposed new
taxon to closely related neighbors, with ,98.7% sequence similarity strongly suggest-
ing that the unnamed group represented a new species (50, 54). Full-length 16S rRNA
gene sequences (;1,500 bp) quickly became a standard requirement for the publica-
tion of new species proposals, while16S similarity values above 98.7% still required
DDH to determine relatedness. While 16S gene sequencing clearly provided quicker re-
solution of taxonomic issues, problems still remained (49, 55). This was especially true
for the Enterobacteriaceae, where in a number of instances 16S gene sequencing did
not have particularly good resolving power at the species level (48). This was partially
due to the highly conserved nature of the ribosomal gene (55). Species in genera
clearly resolvable by DDH (Edwardsiella, Enterobacter) yielded 16S rRNA gene sequence
results that were either identical or showed very little variation (48).

The advent of 16S rRNA gene sequencing as both a taxonomic tool and a routine
platform for bacterial identification in the clinical laboratory was rapidly followed by
the introduction of a wide range of molecular techniques with which to assess genetic
diversity and similarities of named or proposed species. These techniques included ma-
trix-assisted laser desorption ionization–time-of-flight mass spectrometry (MALDI-TOF),
multilocus sequence analysis (MLSA), average nucleotide identity (ANI), percentage of
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conserved proteins (POCP), digital DDH (dDDH), genome-to-genome distance calcula-
tor (GGDC), and whole-genome sequencing (WGS), among others (49, 54, 56). This ava-
lanche of new molecular technologies and techniques were less expensive and labor-
intensive and available to both clinical and research laboratories, which resulted in an
explosion in the number of new genera and species descriptions.

While the number of described species was relatively steady through 1994 (50), the
numbers have dramatically risen since then. By 2007, over 8,000 species had been
described, and this was more than a 400% increase since the AL in 1980 (42, 48). The
family Enterobacteriaceae experienced a similar increase in the numbers of genera and
species, with the greatest increase in percentages after 2005, which is a reflection of
technologic developments related to the description and phylogenetic classifications
of new taxa (Table 2). The single technology with the greatest impact has been WGS.

Because of the rapidly evolving landscape of microbial taxonomy, the family has
radically changed over the past 4 decades (1980 to 2020). Table 3 shows a snapshot of
that change, comparing a few selected genera that Farmer et al. (11) described in their
landmark publication of 1985 with their present status in 2020. The 2020 reference
point is the List of Prokaryotic Names with Standing in Nomenclature (LPSN) website
(https://www.bacterio.net/) curated by Aidan C. Parte, Leibniz Institute DSMZ.

The 1985 CDC data revealed 23 new species (;40% of which were associated with
one of six new genera, namely, Buttiauxella. Cedecea, Ewingella, Kluyvera, Moellerella,
and Tatumella). Most of these species were recovered from clinical sources or infec-
tions (80%) and could be biochemically separated from all other named taxa in the
family at that time. Furthermore, phenotypic properties for these species were based
on the characterization of multiple strains of each taxon. The 49 total species listed in
Table 3 for 1985 mushroomed to a total of 152 species in 2020 (one species, aerogenes,
remained the same but was changed to a different genus). By 2020, 16 of the 49 spe-
cies (33%) listed in 1985 have undergone taxonomic/classification revisions. Two gen-
era, one that has always presented taxonomic issues (Enterobacter) and another
thought to be a relatively uncomplicated genus (Klebsiella), had 87.5% and 67% of their
respective species reclassified post-1985. In the case of Enterobacter, all but two species
listed in 1985 now phylogenetically reside in other genera, including E. agglomerans
(Pantoea), E. amnigenus (Lelliottia), E. intermedius (Kluyvera), E. gergoviae (Pluralibacter),
E. aerogenes (Klebsiella), and E. sakazakii (Cronobacter) (57–61).

As of 2020, of the 14 genera listed, all but three (Cedecea, Ewingella, Moellerella)
have had new members added to each genus, with the greatest number involving
Enterobacter (n=33). A noted difference in the 2020 proposed species is the increasing
percentage of taxa (51/103, 49.5%) described from strictly environmental sources. This
is a reflection not only of the general availability of WGS and newer systematic meth-
ods but also the fact that natural ecosystems (water, soil, plants) have not been exten-
sively mined or explored for potential enterobacterial species. Additionally, many of
these more recently described nomenspecies can no longer be identified by simple
phenotypic characteristics. Additional classification changes (23.5%) between 1985 and
2020 have been due to phylogenetic investigations that resulted in the transfer of
established taxa to new genera (homotypic synonyms). Prime examples include

TABLE 2 Genus and species expansion in the family Enterobacteriaceae, 1974–2020

Source Yr No. of genera No. of species % Increasea Reference
Bergey’s Manual of Determinative Bacteriology (8th ed.) 1974 12 36 232b 1
Approved List 1980 18 80 122 37
Bergey’s Manual of Systematic Bacteriology 1984 20 76 25 1
Bergey’s Manual of Determinative Bacteriology (9th ed.) 1994 30 107 29 1
Topley & Wilson’s Microbiology & Microbial Infections (10th ed.) 2005 40 150 41 1
LPSNc 2020 68 355 136
aBased on number of species from the previous source or edition.
bFrom Rahn, 1937 (6).
cLPSN, List of Prokaryotic Names with Standing in Nomenclature (https://www.bacterio.net/).
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TABLE 3 Comparison of new genera and species proposed by the CDC in 1985 and present status in 2020a

Genusb

1985

Classification
change

2020

Classification
change CommentsSpecies

Human
sources

Disease
associated Species

Human
sources

Disease
associated

Buttiauxella (1)/(6) agrestis 2 2 No brennerae 2 2 No
ferragutiae 2 2 No
gaviniae 2 2 No
izardii 2 2 No
noackiae 1 2 No
warmboldiae 2 2 No

Cedecea (3)/(0) davisae 1 2 No Unnamed HGs
lapagei 2 2 No
neteri 1 1 No

Citrobacter (3)/(12) amalonaticus 1 1 No braakii 1 1 No
diversusc 1 1 Yes cronae 1 2 No
freundiid 1 1 No europaeus 1 2 No

farmeri 1 1 No C. amalonaticus
biogroup 1

gillenii 1 1 No
murliniae 1 1 No
pasteurii 1 2 No
portucalensis 2 2 No
rodentium 2 2 No Mouse

pathogen
sedlakii 1 1 No
werkmanii 1 1 No
youngae 1 1 No

Edwardsiella (3)/(2) hoshinae 2 2 No anguillarum 2 2 No Fish/eel
pathogen

ictaluri 2 2 No piscidia 2 2 No Fish pathogen
tarda 1 1 No

Enterobacter (8)/(34) aerogenes 1 1 Yes asburiae 1 1 No
agglomerans 1 1 Yes arachidis 2 2 Yes
amnigenus 1 2 Yes bugandensis 1 1 No
cloacaed 1 2 No chengduensise 1 1 No
gergoviae 1 1 Yes chuandensise 1 1 No
intermedium 2 2 Yes cowanii 1 1 Yes
sakazakii 1 1 Yes dissolvens 1 1 Yes
tayloraef 1 1 Yes helveticus 2 2 Yes

hormaechei 1 1 No
huaxensise 1 1 No
kobei 1 1 No
ludwigii 1 1 No
massiliensis 1 2 Yes
mori 2 2 No
muelleri 1 1 Yes
nimipressuralis 1 2 Yes
oligotrophicus 2 2 Yes
oryzae 2 2 Yes
oryzendophyticus 2 2 Yes
oriziphilus 2 2 Yes
pulveris 2 2 Yes
pyrinus 2 2 Yes
quasihormaechei 1 2 No
radicincitans 1 1 Yes
roggenkampii 1 2 No
sacchari 2 2 Yes
siamensis 2 2 No
sichuanensis 1 2 No
soli 2 2 No
tabachi 2 2 Yes
taylorae 1 1 Yes
turicensis 2 2 Yes
wuhouensis 1 2 No
xiangfangensis 2 2 Yes

Escherichia (5)/(2) coli 1 1 Yes albertii 1 1 No
fergusonii 1 1 Yes marmotae 2 2 No

(Continued on next page)
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TABLE 3 (Continued)

Genusb

1985

Classification
change

2020

Classification
change CommentsSpecies

Human
sources

Disease
associated Species

Human
sources

Disease
associated

hermannii 1 1 Yes
vulneris 1 1 No
blattae 2 2 No

Ewingella (1)/(0) americana 1 1 No

Klebsiella (6)/(13) pneumoniae 1 1 No aerogenes 1 1 No E. aerogenes
oxytoca 1 No africana 1 2 No
planticola 1 Yes alba 2 2 Yes
ozaenaeg 1 Yes grimontii 1 1 No
rhinoscleromatisg 1 Yes huaxiensis 1 2 No
terrigena Yes indica 2 2 No

michiganensis 1 1 No
ornithinolytica 1 1 Yes
pasteurii 1 2 No
quasipneumoniae 1 1 No
singaporensis 2 2 Yes K. variicola
spallanzanii 1 2 No
variicola 1 1 No

Kluyvera (2)/(2) ascorbata 1 1 No “cochleae” 2 2 Yes K. intermedia
cryocrescens 1 1 No georgiana 1 2 No

intermedia 1 1 No

Moellerella (1)/(0) wisconsensis No

Proteus (4)/(7) mirabilis 1 1 No alimentorum 2 2 No
vulgaris 1 1 No cibarius 2 2 No
penneri 1 No cibi 2 2 No
myxofaciens Yes columbae 2 2 No

faecis 1 2 No
hauseri 2 2 No
terrae 2 2 No

Providencia (4)/(6) alcalifaciens 1 No burhodogranariea 2 2 No
rettgeri 1 No heimbachae 1 2 No
rustigianii 1 No huaxiensis 1 2 No
stuartii 1 No sneebia 2 2 No

thailandensis 2 2 No
vermicola 2 2 No

Serratia (7)/(12) ficaria 1 No aquatilis 2 2 No
fonticola 1 No entomophila 2 2 No
liquefaciens 1 No “glossinae” 1 1 Yes S. fonticola
marcescens 1 No grimesii 2 2 No
oderifera 1 No inhibens 2 2 No
plymuthica 1 No microhaemolytica 2 2 No
rubidaea 1 No myotis 2 2 No

nematodiphila 2 2 No
oryzae 2 2 No
“quinivora” 1 1 Yes S. quinovorans
quinivorans 1 1 No
symbiotica 2 2 No
ureilytica 2 2 No
vespertilionis 2 2 No

Tatumella (1)/(5) ptyseos 1 No citrea 2 2 No
morbirosei 2 2 No
punctata 2 2 No
saanichensis 1 2 No
terrea 2 2 No

a1985 data are from Table 1 (11) regarding genera with addition of new species (post-1980); 2020 data are from the LPSN website (https://www.bacterio.net/) and include all
new species validly published since the data of Farmer et al. (11).1, found in clinical samples and/or infections;2, found in nonclinical samples.

bNumbers in parentheses are number of species in 1985/number of new species (2020).
cRejected name; identical to C. koseri.
dExisted as a phenospecies (genetically heterogeneous).
eRecovered from blood.
fCorrect name, Enterobacter cancerogenus.
gSubspecies of K. pneumoniae.

Janda and Abbott Clinical Microbiology Reviews

April 2021 Volume 34 Issue 2 e00174-20 cmr.asm.org 10

https://www.bacterio.net/
https://cmr.asm.org


Kosakonia (Enterobacter spp.), Raoultella (Klebsiella spp.), and Tatumella (Pantoea spp.)
(58, 62, 63).

Modern taxonomy and family expansion issues. The changing panorama of the
family Enterobacteriaceae in the modern molecular taxonomy era has resulted in a
number of advantages along with some limitations as well as issues (55, 56, 64). A cen-
tral issue for clinical microbiologists is the way new species are described. Already an
observable trend dating back to the late 1990s, the vast majority of new species are
described analyzing only a single strain (type). Today, .90% of new taxa are described
on this basis (50, 65). Although some taxonomists have questioned whether or not a
single strain should be sufficient to propose a new species (66) and ad hoc committees
have encouraged microbiologists to describe new species on the basis of more than
one strain (67), this has not happened. Already many of the recently described new
genera and species in the family Enterobacteriaceae have been proposed with only a
type strain. Recent examples in the enterobacteria include Mangrovibacter (68), Chania
(69), Limnobaculum (70), and Scandinavium (71). While such reports are of general aca-
demic interest, the limited amount of information that can be provided, including
genetic data, is troubling and whether the type strain is actually a centrist isolate (cen-
ter of properties for the species) is unknown.

A second issue involves phenotypic properties. With phenotype long considered
one of the cardinal features in the description of new species, its importance in regard
to classification is diminishing (55). Many taxonomic proposals, whether involving a
single isolate or a small number of strains, utilize primarily API miniaturized systems
(20E, 32E, 50CH, ZYM) or carbon source utilization panels such as the Biolog Gen III
MicroPlate for comprehensive biochemical characterizations of newly proposed groups
(68–72). While these systems are generally accurate in bacterial identifications, minia-
turized systems do not always parallel phenotypic properties generated by traditional
methods (11) and some tests are subject to considerable variation. An additional quan-
dary is the fact that when new species are proposed and compared to nearest neigh-
bors, they are not tested in-house; instead, data are pulled from previous publications
which may not have used the same test methodology. Such factors bring into question
how reliable biochemical data may be, an important issue for diagnostic laboratories.

The general availability of WGS has led to a significant increase in laboratories
attempting to become systematists overnight without understanding the fundamental
rules of nomenclature and taxonomy. This has led to species proposal submissions
without any recognition of technical requirements to formally propose a new taxon
(67). A considerable number of recently proposed species have also been found to rep-
resent heterotypic synonyms, that is, different names and types that in the opinion of
taxonomists represent the same taxon. Table 3 has a number of such examples, includ-
ing the publication of Enterobacter muelleri in 2015 (73) that by computational analysis
of sequenced Enterobacter genomes (74) is identical to Enterobacter asburiae, which
was described in 1986 (75). Furthermore, many proposed genera for the family
Enterobacteriaceae although effectively published (in a public journal easily accessible)
have not been validly published (see Nomenclature and Taxonomy). Without valida-
tion, these genera and species have no standing in the medical and scientific literature.
A prime example of this situation is the 2005 publication of the taxon Averyella dalhou-
siensis (76). This report details over 20 isolates, including one from a case of septicemia,
but as of 2020 has no standing in the literature according to the LPSN website for one
or more reasons. Many such genera proposed for the family are in the same situation
and, if validated, would considerably increase the size of the family listed in Table 2.

NOMENCLATURE AND TAXONOMY
Taxonomy

Nomenclature and the ICNP. The correct name and publication of new taxa within
an ordered system of prokaryotes, including the family Enterobacteriaceae, are gov-
erned by the International Code of Nomenclature of Prokaryotes (ICNP), with the ranks
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of genus and species being the cornerstone for such a categorical classification system.
In 2019, an update of the ICNP (2008 revision) was published for the first time in more
than 25 years (77). General Consideration 2 essentially defines the purpose of the ICNP,
which is “To achieve order in nomenclature, it is essential that scientific names be regu-
lated by internationally accepted Rules” (77). The ICNP covers not only the correct
naming of a genus and/or species but also the requirements to publish and validate a
taxon, which constitutes an official form of registering or indexing a name through a
centralized system (55). This includes such things as Enterobacter oligotrophicus (correct
name) rather than Enterobacter oligotrophica (misspelling) and various homotypic
(more than one name associated with the same types that belong to the same taxon)
or heterotypic synonyms of previously published genera and species (Table 3).

Validation. Rule 27 of the ICNP requires the publication of a new taxon either in the
International Journal of Systematic and Evolutionary Microbiology (IJSEM) or effective pub-
lication in another journal with subsequent publication on a Validation List in IJSEM (78).
Along with this are additional requirements concerning the deposition of type strains,
derivation (etymology) of a new name, and others. A problematic issue related to this
concerns the fact that almost 50% of all taxa between the ranks of subspecies and class
that are effectively published in journals other than IJSEM are never validated (78).
Reasons for this trend are not clear. For the family Enterobacteriaceae, in addition to
Averyella (76), this includes the genera Atlantibacter, Edaphovirga, Jejubacter, Nissabacter,
and Oceanomonas [sic] (https://lpsn.dsmz.de/family/enterobacteriaceae). Failure to vali-
date creates confusion in the scientific and medical literature. As an example, the genus
Atlantibacter was created in 2016 to reclassify two species (Escherichia hermannii and
Salmonella subterranean, the latter of which is not a salmonella but an organism closely
related to E. hermannii) to the new genus (79). Because of lack of validation, it is unclear
whether the authors simply failed to submit the publication for validation to IJSEM or
lacked the required components for validation in their publication or whether there
were technical flaws in their analyses. Since E. hermannii is a known although uncom-
mon human pathogen, this has clinical significance.

Nomenclature anomalies in the family Enterobacteriaceae.With the emergence of
modern-day metrics, including DDH and ANI, with which to assess or reassess related-
ness among taxa in the family Enterobacteriaceae, a number of nomenclature issues
which are of great importance to the medical community have arisen. As early as 1968,
Brenner et al. (80) determined that E. coli and Shigella flexneri were more than 75%
related by DDH when tested at 75°C, which is well above the threshold level of species
identity of 70% reassociation with #5°C change in melting temperature (DTm) (81).
These studies were subsequently confirmed for all Shigella species, which were 80% to
89% related to E. coli strains (51). Shigella spp. have evolved over time through a num-
ber of gene deletion or plasmid acquisition events but are still, on a genetic basis, the
same species (82, 83). In a similar fashion, Yersinia pestis and Yersinia pseudotuberculosis
are highly related by DDH and whole genome-to-genome sequence analysis (84, 85).
Together they constitute a single species on a genetic basis. According to the rules of
the ICPN (Principle 6), the earliest published name has priority over synonyms (77). In
the case of Yersinia, Y. pseudotuberculosis (1889) has priority over Y. pestis (1896).
Similarly, for Shigella, E. coli (1895) has precedence over Shigella dysenteriae (1897).
However, while genetically a single species, the disease manifestations of shigellosis
(versus E. coli) and plague (versus Y. pseudotuberculosis) have immense clinical, medi-
cal, and epidemiologic ramifications that would result from the merging of each group.
However, Principle 1 of the ICPN requires the maintenance of the stability of names,
particularly when the use of a name could cause error or confusion. So, these species
remain as originally published because of their medical importance, although both
constitute “artificial species” at the DNA level.

Classification. Bacterial classification is the orderly arrangement of taxonomically
defined entities (species) on a genetic basis (55). The present system is data driven and
theoretically attempts to order such groupings on an evolutionary or phylogenetic

Janda and Abbott Clinical Microbiology Reviews

April 2021 Volume 34 Issue 2 e00174-20 cmr.asm.org 12

https://lpsn.dsmz.de/family/enterobacteriaceae
https://cmr.asm.org


basis mimicking nature (86). Like bacterial nomenclature, prokaryotic classification has
relied on similar traits or characteristics to produce the present organizational structure
consisting of a series of artificial hierarchical ranks above species (class, order, family,
genus) (55). These traits or characteristics have, as in the case of bacterial nomencla-
ture, evolved over time from phenotypic (morphology, physiology, chemotaxonomy)
to genetic (DDH, MLSA, ANI) markers. An excellent minireview on the subject is by
Schleifer (86). Unlike nomenclature, however, the 16S ribosomal gene provides the cor-
nerstone to such a classification system and is viewed as the gold standard for bacterial
phylogeny (55, 86). The 16S ribosomal gene and a limited number of other housekeep-
ing genes found in essentially all prokaryotic species (recA, rpoB, EF-Tu, gyrA) together
form the foundation for modern-day bacterial phylogeny (55, 86).

Unlike bacterial nomenclature, there is no formal body or international organization
that is universally approved to oversee classification changes (1, 55, 86). Rather, the ac-
ceptance or rejection of classification changes is dependent upon the formal data pre-
sented and whether or not the classification proposal is widely accepted or rejected by
the scientific community. This latter point means that it is basically decided by usage
in the scientific and medical literature, which usually takes at least 2 or 3 years from
date of publication (1). These collective facts mean that unlike the proposed name for
a new taxon, a classification change never becomes “official” (1). A second relevant
point is the fact that because there are no governing rules, any researcher may pro-
pose a classification change without any focus on taxonomy or without having been
trained in the classification or identification of bacteria (87). This can lead to additional
taxonomic confusion in an already confusing field. Finally, by its very nature, bacterial
classification is always in a state of flux and never relatively stable. Classification
changes can occur rapidly and can be based on the use of new or different technology,
bacterial populations analyzed, and analytical or computational methods chosen. The
family Enterobacteriaceae is an excellent example of this. The genus Metakosakonia
was proposed by Alnajar and Gupta (88) in 2017 to house the taxon Enterobacter mas-
siliensis based upon comparative genomic studies. Recently, a proposal has been made
to unify the genus Metakosakonia with the genus Phytobacter, since Phytobacter is
based upon digital DDH, average amino acid sequence identity, and conserved signa-
ture insertions/deletions (indels) (89). Other proposed taxonomic classification changes
involve the genus Izhakiella (90), two subspecies of Klebsiella pneumoniae (91), and
reassignment of Proteus cibarius as a later heterotypic synonym of Proteus terrae (92).

The Family Enterobacteriaceae—Current Status

Present definition for the family. The vast majority of established genera and spe-
cies presently included in the family Enterobacteriaceae, order “Enterobacterales,” have
been recognized for over 50 years (15). Early taxonomic classifications at the rank of
family relied on a number of common traits in addition to phenotypes and genetic
characteristics. A perfect example of the use of this classification system was the family
Vibrionaceae proposed by Véron in 1965 (93). This family was initially composed of
three genera (Vibrio, Aeromonas, Plesiomonas) that had several features in common,
including ecologic habitats (freshwater, marine), similar disease syndromes (gastroen-
teritis, wound infections), and phenotypic features (oxidase positivity, facultatively an-
aerobic). It was not until years later that phylogenetic investigations clearly demon-
strated that aeromonads belonged in their own family (94) while Plesiomonas should
be transferred to the family Enterobacteriaceae (14). Despite these technologic advan-
ces, clinical microbiologists continue to think of these genera as a single cohort
because of clinical histories (water exposure) and common cultural and biochemical
properties.

The family Enterobacteriaceae can be thought of in a similar fashion. Members
added to this group over the years share a number of common features, including phe-
notypes (oxidase negative, ECA positive, nitrate reductase), habitats (gastrointestinal
tract of vertebrates, including humans), and disease patterns (diarrhea, sepsis, urinary
tract infections) (1–3, 15). They are also recovered from clinical samples on a variety of
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common selective and differential agars used in the laboratory for decades. Some of
these groupings within the family have stood the test of time. For instance, the tribe
Proteeae, which was named by Castellani and Chalmers in 1918 and subsequently con-
tained the genera Proteus, Providencia, and Morganella (https://lpsn.dsmz.de/tribe/
proteeae), still group together today on a phylogenetic level. By 2005, the inclusion of
Plesiomonas (oxidase positive) in the family along with endosymbionts of insects and
other fastidious species has made a literal description of the Enterobacteriaceae difficult
(15). Furthermore, while many new enteric genera with more unusual properties have
been described over the past 20 years, microbiologists again still think of the main
members of this family in a fashion similar to those originally included in the
Vibrionaceae (95).

Core and peripheral members. The present definition for the family became more
uncertain with the introduction of DDH (51). Using DDH as the criterion, DNA from
members of the family exhibited at least 20% relatedness to the type species, E. coli
(15). However, in the 2005 edition of Bergey’s Manual of Systematic Bacteriology, noted
exceptions to this rule included the Proteeae, Hafnia, and Edwardsiella, which were
only 5% to 20% related (15). Core members were defined as enterobacteria that were
40% to 50% related to E. coli. This included such genera as Enterobacter, Klebsiella,
Citrobacter, and Salmonella (96). Some other genera were intermediate in their DNA
relatedness values (25% to 30%) compared to core and peripheral groups. Taxa includ-
ing Cedecea, Kluyvera, and Serratia showed this intermediate level of relatedness (96).

Phylogenetic studies. There have been surprisingly few phylogenetic investiga-
tions in which a large collection of enterobacterial genera and species have been
analyzed in any great detail. Most of these studies have involved the analysis of one
or more housekeeping genes such as the 16S gene. Unfortunately, in regard to the
Enterobacteriaceae, 16S rRNA gene sequencing has low discriminatory power, par-
ticularly in reference to closely related species (48, 55, 97, 98). Housekeeping genes
used to assess phylogenetic relatedness within the family with higher resolving
power than the 16S gene include elongation factor Tu (tuf), the F-ATPase b-subunit
gene (atpD), the DNase gyrase subunit B gene (gyrB), and the chromosomal replica-
tion origin (oriC), among others (97, 99–102).

Notwithstanding the fact that different genes and taxa have been analyzed and
assessed in various publications, several basic conclusions can be drawn from these
collective phylogenetic studies of the family. First, in general, neighbor-joining phylo-
genetic trees constructed from housekeeping gene sequence analysis support previ-
ous DDH studies on the position of genera relative to the deep-rooted core members
of the family, including E. coli. The genera least related to core members and those
located at the periphery of dendritic trees include Plesiomonas, Xenorhabdus/
Photorhabdus, the Proteeae, Yersinia, and Serratia (97, 99, 102). Second, the family dis-
plays polyphyletic branching (98). While some of the cladistic discrepancies previously
noted in the family can be resolved by recent classification changes proposed for cer-
tain species, others cannot. Thus, the present family appears to contain a number of
taxa whose lineage is distinct from core members.

Species or taxa of uncertain status. There are a number of nomenspecies or taxo-
nomic groups at the genus and/or species rank that have nomenclature or classifica-
tion issues at present.

(i) Salmonella species. The genus Salmonella is extremely complex on an evolution-
ary basis (103). Currently, three Salmonella spp. are validly published as correct names
(https://lpsn.dsmz.de/genus/salmonella). One of these species, Salmonella subterranea,
was proposed in 2004 for an acid-resistant bacterium recovered from subsurface sedi-
ment (104). A recent study including 16S rRNA gene sequencing, MLSA of four house-
keeping genes, and concatenated hypervariable sequences of 10 housekeeping pro-
teins indicate that this species aligns with Escherichia hermannii into a separate clade
distinct from both Salmonella and Escherichia (79). The authors have proposed to trans-
fer both species to a new genus, “Atlantibacter” (79). However, at the time of writing,
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this genus still has not been validated, so both species remain in their originally
assigned genera. Other phylogenetic investigations suggest that two subspecies of
Salmonella enterica (salamae, houtenae) are polyphyletic in nature, being composed of
at least two distinct phylogroups (103). This suggests that more taxa are yet to be
described.

(ii) Enterobacter and Enterobacter hormaechei. Enterobacter hormaechei, previously
referred to as enteric group 75, was originally part of the E. cloacae complex (105).
Population studies suggest that E. hormaechei may be the predominant species within
the E. cloacae complex causing HAI (74). The LPSN website presently lists five validated
subspecies (https://lpsn.dsmz.de/species/enterobacter-hormaechei). E. hormaechei is
presently in “taxonomic chaos” and disarray. Using WGS, Sutton and others (74) have
proposed that two subspecies of E. hormaechei (subsp. hoffmannii and subsp. xiangfan-
gensis) are heterotypic synonyms of a separate species, E. asburiae. An entirely different
conclusion using similar techniques has just been drawn by Wu et al. (106). In their
investigations, the authors propose the following: (i) that E. hormaechei subsp. hoff-
mannii should be elevated to species status and not assigned to E. asburiae (74); (ii)
that all present subspecies assignments in the genus Enterobacter are incorrect; (iii)
that many Enterobacter genome sequences in GenBank need to be corrected and cura-
ted; and (iv) at least 14 tentative novel species have been detected in the genus (106).
Other investigators have also identified new lineages representing novel species within
E. hormaechei (107). If the majority of findings from Wu et al. (106) are confirmed, it
throws the genus Enterobacter into total confusion from a clinical and medical perspec-
tive in regard to terminology, nomenclature, epidemiology, and disease pathogenesis.

(iii) Yersinia ruckeri. Yersinia ruckeri has a very checkered taxonomic history. This
bacterium is one infectious cause of redmouth disease in rainbow trout (108) and has
also been recovered from a human wound infection (109). The taxon was initially
placed in the genus Yersinia based upon mol% G1C content and biochemical similar-
ities; however, considerable data suggest that it is not a true yersinia. DNA relatedness
investigations indicate that it is 30% related to both Yersinia and Serratia, while early
studies suggest that it biochemically resembles Serratia and Salmonella (“Arizona”)
(108, 110). Phylogenetic studies constructing a multilocus enzyme electrophoresis den-
drogram (110) and a 16S RNA maximum-likelihood tree (111) place this taxon at the
extreme periphery (distantly related) of Yersinia, with the cumulative data implying
that Y. ruckeri should not be classified within the genus.

(iv) Edwardsiella tarda biogroup 1. The vernacular name Edwardsiella tarda bio-
group 1 was coined by the CDC in 1985 for a biochemically atypical group of E. tarda
isolates (11). In contrast to classic strains, the atypical isolates were sucrose positive
and H2S negative. All of the original isolates identified by the Japanese were from
snakes (112). Since this report, a biogroup 1 strain has been associated with human
cases of cholelithiasis (113) and sepsis (114). DDH indicates that the biogroup 1 strains
are 69% to 74% related to the type strain of E. tarda (112). Phylogenetic investigations
have not been conducted to date. It may be that these unusual isolates are simply a
biotype of E. tarda or that they may represent a new subspecies unless phylogenetic
investigations indicate otherwise.

(v) Enteric groups, HGs, and related taxa. There are many apparently distinct taxa
residing in the family Enterobacteriaceae that have yet to be named but have been
identified on the basis of both phenotypic and genotypic properties. The CDC has
given a number of these groups the general designation of “enteric group,” followed
by a corresponding number, such as enteric group 17 (1, 11). Table 4 lists some of
these groups that have been described in the literature with their present standing.

In addition to numbered enteric groups, other nomenspecies are known to contain
HGs that have not been characterized to date. This includes Cedecea (genomospecies 3
and 5), Ewingella (strain 0679-79), and Kluyvera (genomospecies 3), among others (11, 115).
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Cladistic Analysis, and Phylogenetic Investigations

A polyphyletic family. Bacterial taxonomy involves three important components,
including identification, nomenclature, and classification (97). Classification involves
the orderly arrangement of genetically similar organisms into a related evolutionary
group or clade (cladistic analysis). Past classification of members of the family
Enterobacteriaceae were primarily restricted to phenotypic properties, DNA relatedness
studies, and 16S rRNA gene sequence studies.

Past phylogenetic findings have augmented earlier DNA relatedness reports, indi-
cating that there is extensive evolutionary divergence within the family as presently
constructed and defined (see “Phylogenetic studies” above). These phylogenetic inves-
tigations, however, were limited by the number of housekeeping genes investigated
and the number of taxa (genera and species) analyzed. In a landmark 2016 publication
by Adeolu and associates (98), the authors constructed three phylogenetic trees based
upon 1,548 core proteins, 53 ribosomal proteins, and 4 MLSAs, respectively, for 179
whole genomes of members representing 49 validated taxa of the order
“Enterobacterales.” These collective trees indicated that the order could be broken
down into seven monophyletic groups at the rank of family. Only 3 of the 49 genera
evaluated gave atypical results (Buchnera, Plesiomonas, Wigglesworthia). Furthermore, a
series of indel signatures were detected such that five conserved signature indels
(CSIs) were order specific, while an additional 66 CSIs were family or clade specific. A
follow-up investigation by Alnajar and Gupta (88) investigating only members of a
potentially redefined family Enterobacteriaceae found that 78 genome-sequenced spe-
cies could be subdivided into six well-circumscribed subfamilies, with a seventh
termed “Enterobacteriaceae incertae sedis clade” containing Mangrovibacter and
Shimwellia (88). Again, in this study, a number of CSIs that were specific to one or more
groups were identified.

Proposal to reclassify members of the order “Enterobacterales.” Based upon a sig-
nificant amount of phylogenetic information in the literature, Adeolu et al. (98) have
made a number of classification proposals for members previously assigned to the
family Enterobacteriaceae. In addition to proposing the name “Enterobacterales” to
replace the previous order name “Enterobacteriales,” which has never been validated,
the authors propose placing some current family members into six newly created fami-
lies while leaving other genera in the family Enterobacteriaceae. These six new families
include the Erwiniaceae, Pectobacteriaceae, Yersiniaceae, Hafniaceae, Morganellaceae,
and Budiviciaceae, which exhibit .60% genome-to-genome relatedness (98). Figure 1
illustrates how genera would be assigned and reclassified within the order
“Enterobacterales” if formally accepted and approved. The LPSN website has already
adopted these classification changes (Aidan C. Parte, Curator, Leibniz Institute DSMZ).
Figure 1A illustrates what genera would still remain within the family Enterobacteriaceae,

TABLE 4 Present status of CDC enteric groupsa

Enteric group Phenotype Human source(s)b Current designation Reference(s)
17 Atypical Citrobacter or Enterobacter bld, wd, rt, urn Enterobacter asburiae 75
45 Atypical “Hafnia-like” bld, wd, stl Yokenella regensburgei

(“Koserella trabulsii”)
45, 277

57 H2S1 bacteria stl Leminorella 278
58 wd Averyella dalhouensis 77
59 ADH1 “E. agglomerans-like” rt Buttiauxella noackiae 279
60 Inactive group urn, rt Unnamed 1, 11
63 Buttiauxella None Unnamed 1, 11
64 Buttiauxella None Unnamed 1, 11
68 DNase1 urn Unnamed 1, 11
69 “Enterobacter sakazakii-like” bld Unnamed 1, 11, 280
137 “Citrobacter farmeri” or

“Citrobacter amalonaticus-like)
rt, wd, urn Unnamed 1, 281

aData from references 1 and 11. Abbreviations: ADH, arginine dihydrolase; bld, blood; H2S, hydrogen sulfide production; rt, respiratory tract; stl, stool; wd, wound; urn, urine.
bClinical sources.
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excluding nonvalidated genera. The family Enterobacteriaceae with 33 genera
would still be the largest family within the order “Enterobacterales,” although many
genera with long-standing associations with this family, such as Edwardsiella,
Hafnia, Morganella, Proteus, Providencia, Serratia, and Yersinia, would be transferred
into one of six new families (Fig. 1B). Plesiomonas, located in the top right of Fig.
1A, appears there because it belongs to the order but has not been assigned to a
specific family as of this date.

Figure 1B depicts the remaining six proposed families, all of which are much smaller
in size than the Enterobacteriaceae. A number of new terms are used in addressing the
phylogenetic relationships of members of this order at the LPSN website. “Children”
refers to a taxon belonging to a hierarchical classification above it, such as the genus
Salmonella being one of a number of “children” of the family Enterobacteriaceae.
“Siblings” refers to other genera in the same family (Fig. 1B), such as Proteus and
Providencia being siblings (along with others) in the proposed family Morganellaceae
(Aidan C. Parte, personal communication). The family Thorselliaceae, which currently

FIG 1 Proposed classification of current members of the family Enterobacteriaceae according to Adeolu et al. (98). (A)
Revised family Enterobacteriaceae; (B) six newly proposed families for inclusion in the order Enterobacterales.
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contains two genera, has been listed as a member of the “Enterobacterales”
(Enterobacteriales). However, although a member of the Gammaproteobacteria, it has
not as of this date been assigned to an order (95, 116).

Clinical and public health implications of proposed taxonomic changes. The com-
bined phylogenetic studies of both Adeolu et al. (98) and Alnajar and Gupta (88) clearly
highlight numerous taxonomic and classification flaws within the Enterobacteriaceae on an
evolutionary basis. Whether these proposed classification changes will be generally
accepted by the medical and scientific communities remains to be seen. The same group
has previously proposed sweeping changes to the genus Mycobacterium (117) and crea-
tion of a new order, families, and genera currently containing Ureaplasma and other gen-
era (118). Both of these proposals have met with considerable resistance from both august
subcommittees of the ICSP and an international group of medical and scientific professio-
nals and researchers (119, 120). Reasons for the proposed rejections include violation of
one or more rules of the ICNP and confusion for health care and harm for patients.

In a similar fashion, there is concern regarding how such proposals might affect the
family Enterobacteriaceae, in particular in regard to the medical community and clinical
microbiologists. If accepted, archival data accumulated for decades on the family
would not be directly comparable to future research studies of the Enterobacteriaceae
as redefined. This could conceivably impact reports on virulence factors, pathogenicity,
and clinical studies involving isolation, identification, and susceptibility profiles of
organisms such as carbapenem-resistant Enterobacteriaceae (34). Epidemiologic inves-
tigations might also be impacted. As an example, FoodNet foodborne disease surveil-
lance data currently include four species within the family (Salmonella, Shigella, Shiga
toxin-producing E. coli, Yersinia). If the proposal is subsequently approved, Yersinia
would be removed from the Enterobacteriaceae, even though the four foodborne dis-
ease agents exhibit many properties in common. A similar impact could be seen for
HAI that currently include Proteus and Serratia as enterobacteria (https://www.cdc.gov/
nhsn/datastat/index.html). While most of the changes proposed above do not involve
genus or species designations, classic references and texts would need to be revised.
More importantly, continued upheaval in nomenclature and taxonomy involving the
fields of medicine and clinical microbiology leads to suggestions to completely disre-
gard new taxonomy (118), a viewpoint that is counterproductive to both the medical
and scientific communities.

ENTEROBACTERIACEAE—ENVIRONMENTAL DISTRIBUTION
Extension in Ecohabitats of Enterobacteria

One of the less well appreciated aspects of the family is the increasing detection of
members in an expanding panorama of environmental niches and ecosystems. The
majority of these ecohabitats can be broken down into several major categories, with
the predominant genera depicted in Fig. 2. These include the gastrointestinal tracts of
vertebrates (humans, animals), vegetation (plants, trees, fruit, flowering ornamentals,
grains), insects (including endosymbionts), and aquatic habitats such as freshwater,
thermal springs, and marine or saline sources (1, 2, 15). A catch-all category for lack of
a better term has been coined “miscellaneous,” which include such reservoirs as soil
(landfill), shellfish, nematodes, and the International Space Station (69, 121). None of
these categories occur as “silos”; rather, these ecohabitats coexist together in various
symbiotic relationships, such as the rhizosphere and submerged aquatic vegetation as
two examples (122, 123).

Selected Ecosystems

Vegetation. Depending upon the genus and species, plant-associated members can
exist in a number of different states associated with various vegetations (fig. 2). These
include intimate relationships with plant species (epiphyte), within the internal structures
of a plant (endophyte), or as a symbiont, a saprophyte, or a pathogen (124). Of these
states, the one of cardinal importance and concern is the role of enterobacterial species as
pathogens of agricultural produce, ornamental flowers, and trees. There are basically four

Janda and Abbott Clinical Microbiology Reviews

April 2021 Volume 34 Issue 2 e00174-20 cmr.asm.org 18

https://www.cdc.gov/nhsn/datastat/index.html
https://www.cdc.gov/nhsn/datastat/index.html
https://cmr.asm.org


types of plant diseases or infections associated with enterobacteria. These include (i) rapid
necrosis, (ii) progressive tissue maceration (soft rot), (iii) occlusion of vascular vessels (wilt),
and (iv) hypertrophy leading to gall, tumor, or canker formation (125).

By far, the plant disease that has received the greatest attention due to its impact is
soft rot, which is most frequently associated with species of two genera, Pectobacterium
and Dickeya (5, 126–128). Both genera secrete a number of extracellular enzymes, includ-
ing pectinases, which degrade pectin-containing structures in plant cell walls, leading to
wet rot of storage organs such as tubers and bulbs (128). Data from the early 1980s indi-
cate that at that time, the economic loss from soft rot ranges from $50 to $100 million
per annum (5, 15). The disease can be sporadic in nature or devastating, attacking either
growing fields or storage units containing beets, corn, and lettuce. Soft rot affects only
vegetables and ornamental plant production.

Another important soft rot infection is blackleg disease of potatoes. This infection,
caused by both Dickeya and Pectobacterium species, but in particular P. atrosepticum,
occurs worldwide, including New York and the northeastern United States. (129).
Blackleg primarily manifests itself by attacking the stems of potatoes after initial
growth in seed tubers. In its more severe form, the stems become darkened and decay,
causing the “blackleg” appearance (128, 130). One study suggests that Dickeya alone
can be responsible for a 20% to 25% reduction in potato yields (5).

Fire blight is a devastating necrogenic disease of pome fruit trees, particularly pears
and apples (126, 130, 131). The etiologic agent is Erwinia amylovora. Fire blight occurs
worldwide but is more associated with young trees (,2 years) growing in temperate
climates (126). In 2003 alone, fire blight was estimated to cause more than $100 million
annual loss to the fruit industry in the United States (131), and massive national pan-
demics involving pear trees have occurred multiple times in Israel (132). The disease
progresses from the epiphytic state associated with cankers, where it can subsequently
be released, multiply, and attack various parts of the tree, including flowers, leaves,
branches, and roots (131, 132). Fire blight most often manifests itself in a burnt-like
appearance on infected tissues along with wilting and watermark (132). Currently there
is no cure for this as well as other enterobacterial plant-associated diseases.

Several other enterobacterial plant-associated diseases bear special mention (133).
Acute oak decline (AOD) is a relatively new disease affecting oaks in southeast England
and the midlands bordering Wales. AOD is characterized by weeping lesions on oak

FIG 2 Categorical representation of key enterobacterial genera associated with various ecosystems. (Adapted from reference 2.)
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trees, dark fluid seeping from cracks in the outer bark, and irregularly shaped lesions in
the inner bark (133, 134). While the microbial flora of AOD is complex, two predominant
bacteria are thought to play important roles in the disease process, namely, Brenneria
goodwinii and Gibbsiella quercinecans (134). Severely affected trees can die within 4 to
5 years. Both Pantoea agglomerans and Pantoea ananatis cause a variety of diseases in
fruit, vegetables, and grains (124, 135). P. agglomerans, which causes boll rot in cotton,
has been reported to be responsible for 10% to 15% of annual crop losses.

Table 5 lists some of the key plant diseases linked to enterobacterial species. There
are a number of excellent reviews that cover various aspects of plant diseases concern-
ing the etiologic agents, taxonomy, susceptible hosts, disease manifestations, pathoge-
nesis, and control and remediation processes (128, 130, 135–138).

Insects. Insects collectively comprise the largest number of genera and species on
planet Earth and therefore exhibit the greatest diversity phylogenetically as well as in

TABLE 5 Key enterobacterial species associated with plant diseases

Pathogen Disease Type of infectionb Hostc Reference(s)
Brenneria alni Canker 1 Alder (Alnus spp.) 125, 136
Brenneria nigrifluens Canker 1 Walnut (Juglans regia) 125
Brenneria populi Canker 1 Poplar (Populus euramericana) 282
Brenneria roseae Acute oak disease 1 Oak (Quercus robur, Quercus petraea) 283
Brenneria rubrifaciens Canker 1 Walnut (Juglans regia) 125
Brenneria salicis Wilt, watermark 3 Willows (Salix spp.) 125, 284, 285

Dickeya chrysanthemi Wilt, soft rot 2, 3 Bananas (Musa spp.), maize (Zea mays),
chrysanthemum (Chrysanthemum spp.),
orchids (Vanda spp.)

128, 136, 286, 287

Dickeya dadantiia Blackleg 2 Potato (Solanum tuberosum), African violets
(Saintpaulia ionantha)

126

Dickeya dianthicola Blackleg 2 Potato (Solanum tuberosum) 129
Dickeya paradisciaca Root rot 1 Bananas (Musa spp.) 125, 136, 288
Dickeya solania Blackleg 2 Potato (Solanum tuberosum) 126, 128
Dickeya zeae Bacterial stalk rot, rice

foot rot, soft rot
2 Bananas (Musa spp.), maize (Zea mays), rice

(Oryza sativa)
128, 289, 290

Erwinia amylovoraa Fire blight, wilt 1 Apples (Malus domestica), pears (Pyrus
communis), other fruit

125, 126, 131

Erwinia mallotivora Dieback disease, black
leaf spot

1 Papaya (Carica papaya) 125, 291, 292

Erwinia tracheiphila Cucumber wilt 3 Cucumber (Cucumis sativus), squash
(Cucurbita spp.), pumpkins (Cucurbita
spp.), gourds (Cucurbita pepo)

125, 293

Lonsdalea quercina Drippy blight 2 Coast live oak (Quercus agrifolia) 125, 155

Pantoea agglomerans Blight, boll rot, center
rot, gall formation, wilt

1, 2, 3, 4 Beet (Beta vulgans), cotton (Gossypium
hirsutum), maize (Zea mays), onion (Allium
cepa), wisteria (Wisteria)

135, 137

Pantoea ananatis Brown spot, brown stalk
rot, center rot

1, 2 Cantaloupe (Cucumis melo), honeydew
melons (Cucumis melo), maize (Zea mays),
onion (Allium cepa), rice (Oryza sativa)

124, 135, 137

Pantoea stewartii Leaf blight, Stewart’s wilt 3 Cotton (Gossypium hirsutum), eucalyptus,
maize (Zea mays)

135

Pectobacterium atrosepticuma Blackleg 2 Potato (Solanum tuberosum) 125, 128, 129
Pectobacterium carotovoruma Soft rot 2 African violets (Saintpaulia ionantha),

cucumber (Cucumis sativus), lettuce
(Lactuca sativa), okra (Abelmoschus
esculentus), potato (Solanum tuberosum),
sugar beets (Beta vulgans), watermelon
(Citrellus lanatus)

125, 126, 128

aOne of the top 10 plant pathogens according to Mansfield et al. (126).
bTypes: 1, necrosis; 2, maceration; 3, vascular wilt; 4, gall or tumor formation.
cSelected hosts.
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total biomass and environmental distribution (139). While insects provide a number of
beneficial effects globally, including pollination, pest control, bioremediation, and sap-
rophytic “recycling,” they can also have deleterious effects, such as the destruction of
agricultural crops and deforestation (see “Vegetation” above). Very few studies to date
have looked at other roles insects may play in the biosphere.

Enterobacteria are carried by a wide range of insects, including flies, moths, and
cockroaches. The two most extensively investigated species are the house fly (Musca
domestica) and blow flies (Chrysomya megacephala, Protophormia terraenovae)
(140–142). Studies of insects collected from various sites (farms, dairies, kennels, fresh
food markets, restaurants, garbage piles) all show a number of common findings.
These include the following: (i) regardless of the geographic region (Indian subconti-
nent, Southeast Asia, Africa), all studies exhibit high enterobacterial positivity rates
from samples analyzed, typically ranging between 20% and 70% (142); (ii) the predomi-
nant species identified in most studies are Escherichia coli and Klebsiella pneumoniae
(140, 142); (iii) isolates from a variety of genera have been recovered, including
Citrobacter, Enterobacter, and the Proteeae, among others (140, 142); and (iv) many rec-
ognized human pathogens have been identified, including Shiga toxin-producing E.
coli, Salmonella species including Salmonella enterica serovar Typhi, Shigella, and Y.
enterocolitica (140, 142–144). Members of the family Enterobacteriaceae have also been
found to be predominant flora in flying insects of the order Diptera recovered from
British hospitals (145). Together, these data suggest that these insects might be impor-
tant vectors for foodborne or health care-associated infections.

Cockroaches are an omnipresent insect group that inhabit many different niches,
including the hospital environment (146, 147). Some historical data suggest a role for
cockroaches in both human and health care-associated infections. However, much of
these data predate modern taxonomy, laboratory techniques, and epidemiologic
methods (147). Cockroaches have also been implicated as potential pathogens of con-
sumable products due to the recovery of many foodborne pathogens from this poten-
tial vector, including Salmonella, Shigella, and E. coli O157:H7 (148, 149). The German
cockroach (Blattella germanica) has been studied by several investigators, and results
are surprisingly similar to those from studies on house and blow flies (146, 149). These
cumulative results show that enterobacterial genera and species are commonly found
in B. germanica, including food-associated pathogens, and as with flies, the principal
species isolated are E. coli and K. pneumoniae.

(i) Insects as mechanical vectors. Insects play an important role in the perpetuation
of vegetative diseases by transmission of many viral agents from infected to uninfected
plants (150). It is likely that insects serve as vectors of bacterium-associated plant dis-
eases in a fashion similar to that of viruses, although to what extent is not completely
understood. Phytopathogens and their associations with insects can have narrow or
broad host specificity, may exist in one of several symbiotic states, and can vary geo-
graphically based upon environmental factors like climate, moisture, and vegetation
(151). The pea aphid (Acyrthosiphon pisum) can serve as host to several phytopatho-
gens, including Dickeya dadantii, Pantoea stewartii, and Erwinia aphidicola, which cause
disease in potatoes, maize, peas, and beans (151). P. atrosepticum has been isolated
from trapped insects and symptomatic potato plants exhibiting soft rot, as have turnip
root flies, cabbage moths, and green lacewing larvae (152). In contrast, P. stewartii has
a very restricted association with the corn flea beetle (Chaetocnema pulicaria) in caus-
ing Stewart’s wilt (leaf blight) of maize (151, 152).

Many other insect vectors have been involved in the transmission of plant diseases.
The green stink bug (Nezara viridula) can transmit P. agglomerans to cotton, precipitat-
ing boll rot (135, 153). Center rot of sweet onions, which produces bacterial stalk and
leaf necrosis, is caused by P. agglomerans (135). The probable vector of this disease is
onion thrips (Thrips tabaci) (135, 154). Drippy blight disease of red oaks caused by
Lonsdalea quercina is associated with a kermes scale insect, Allokermes galliformis (155).

An excellent article on a variety of alternative and direct insect hosts of bacterial
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phytopathogens including the Enterobacteriaceae is the review by Nadarasah and
Stavrinides (151).

(ii) Edible insects. Since 2013, when the Food and Agricultural Organization of the
United Nations issued an edible insects document, a concerted international effort has
been under way to investigate the usefulness of insects as a potential edible and nutri-
tional food source (156, 157). The impetus for this directive concerns the increasing
global population (estimated at 9 billion), the decreasing acreage of agricultural lands
due to climate change, limited availability of water resources, and the projected need
to double food production by 2050 (157). Edible insects are being strongly looked at as
a “novel food” potentially rich in protein, lipids, fiber, and micronutrients to help fill the
expected void (158). Of the myriad of insect species on the planet, those eliciting the
most general interest include the mealworn (Tenebrio molitor), grasshoppers (Locusta
migrans), cockroaches (Blattodea), and house crickets (Acheta domesticus) (158, 159).

Entomophagy, or the practice of consuming insects, has been practiced by many
nations throughout Africa, Asia, Latin America, and Oceania for countless years. It is
estimated that 113 countries consume 2,000 distinct species of insects as food sources
(157). The consumption of edible insects in the future, if expanded, raises a number of
questions and issues, including acceptability of such food sources by western cultures,
technical production, and regulations that include food safety. Part of the food safety
risk assessment concerns potential human illnesses related to biologic and chemical
agents (158). Many different microbial species, including bacteria and parasites, have
been isolated from most insect species studied (158–160). These include the family
Enterobacteriaceae and many common genera, such as Escherichia, Klebsiella,
Enterobacter, Salmonella, Proteus, and Pantoea (158, 160). Concentrations of enterobac-
teria vary by family or genus but range from ,1 to .7 log CFU/g (158). Some studies
have focused on the detection of specific human pathogens, such as Cronobacter
(161), in ready-to-eat edible insects, although C. sakazakii species identification is
questionable.

An outstanding and comprehensive publication by Garofalo et al. (158) reviews
studies conducted between 2000 and 2019 on the isolation of microbial pathogens
from different insect species. Data tabulated include their relative load (microbial bur-
den), sources (market, wild), and the insect form analyzed (fresh, processed).

Animals. Comparable to plants and insects, animals have an intimate association
with genera in the family Enterobacteriaceae. These associations can be as commensals
or occasionally as pathogens for a number of vertebrate species (2). Salmonella as an
example is a natural commensal of reptiles and amphibians but can also be introduced
into poultry stock, where it can live asymptomatically or on occasion cause disease.
Likewise, E. coli (pathogenic and nonpathogenic types) is another example, living sym-
biotically in cattle, deer, and other animals but can be introduced through fecal con-
tamination into consumable products such as ground beef, fruit, melons, and sprouts
(2). Surprisingly, there have been few comprehensive studies looking at the distribu-
tion of Enterobacteriaceae in mammals, for example, with the exception of the study
by Gordon and FitzGibbon in 1999 (162). In that investigation, the authors isolated
enterobacteria from 642 mammalian hosts in Australia and calculated the relative
abundance and diversity of genera and species.

An increasing but less-well-documented aspect of the enterobacterial group is the
potentially increasing importance of family members in causing animal diseases. Many
traditional taxa within the family produce sporadic or episodic intestinal or extraintesti-
nal infections in numerous different hosts (1, 2, 15). However, new agent-disease asso-
ciations are consistently being described, such as Morganella morganii causing fatal
infections in chickens (163) and hypermucoid K. pneumoniae producing sepsis and
meningitis in sea lion pups (164). What is less well appreciated is the increasing associ-
ation of various taxa with specific infectious disease syndromes, as shown in Table 6.
While some disease syndromes have a very specific host range (C. rodentium and mu-
rine colonic hyperplasia), others like bovine mastitis are caused by many different
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microbes in addition to E. coli and K. pneumoniae. Collectively, the group listed in Table
6 can cause large outbreaks of disease, the listed syndromes are recognized worldwide,
and infections result in huge financial losses, particularly in the food industry such as
aquaculture systems.

Soil and water. The microbial ecology of soil and water is extremely complex.
Sewage, sewage sludges, animal excreta, manure, contaminated agricultural products,
and runoff can result in the contamination of soil and freshwater sources with enteric
bacilli (165). Direct studies linking contaminated soil such as farm soil to human or ani-
mal infections is lacking (165). Compounding this problem is the fact that pathogenic
enterobacteria released into soil may not simply colonize resident plants transiently
but may develop a longer-term relationship with them as alternative hosts (166).
Plants could then act as hosts for enteric species when existing as aquatic vegetation
in freshwater habitats, including lakes (123).

ENTEROBACTERIACEAE—OLD AND NEW AGENTS IN NEW DISEASE SETTINGS
Overview

Advances in molecular techniques and phylogenetic methods over the past
30 years have resulted in a dramatic transformation in the size and scope of the family
Enterobacteriaceae in terms of the number and type of taxa identified, environmental
distribution, and disease associations. These two events, modernization of bacterial
taxonomy and phylogenetic classification, coupled with better laboratory methods to
achieve a final bacterial identification (16S gene sequencing, MALDI-TOF, WGS) have
revolutionized the field of clinical microbiology.

The ability to generate a more exacting and definitive identification of pathogenic
bacteria, in particular regarding less common or rare species, has led to a better under-
standing of their occurrence, pathogenicity, and disease associations in the clinical
environment. This, in turn, has led to significant advances in our knowledge of these
microbial agents with respect to clinical microbiology. Klebsiella variicola is an emerg-
ing human pathogen (167). In the past, this species has constantly been misidentified
in the microbiology laboratory as K. pneumoniae by conventional methods prior to the
introduction of molecular techniques (168–170). K. variicola is now known to cause se-
rious bloodstream infections, produce hypervirulent strains, and exhibit multidrug re-
sistance (167). The misidentification of many isolates for years prior to 16S gene
sequencing, MALDI-TOF, and WGS leaves a number of unanswered questions regard-
ing this taxon, including clinical frequency, environmental distribution, relative patho-
genicity, and composite disease associations. Other taxa with recently identified and

TABLE 6 Selected examples of enterobacteria-associated disease syndromes in animals

Pathogen Host Disease Symptoms Reference(s)
Citrobacter rodentium Mouse Transmissible murine

colonic hyperplasia
Thickened colon, rectal prolapse, diarrhea 294

Edwardsiella ictaluria Channel catfish
(farmed, tilapia)

Enteric septicemia Petechial hemorrhages (mouth), pale gills,
exophthalmia, multiple epithelial lesions

295

Edwardsiella piscicida Fish (farmed,
aquaculture)

Edwardsiellosis Loss of pigmentation, external hemorrhage,
septicemia

4, 296

Escherichia coli Cow Bovine mastitis Inflammation of mammary gland; abnormal
milk from a mammary quarter

297

Escherichia colia Broiler chicken Colibacillosis Respiratory tract syndrome; swollen head
syndrome

298

Escherichia colib Pigs Porcine diarrhea,
postweaning diarrhea

Profuse diarrhea, dehydration, death 299, 300

Klebsiella pneumoniae Cow Bovine mastitis Inflammation of mammary gland; abnormal
milk from a mammary quarter

297, 301

Yersinia ruckeri Fish (salmonid) Enteric redmouth disease Darkening of skin, subcutaneous hemorrhages
(mouth, throat), internal petechial
hemorrhages

302

aAvian-pathogenic E. coli strains.
bEnterotoxigenic and enteropathogenic E. coli.
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expanded syndromic presentations include Raoultella ornithinolytica with osteoarticu-
lar and intrathoracic respiratory infections (171), Leclercia adecarboxylata disease in pe-
diatric patients (172), and the epidemiology, clinical presentation, and antimicrobial re-
sistance of Escherichia (“Atlantibacter”) hermannii illnesses (173).

Additional changes witnessed within the family Enterobacteriaceae that have been
precipitated by the “molecular revolution” also extend to traditional infectious dis-
ease syndromes and etiologic agents. The family’s natural habitat is the gastrointesti-
nal tract of vertebrates, and members have long been recognized as a major cause of
various gastrointestinal infections, including enteritis, colitis (including hemorrhagic),
and dysentery. As late as 1985, only three enteric groups, Escherichia coli-Shigella,
Salmonella, and Yersinia enterocolitica, were universally recognized as gastrointestinal
pathogens from a limited list of documented prokaryotic species. However, this list
has continued to expand over time, with more than 40 different agents or patho-
types now recognized as definitive, probable, or possible etiologic agents of gastroin-
testinal disturbances based upon reported outbreaks, case histories, other clinical
features (serologic responses, histopathology), and identification of enteropatho-
genic virulence-associated factors (174, 175). For the enterobacteria, over 50% of
these 40 agents currently reside within the family Enterobacteriaceae (175) and sev-
eral presumptive pathogens are now recognized as emerging agents of diarrheal
infections (176, 177).

Recently Identified Gastrointestinal Pathogens

Providencia alcalifaciens. In 1989, Haynes and Hawkey (178) found a significant
association between the presence of P. alcalifaciens and travelers’ diarrhea in persons
between the ages of 15 and 64 who were primarily returning from travel to
Mediterranean countries. Shortly thereafter, Albert and coinvestigators (179) studied
three cases of diarrhea, one in a deceased Bangladeshi child and two in adults. P. alcali-
faciens was present in all three stools in either pure culture (child) or as predominant
enteric flora, and these strains were later shown to produce potential in vitro and in
vivo enteropathogenic mechanisms, including invasion of HEp-2 cells and diarrhea in
the removable intestinal tie adult rabbit model (179). Together, these two studies
formed the cornerstone for interest in P. alcalifaciens as a possible gastrointestinal
pathogen. Further evidence supporting a causal role for P. alcalifaciens in diarrheal dis-
ease stems from studies showing a statistically significant association of this species
with symptomatic persons versus controls (178, 180, 181), elevated immune responses
in infected persons (182), and identification of multiple virulence-associated factors
potentially operative in the gut. Virulence-associated characteristics included invasion
of cell monolayers (178, 182), production of a cytolethal distending toxin (183), and
barrier dysfunction and apoptosis in tissue culture cells (184).

However, the most compelling evidence to date supporting a role for P. alcalifaciens
in bacterial gastroenteritis comes from several reports on outbreaks of diarrheal dis-
ease attributed to this bacterium (Table 7). These outbreaks ranged in size from 2 (fa-
ther and son) to 270 involving three schools in Fukui City, Japan, in 1996. In that later
outbreak, 7 of 18 patients were culture positive for a clonal strain of P. alcalifaciens and
7 of 8 symptomatic persons displayed elevated serologic titers against the outbreak
strain (182). Furthermore, the outbreak strains were demonstrated to be invasive in
Caco-2 cells and to illicit moderate fluid accumulation in rabbit ileal loops (RIL) (182). In
three of the four outbreaks listed in Table 7, the outbreak strains were found to be

TABLE 7 Reported outbreaks of gastroenteritis caused by P. alcalifaciens

Cohort No. of cases % Attack rate Location Food Clonala Reference
Father and son 2 Unknown Mexico Unknown 1 185
Elementary and high schools 270 27.6–54.7 Japan Teriyaki chicken burger (warm bread) 1 182
Army hospital personnel 27 41.5 Turkey Potato salad ND 181
Church social event 11 Unknown Kenya Mashed potatoes (mukimo) 1 186
aND, not determined.
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clonal in nature by a combination of techniques including serogrouping, plasmid anal-
ysis, pulsed-field gel electrophoresis (PFGE), and randomly amplified polymorphic DNA
(RAPD) (182, 185, 186). A food source was implicated in three instances, two associated
with potato dishes, one of which appeared contaminated by a culture-positive cook
(181). The largest outbreak in Japan appeared to originate from a catering company
(182). Travel-related infections are suspected in two outbreaks (181, 185).

Shah et al. (187) recently reviewed the literature on P. alcalifaciens infections; however,
many questions remain unanswered in regard to the role of P. alcalifaciens in diarrheal
disease. Since most laboratories do not look for this organism routinely, its relative fre-
quency as an enteropathogen in select patient populations is presently unknown,
although a selective medium, polymyxin-mannitol-xylitol medium-Providencia or PMXMP,
has been developed to aid in its recovery and identification (188). While several studies
have found an association between providenciae and gastroenteritis, P. alcalifaciens has
also been found to be present with other copathogens (188) and in very high percen-
tages in one study (180). In an outbreak in Turkey, at least 44% of infected military per-
sonnel who were now healthy were still culture positive for P. alcalifaciens 10days later
(181). Finally, we currently do not know which of several reported pathogenic mecha-
nisms may be operative in all or select strains involved in gastroenteritis.

Escherichia albertii. In 2003, a new Escherichia species, E. albertii, was proposed for
five fecal isolates recovered from diarrheal stools of children ,5 years old residing in
Bangladesh (189). These strains had been isolated more than a decade earlier and had
been thought to belong to the genus Hafnia or to be “Hafnia-like” in phenotypic char-
acteristics. However, they differed markedly in a number of ways from true Hafnia
strains by being Voges-Proskauer negative, acetate positive, and susceptible to ceph-
alothin, by their failure to be lysed by the Hafnia-specific phage 1672, and by possess-
ing the E. coli/Shigella outer membrane protein gene phoE (190). DNA relatedness stud-
ies by Huys et al. (189) indicated that these isolates represent a new species residing in
the genus Escherichia.

E. albertii appears to be fairly widely dispersed in the animal kingdom, although its
exact range, distribution, and prevalence in vertebrate hosts still remain to be deter-
mined. Two major animal reservoirs of E. albertii have been identified. Wild and domes-
tic avian species in both healthy and diseased states have yielded E. albertii (191, 192).
Birds found positive for this taxon include ducks, finches, magpies, wrens, woodpeck-
ers, and chickens (191–193). This list even extends to the isolation of this species from
a penguin in Patagonia (194). A second major reservoir that has just been discovered is
raccoons. A study of over 400 wild raccoons in Osaka, Japan, found that 57.7% of rectal
swabs obtained were positive for E. albertii by PCR; in this study, 143 viable E. albertii
isolates were isolated from 62 PCR-positive samples (195). In addition to these two
sources, E. albertii has been recovered from a cat, seals, and processed meats, including
pork and mutton (193, 194, 196).

E. albertii causes diarrheal syndromes in humans, although the actual prevalence of
the disease worldwide is presently unknown. Essentially all E. albertii strains carry two
virulence determinants, the intimin gene (eae) and a cytolethal distending toxin gene
(cdt) (193, 197). The intimin gene appears to be important in disease pathogenesis,
while much less is known regarding what role the cytolethal distending toxin might
play (193). Sporadically, strains of E. albertii also carry variants of Shiga toxin 2 (stx2)
(193), but again, there are less than a handful of case reports describing such infections
in the literature (196, 198, 199). Most of our knowledge regarding E. albertii-associated
diarrhea comes from epidemiologic data on Japanese outbreaks of gastroenteritis
associated with this organism. Six of these outbreaks between 2003 and 2015 were
recently summarized by Masuda et al. (200). The chief symptoms of E. albertii-associ-
ated diarrhea compiled from these outbreaks are watery diarrhea (80% to 100%), ab-
dominal pain (50% to 84%), and fever (26% to 100%) (200). Less common complica-
tions include headaches, nausea, and vomiting. The overall recorded attack rate was
457/741 or 61.2% (200). The largest of these outbreaks involved 409 students and
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teachers from a high school staying at a campground. The suspected cause of the out-
break was sump water that was unchlorinated and used as a potable water source
(200). In most of these outbreaks, the vehicle of transmission was not definitively iden-
tified, but consumables including restaurant items (salad, other foods, water used) and
purchased lunch box meals were suspected. Two cases of gastroenteritis linked to
Shiga toxin-producing E. albertii have been published (198, 199). In one instance,
bloody diarrhea resulted (198), while in the other case, the child experienced only
watery diarrhea (199). There has been one reported case of extraintestinal infection
caused by E. albertii, that occurring in a 76-year-old woman with multiple comorbid
conditions who developed bacteremia (201). She recovered uneventfully after appro-
priate chemotherapy.

The present lack of both laboratory and epidemiologic data concerning E. albertii
stems from general difficulties in the recognition of this Escherichia species. E. albertii
has been dubbed “the evasive enemy,” no doubt in large part due to the difficulty in
isolation and identification of this pathogen in the clinical laboratory (193). This taxon
was originally proposed and described as an indole-negative, lysine decarboxylase
(LDC)-positive species that could be separated from other members of this genus on
the basis of these properties and several others, such as D-xylose (189). However, it
quickly became apparent that variability in phenotypic expression among E. albertii
strains was significantly greater than originally thought. Sequence analysis of multiple
housekeeping genes coupled to eae and cdt gene sequencing by Hyma and colleagues
(197) indicated that strains previously classified as Shigella boydii serotype 13 (known
not to be a true shigella) were actually E. albertii on a genetic basis. These strains dif-
fered biochemically from those described by Huys and others (189) in being indole
positive and LDC negative. Two biogroups were subsequently proposed for these
strains (202). Biogroup 1 represented the former group described by Huys et al. (2018),
while biogroup 2 strains were identical to those previously referred to as Shigella boydii
13. Ongoing research studies have identified many field isolates of E. albertii that do
not fit into either of the two previously recognized biogroups, so a biogroup 3 has
been proposed (203). Table 8 lists distinctive phenotypic features of all E. albertii bio-
groups and their differentiation from normal reactive E. coli.

E. albertii has been misidentified frequently. Biochemical methods have often
reported E. albertii isolates as “Hafnia-like” or Hafnia alvei, while molecular methods
assessing both the eae and cdt genes have reported strains as belonging to either the
enteropathogenic E. coli (EPEC) or enterohemorrhagic E. coli (EHEC) groups. Ooka and
others (196) retrospectively analyzed 278 eae-positive E. coli strains and found that 26
(9.3%) were in fact E. albertii. In 2019, a similar study found 17 (4.5%) E. albertii isolates
from a collection of 373 strains to be misclassified as either EPEC or EHEC (204).
Conventional biochemical tests can help to distinguish E. albertii from phenotypically
similar bacteria (Table 8); however, inactive E. coli bacteria, although uncommon, still
present problems (202). Other tests not mentioned in Table 8 can also be helpful (193,

TABLE 8 Distinguishing features of Escherichia albertii biogroupsa

Test

% Positive

E. albertii

E. colibBiogroup 1 Biogroup 2 Biogroup 3
Motility 0 0 0 95
Indole 0 100 100 98
LDC 100 0 100 90
Lactose, acid 0 0 0 95
L-Rhamnose, acid 0 0 0 80
D-Sorbitol, acid 0 100 0 94
D-Xylose 0 0 0 95
aData from Strockbine et al. (202) and from Table S2 of Murakami et al. (203).
bDoes not include inactive groups.
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196). Bhatt and coinvestigators (193) have published a composite table on the main
biochemical or phenotypic properties of E. albertii, E. coli, and H. alvei that is also quite
useful.

Two recent developments may significantly help in the accurate identification of E.
albertii in the diagnostic laboratory. A recent report found that enhancing the Bruker
MALDI-TOF database with additional E. albertii spectra not present from the manufac-
turer was extremely productive (205). Of 58 E. albertii stains originally tested on the
Bruker MALDI-TOF with a database library of 7,311, only 4 (6.8%) were correctly identi-
fied. However, when enhanced with additional spectra, MALDI-TOF correctly identified
all 58 strains (205). This same group has also developed a selective agar for the recov-
ery of E. albertii. Named XRM-MacConkey (xylose-rhamnose-melibiose), this medium
was found superior to several other selective media for Enterobacteriaceae, producing
colorless colonies that invariably were identified as E. albertii (206). The detection limit
of XRM-MacConkey was 105 CFU/g of stool. These two innovations together should sig-
nificantly improve the ability of laboratories to detect and identify this enteric patho-
gen (205, 206).

Klebsiella oxytoca and colitis. Acute colitis is typically a transient inflammation of
the colon accompanied by one or more symptoms such as bloody diarrhea and ab-
dominal pain or distension. The syndrome can be precipitated by a number of different
drugs, including antibiotics or other irritants. For over half a century, the genus
Klebsiella has been recognized as a possible cause of acute enterocolitis (207). In the
late 1980s, Japanese researchers identified a unique cytotoxin produced by Klebsiella
oxytoca strains associated with cases of hemorrhagic enterocolitis (208). The toxin had
a molecular mass of approximately 271Da, was protease resistant, and produced
rounding and/or cell death in HEp-2, HeLa, CHO, and Vero cell lines (208, 209).
Subsequent investigations by the same group found that the cytotoxin elicited fluid
accumulation in RIL (210). Histologic examination of these infected tissues revealed
intense mucosal hemorrhaging with erosion of the ileum (210).

Following these discoveries, a series of prospective studies and case reports pro-
vided further documentation linking certain strains of K. oxytoca to antibiotic-associ-
ated hemorrhagic colitis (AAHC) (209). All of these studies had a number of common
features, which included patients on penicillin derivative therapy of short durations,
some persons additionally on nonsteroidal anti-inflammatory drugs (NSAID), and stools
that were negative for Clostridium difficile with no other enteric pathogens detected. A
French study of 20 suspected cases of antibiotic-associated diarrhea found 11 patients
with AAHC (right-sided hemorrhagic to diffuse ulcerative colitis) primarily consisting of
bloody and mucousy diarrhea (211). Of 11 such persons, 8 were positive for K. oxytoca.
In contrast, none of 36 colonic biopsy specimens of control patients contained K. oxy-
toca (211). The definitive study on K. oxytoca AAHC was published by Högenauer et al.
(212) in 2006. In that investigation, 5 of 6 persons with AAHC as determined by colono-
scopy were positive for cytotoxigenic K. oxytoca on HEp-2 cells, as opposed to only
1.6% of healthy subjects. The age range of persons with K. oxytoca-associated AAHC
was 28 to 65 years, younger than the typical age range for Clostridium difficile-associ-
ated colitis. In all five positive patients with K. oxytoca, amoxicillin-clavulanate
appeared to be the triggering antimicrobial, and two persons were also noted to be on
an NSAID (212). Furthermore, the authors fulfilled Koch’s postulates by inducing right-
sided hemorrhagic colitis in Sprague-Dawley rats given cytotoxigenic K. oxytoca and
amoxicillin-clavulanate but not in either of two control groups that did not contain this
combination (212). Patient’s conditions resolved completely after discontinuation of
antimicrobial therapy.

The exact frequency of K. oxytoca in gastrointestinal contents is unknown and has
varied in studies from different geographical locales from 1.6% to .4.0% (212–214).
Cytotoxigenic strains are found in higher percentages in patients with C. difficile-nega-
tive AAHC than in those with acute colitis or in healthy carriers (215). The disease can
develop rapidly, with AAHC manifesting itself within 2 to 4 days of the initiation of
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antimicrobial chemotherapy (215). A limited study of four patients with AAHC found
that K. oxytoca could be recovered in relatively high concentrations (.106 CFU/ml)
from patient stools (209, 213). A selective medium, Simmons citrate-inositol-trypto-
phan-bile salts (SCITB), has been used in a Hong Kong survey to appreciably increase
the recovery rate of K. oxytoca from diarrheal stools (214).

Whether cytotoxigenic K. oxytoca plays a role in other gastrointestinal syndromes is
not known. One large study of 371 patients broken down into four different groups
based upon the presence of diarrhea and whether or not individuals received antibiot-
ics found no association between the presence of K. oxytoca and nonhemorrhagic anti-
biotic-associated gastroenteritis (213). However, Paveglio and colleagues (216) recov-
ered cytotoxigenic K. oxytoca from 6 of 10 infants with necrotizing enterocolitis
characterized by bloody diarrhea, pneumatosis, and abdominal distension. K. oxytoca
has also been linked to a fatal case of antibiotic-associated pseudomembranous colitis,
but the pathogenic characteristics of the infecting strain were not investigated (217).

Potential enteropathogens with inconclusive data. A number of enterobacterial
species or biotypes have been occasionally implicated in gastroenteritis based upon
clinical disease associations, case reports, and possession of virulence-associated fac-
tors (2, 174, 175). While the data in many instances are very limited, several bear men-
tioning, as many recognized enteric pathogens (see above) started under similar
circumstances.

A recent review has suggested that Proteus species might be putative gastrointesti-
nal pathogens, as has already been demonstrated conclusively for other Proteeae such
as P. alcalifaciens (218). The primary evidence supporting a possible role for protei in
gastroenteritis involves their possession of some potential pathogenic characteristics
(hemolysin, intracellular invasion) and a “guilt by association” recovery of P. mirabilis
from one foodborne outbreak of gastroenteritis in Beijing, China (218). A more recent
publication has characterized potential pathogenic mechanisms in one food poison-
ing-associated strain when it was compared to two reference cultures (219). However,
there are presently no clinical or epidemiologic data linking isolations of Proteus to
case-controlled studies of gastroenteritis, detection of common virulence-associated
factors in outbreak-related isolates, animal models of infection, or demonstration of
clonality among isolates associated with instances of food poisoning (219).
Furthermore, there are only a couple of studies with contradictory conclusions on
whether or not the frequencies of Proteus spp. in diarrheal versus healthy stools are dif-
ferent (218, 220).

Over the last 4 decades, there have been sporadic reports describing the associa-
tion of Citrobacter freundii with episodes and outbreaks of gastroenteritis (2). In 1995,
Tschäpe and others (221) described a nursery school outbreak of diarrhea associated
with hemolytic-uremic syndrome (HUS) and thrombocytopenic purpura with anemia.
At least 14 children between the ages of 2 and 6 years were infected, 9 of which
required hospitalization due to renal failure. All C. freundii strains recovered from these
children produced a Shiga toxin (stx2) (221). Sandwiches prepared with green butter
containing contaminated parsley appeared to the likely vehicle of infection. A C. freun-
dii strain producing an aggregative adherence pattern on HeLa cells has also been iso-
lated from a child with severe diarrhea (222). Cytotoxigenic and adherent C. freundii
isolates have been identified in the stools of persons with diarrhea (223). One strain,
recovered from a goat, was not only cytotoxic but produced an aggregative adherence
pattern on Hep-2 cells. These publications may be a reflection of the horizontal trans-
mission of virulence factors from a traditional pathogen (E. coli) to citrobacteria as an
isolated event, or they could signal that C. freundii has been overlooked as a potential
enteropathogen.

Extraintestinal Diseases and Infectious Syndromes

Extraintestinal community-associated infections linked to current members of the
family Enterobacteriaceae appear to be on the rise. Some of these infections are the
result of the translocation of pathogenic strains from the gastrointestinal lumen into
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the circulatory system or lymph nodes, producing systemic disease, including blood-
stream infections (BSI). Conditions in the community that exacerbate such situations
include an increasingly elderly population and more residents with underlying diseases
or immunocompromised conditions. Community-acquired extraintestinal infections
can also result from the consumption of contaminated foods, contact with infected
animals, or penetrating traumas (2). Some examples are listed below.

Klebsiella pneumoniae and PLA. A pyogenic liver abscess (PLA) is a solitary mass or
collection of pus-filled masses due to bacterial infection, often located within the right
lobe of the liver. PLAs are typically polymicrobic in nature, with Gram-negative patho-
gens predominating, including certain enterobacterial species such as E. coli and
Klebsiella spp. (224). PLA can develop from a number of sources, including trauma, the
circulatory system, due to biliary tract infections, or peritonitis subsequent to bacterial
translocation from the gastrointestinal tract (225). The incidence of PLA has been
found to be higher in Southeast Asia (11.99 to 17.59/100,000) than in various western
countries, including the United States (2.7 to 4.1/100,000), although reasons for these
geographic differences are not well appreciated (226).

Beginning in the mid-1980s, a new variant of K. pneumoniae associated with PLA
and metastatic disease first appeared in Taiwan (227). The seven infections reported in
this clinical series differed from classical K. pneumoniae (cKp) illnesses in that they were
associated with septic endophthalmitis and other metastatic complications, including
meningitis and pulmonary embolism; all seven patients recovered but completely lost
their vision (n=6) or visual acuity (n=1). By 1998, a Taiwanese review of 182 cases of
liver abscesses caused by K. pneumoniae occurring between 1990 and 1996 found 160
(88%) to be monomicrobic (228). Differences noted between monomicrobic and poly-
microbic abscess infections included a higher frequency of diabetes or glucose intoler-
ance and metastatic disease in the former group (228). Today, while this disease is still
centered in Southeast Asia, and in particular in Taiwan and South Korea, it has now
been reported worldwide from India, Europe, Australia, and the United States (229,
230).

This new variant of K. pneumoniae is referred to as hypervirulent K. pneumoniae, or
hvKp (230). Another term used less frequently for this group is hypermucoviscous. It
can be distinguished from cKp strains clinically because illnesses associated with the
variant pathotype are normally community acquired and PLA occurs in the absence of
biliary disease, often presents as metastatic infections at multiple anatomic sites, and is
typically monomicrobic in composition (230). Genetically, these strains harbor a num-
ber of virulence factors that are either chromosomally encoded or on virulence plas-
mids such as pK2044 and pLVPK (229, 230). These virulence factors include genes
encoding capsule formation (cps), mucoid regulators (rmpA, rmpA2), K1 and K2 anti-
genic capsule types, and several siderophores, including yersiniabactin (229, 230). The
predominant phenotype in all of these strains is hypermucoviscocity (HMV), which is
easily detectable on common media such a blood agar by a “string test” (231). For K1
strains, this hyperviscous phenotype is linked to the gene magA (mucoviscocity-associ-
ated gene A). Other pathogenicity factors have been described but are less well char-
acterized (230).

Most cases of PLA are preceded by gastrointestinal tract colonization by hvKp prior
to invasion, although initial sources of environmental acquisition are poorly defined.
Risk factors associated with developing hvKp disease include Asian ancestry and diabe-
tes mellitus (225, 229, 230). In its infancy as a recognized emerging pathogen, hvKp
infections were initially defined by their association with cryptogenic PLA. Symptoms
associated with hvKp PLA are not variant specific but rather typical for the syndrome
and include fever, chills, abdominal pain, and leukocytosis (225, 230). Common meta-
static sites of hvKp PLA infection identified early in their history included the eye, cen-
tral nervous system (CNS), and pulmonary tree in addition to bacteremia (229, 230); in
one large study of over 800 persons, 12% of patients with hepatic abscesses developed
metastatic disease (229). Approximately 5% of patients presenting with hvKp
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bacteremia develop endogenous endophthalmitis, which carries with it a devastating
prognosis of loss of visual acuity for 89% of patients (230). The mortality rate associ-
ated with PLA is roughly 5% but increases to 10% to 16% for metastatic disease (225).
Some studies report an even higher range (3% to 31%) with mortality rates as high as
35% (229).

Unfortunately, over the last few years, a number of new and emergent trends con-
cerning hvKp disease have been detected. Various studies have described extrahepatic
illnesses associated with hvKp, including bacteremia, pneumonia, and musculoskeletal
and soft tissue infections along with a variety of less frequently encountered complica-
tions like Bartholin’s abscess (229, 230). Another alarming trend is the increasing inci-
dence of hvKp causing health care problems, including ventilator-associated infections
(229). A 2020 study from China found that a retrospective analysis of 79 hvKp strains
determined that 53 (67.1%) of these isolates were health care associated and 19
(24.1%) of these caused true HAI. Only 8.8% of the hvKp isolates in this survey were
community acquired (232). Probably the most disturbing and evolving tendency of
this variant is increasing acquisition of resistance to antibiotics. Historically, the fre-
quency of drug resistance in this variant was low, with ,2% of isolates resistant to
cephalosporins (229). However, detection of extended-spectrum b-lactamases (ESBLs)
in this group has risen from ,5% to 35% or more in some studies (232). An outbreak
of pneumonia in surgical patients who were subsequently placed on mechanical venti-
lation was caused by hvKp (233). The infecting strain belonged to sequence type 11
(ST11) and was carbapenem resistant (233). All five patients in that study died. This
increasing trend in drug resistance in hvKp will clearly impact disease frequency and
associated mortality rates in hospitalized persons in the future if this trend continues
to increase and disseminate globally.

PLA requires a clinical diagnosis via abdominal imaging (225). Suspicion of hvKp
playing a role in PLA is presently challenging, requiring an astute review of clinical and
demographic information that might suggest the presence of K. pneumoniae (230). The
clinical laboratory, however, can play a key role in the diagnosis of such infections by
the identification of hvKp from suspected (blood) or occult (eye) clinical samples. The
defining phenotype for hvKp strains is HMV. The HMV phenotype is detected by a
“string test” test, which is defined as the extension of a mucous string by an inoculat-
ing loop .5mm from a bacterial colony grown overnight on a blood agar plate (231).
In the initial studies, the string test had a 98% sensitivity in recognizing the HMV phe-
notype (231). More recent studies suggest that this value is somewhat lower, with an
accuracy of 0.90 (234). Regardless of this difference, it is a simple test than can be per-
formed in any microbiology laboratory. A number of genotypes have been found to
have a diagnostic accuracy of .0.95. These include rmpA, rmpA2, peg-344 (putative
transporter), and iroB (salmochelin siderophore) (234). In addition to the HMV pheno-
type, capsule typing using commercial-grade antisera can be useful, as the majority of
hvKp strains are either K1 or K2 (229, 230). However, other capsular types can be hvKp
with K1. K2. K5. K57 in decreasing order of frequency (229).

One of several problematic issues regarding the laboratory diagnosis of this group
is that no single test encompasses or detects all hvKp isolates. The current gold stand-
ard for identifying these strains is rmpA1 rmpA21 magA1 HMV1 (229). However, again
variants that deviate from the ideal phenotype but are still hvKp have been detected.
Due to their increasing significance worldwide, there has been a call for a consensus
definition for hvKp (235). This will no doubt be a challenging task, as the extent of
genetic and phenotypic variation in the group continues to grow.

A number of excellent reviews on various topical issues of hvKp are available (225,
229, 230).

Cronobacter sakazakii and neonatal meningitis. In 1980, the CDC proposed a new
species for inclusion in the genus Enterobacter, now Cronobacter (“Enterobacter”) saka-
zakii (24, 236). This collection of 57 strains came from diverse clinical sources. The
authors commented that strains isolated from sputum, wounds, and species were
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probably not clinically significant, although rare cases of neonatal meningitis were
identified. Just 3 years later, the CDC in partnership with international collaborators in
The Netherlands reported 8 additional cases of C. (Enterobacter) sakazakii neonatal
meningitis and septicemia (237). For two of these neonates, their episodes of meningi-
tis were accompanied by necrotizing enterocolitis. Six of these eight infants subse-
quently died (75% fatality). Over the last 15 years, the incidence and breadth of C. saka-
zakii invasive disease in neonates and infants have mushroomed on a global basis. An
excellent historical timeline of the progression of C. sakazakii infections and associated
diseases from their initial retrospective recognition (1950, prior to naming) to 2015 can
be found in the review by Farmer (24).

While C. sakazakii can cause illnesses on a sporadic basis in adults and older per-
sons, its paramount clinical and public health importance is as a causative agent of
two types of invasive neonatal disease, bacteremia and meningitis (238). In up to 40%
of cases of neonatal or infantile meningitis, such infections are accompanied by brain
lesions, typically abscess formation. This makes C. sakazakii one of only three entero-
bacterial species (E. coli K1, Citrobacter koseri) intimately linked to causing brain
abscesses in young infants and children (2). The major risk factors in this population
setting for developing invasive C. sakazakii include neonatality (,28 days), low birth
weights (,2,500 g), and consumption of powdered infant formula (PIF) (238–240).
Case fatality rates have been reported as high as 40% to 80% in those presenting with
bacteremia, meningitis, and necrotizing enterocolitis (238). Henry and Fouladkhah (25)
have recently summarized a number of sporadic cases and outbreaks of invasive C.
sakazakii disease in infants. The vast majority of these cases were associated with
infant formula, including PIF.

As in the case of K. pneumoniae and hvKp, infections involving C. sakazakii appear
to be on the rise and changing with respect to demographics in the United States. A
report reviewing the published literature (1961 to 2018) plus all systemic isolates of C.
sakazakii referred to the CDC identified 183 cases of infant infections (240). Of these ill-
nesses, 63% involved episodes of meningitis, while the remainder were bloodborne
infections. Neonates were the predominant age group impacted, accounting for 67%
of all infections. A review of published studies and information accompanying isolates
forwarded to the CDC indicated that 79% of infants were reported as having consumed
PIF (240). The observed mortality rate was 38%. One of the interesting findings of this
CDC epidemiologic investigation was the changing demographics of disease presenta-
tion. Prior to 2004, only 44% of infections were found in nonhospitalized children.
Between 2004 and 2018, this figure had risen to 78%. Similarly, the percentage of full-
term neonates infected with C. sakazakii rose from 22% before 2004 to 50% during the
last quarter of the study (240). The incidence in cases also rose from 1.2 cases/year
before 2004 to 8.7 cases/year between 2004 and 2018. The reasons behind these
changing demographics in the United States are not apparent. Cronobacter invasive
disease also appears to be emerging outside the United States. An Egyptian study of
100 cases of neonatal sepsis found that 12% of cases were due to C. sakazakii (241). Of
these 12 cases, two infants died and two others suffered marked physical and mental
impairment. The authors report these dozen infections as the first cases of this emer-
gent disease in Egypt (241).

Presently, C. sakazakii, like the other above-mentioned agents, is not a reportable
disease in the United States or elsewhere (240). This severely limits our understanding
of the magnitude of neonatal infections caused by this pathogen worldwide. Two
other confounding problems involve their environmental distribution and laboratory
identification. Cronobacter spp., and C. sakazakii in particular, are ubiquitous in the envi-
ronment, being found in a variety of consumable products and water. While PIF is clearly
the primary implicated vehicle for most infant infections (242), C. sakazakii illnesses have
also been connected to expressed breast milk on several occasions (240). A key to
decreasing the incidence of infections is to find substitutes for PIF, and the WHO has
established recommendations for hospitals and home use of PIF and its preparation for
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the first 2 months of life (25, 242). In addition to PIF, C. sakazakii has been recovered
from flour-based products, flour, cereal kernels, herbs and spices, insects, meats, and
other commodities (25, 161, 238, 241, 243, 244). Their extensive environmental distribu-
tion is in no doubt partially related to the fact that they are resistant to desiccation and
dry and acid growth conditions in comparison to other enterobacteria (238).

For many years, C. (Enterobacter) sakazakii was considered to be a fairly tight
genetic species composed of 15 biotypes (25). However, that opinion changed with
the creation and publication of a new genus, Cronobacter, in 2007 (25). Today the ge-
nus has seven validated species, including C. sakazakii (https://lpsn.dsmz.de/species
?page=C#Crabtreella). For the clinical laboratory, this presents problems, because
although most cronobacters have been associated with human disease, definitive iden-
tification of C. sakazakii is of immense importance because of its paramount role as the
preeminent pathogen of the genus. The Vitek GN identification system lists most spe-
cies under the phenospecies designation “Cronobacter sakazakii group” (245).
Identification matches based on various commercial products (Vitek GN, API 20E,
ID32E) ranged from 82.3% to 90% (245). A multicenter European study involving 11
countries found that only 59 of 77 (76.7%) isolates submitted as C. sakazakii were, in
fact, this genetic species, as determined by MALDI-TOF and WGS (245). Some misiden-
tified isolates did not even belong to the genus Cronobacter but rather belonged to a
variety of genera, including Enterobacter, Klebsiella, Kluyvera, Kosakonia, and Siccibacter
(246). These results suggest that better methods for identifying this important clinical
and public health pathogen need to be developed.

Chronic conditions and potential long-term sequelae. The vast majority of medical
personnel and allied scientists associate the family Enterobacteriaceae with foodborne
disease, health care-associated illnesses, and a variety of syndromic diseases, including
gastroenteritis, urinary tract infections, and soft tissue infections subsequent to trau-
matic events. However, less well appreciated is the fact that many of these species as
resident commensal gastrointestinal flora may be associated in some aspect with
much longer-term chronic or persistent conditions.

Inflammatory bowel diseases, which include Crohn’s disease and ulcerative colitis,
are thought to be due to host genetic factors, environmental triggers, and endogenous
microbial communities. E. coli is one of the leading candidates to play some role in
these two disease processes. Studies of the microbiome have demonstrated that the
relative abundance of E. coli increases in Crohn’s patients (as does Serratia marcescens)
when compared to healthy individuals and familial controls while beneficial bacteria
decrease (247, 248). The particular pathotype implicated in these inflammatory proc-
esses is adherent-invasive E. coli (AIEC) (249, 250). The data seem clear that adherent-
invasive E. coli bacteria are associated with both conditions, but whether they are
opportunistic bystanders or are intimately involved in the entire immune-mediated
process remains to be determined. Proteus spp. have also been proposed to have a
possible role in Crohn’s disease (218). This proposal is based on two pediatric studies
where there was an overabundance of protei in Crohn’s patients compared to individu-
als with other gastrointestinal conditions.

E. coli strains have also been linked to irritable bowel syndrome, a condition affect-
ing 10% to 20% of the population (251). The two pathotypes associated with this con-
dition are AIEC and enteroaggregative E. coli (251, 252). Increased numbers of E. coli
correlate with disease symptomatology, and patients respond to antimicrobial therapy
directed against this microbe (251).

Enterobacteria are increasingly being implicated as potential infectious agents asso-
ciated with immune and nonimmune inflammatory processes of bones, joints, and
associated tissues. Rheumatoid arthritis (RA) is a chronic inflammatory arthritic condi-
tion most often involving symmetrical joints. It primarily affects middle-aged women.
RA is thought to involve genetic, environmental, and microbial factors (253). Among
enterobacteria, several different species have been implicated in RA, but by far the
greatest amount of data linking a group to the etiology of RA is that concerning the
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genus Proteus, and in particular P. mirabilis (2, 254). A number of studies have found
significantly elevated antibodies (IgM, IgG, IgA) against P. mirabilis antigens (hemolysin,
urease) in RA patients in comparison to controls (255). These antigens share common
motifs with HLA subtypes found in RA patients. The six-amino-acid sequence ESRRAL
(glutamic acid-serine-arginine-arginine-alanine-leucine) in P. mirabilis hemolysins
shares homology with the EQRRAA (glutamic acid-glutamine-arginine-arginine-ala-
nine-alanine) motif found in RA-associated HLA-DR (subtypes HALA-DR1 and HLA-DR4)
(2, 254). The prevailing theory is that P. mirabilis urinary tract infections elicit significant
immune responses against this uropathogen such that, through molecular mimicry,
cross-reacting antibodies that target self-antigens in the joints are elicited.

A variety of other secondary complications have been associated with gastrointesti-
nal enterobacterial infections. Reactive arthritis, a sterile nonpurulent inflammation of
limbs, can be triggered by the acquisition of or infection with various enterobacteria,
including diarrheagenic E. coli (DEC) and Yersinia enterocolitica (256, 257). Some cases
of reactive arthritis are associated with human leukocyte antigens, part of the inflam-
matory process, such as HLA-B27 (257). In one investigation, 17% of persons developed
musculoskeletal symptoms posttravel (256). Multivariate analysis found a significant
association between this illness only with the exclusive isolation of DEC. Other less fre-
quently encountered infection-associated chronic conditions include Reiter’s syn-
drome, ankylosing spondylitis, and prostatitis (2).

Colorectal cancer and related malignancies. An area of potential research that has
received little attention to date concerns the possible association of members of the
Enterobacteriaceae with malignancies. Dysbiosis is a clinical condition where there is an
imbalance in the normal microflora of a person related to ill health. For enterobacteria, this
mainly involves their natural habitat, the gastrointestinal tract. The handful of published
studies to date have primarily shown an abnormal rate or abundance of various entero-
bacteria in disease states associated with cancer. Higher rates of colorectal cancer have
been detected in patients with pyogenic liver abscesses (230, 258). In one 11-year study,
the rate of colon cancer was 2.68 times greater for those with PLA due to K. pneumoniae
than for those patients without this enteric pathogen. A 2019 study has found both
Escherichia-Shigella and Enterobacter in higher numbers in patients with primary liver can-
cer (PLC) than in healthy controls or those with liver cirrhosis (259). The relative abundance
of Enterobacter ludwigii was 100 times greater in the PLC group than in controls. E. coli has
also been implicated as possibly associated with colorectal cancer (259, 260).

What role some or any enterobacteria play in cancer is unknown. It could be that the
amplification of these species in dysbiotic states is a simple reflection of them as possible
indicators of occult malignancies in a fashion similar to that recorded for Streptococcus
bovis and Clostridium septicum (230). Another possibility is that these bacteria are the direct
causative agents of certain cancers. However, this hypothesis seems unlikely in that host
factors (immunologic, physiologic) as well as environmental triggers are thought to play
important key roles. Finally, enterobacteria might act as important cofactors in dysplasia
formation by one of several mechanisms, including activation or enhancement of inflam-
matory processes or release of virulence factors causing DNA damage or genetic instability
(260). Further research in this area seems important.

THE FUTURE
Issue: The Family Enterobacteriaceae—Expansion or Contraction?

The landscape of clinical and diagnostic microbiology has forever been changed by
the introduction of the molecular taxonomic revolution brought about by WGS and
related phylogenetic techniques. These “technologic wonders” have generated a num-
ber of important and positive changes in the field of bacterial taxonomy, including (i)
the ability to detect and identify new genetic species of potential medical, public health,
or veterinary importance (261), (ii) more precise identifications in the laboratory, espe-
cially for difficult-to-identify pathogens, (iii) less reliance on federal, state, or reference
laboratories for definitive identifications, which could take days to weeks, and (iv)
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advances in tracing, fingerprinting, and identifying the origins, transmission, and spread
of infectious disease outbreaks associated with the family Enterobacteriaceae (262).

Intimately linked to these novel and constructive taxonomic achievements are classi-
fication issues which have no rules or boundaries regarding their acceptance or rejec-
tion. The work of Gupta and colleagues (98, 117, 118) on various groups of medical im-
portance is impressive, but the bottom line of whether these changes should be
accepted into practice in medicine and related allied disciplines is questionable. There
has already been negative feedback on proposed classification (division) changes by this
group of researchers for long-standing taxa, including Borrelia (263), Mycobacterium
(119), and Mycoplasma (120), as well as the Enterobacteriaceae. The reasons for rejecting
such changes include inadequate data or evidence, avoidance of unnecessary changes,
importance of the stability in nomenclature, and potential impact on adverse medical
outcomes. Many of these reasons are listed in the rules of the ICNP. Classification
changes can also be a double-edged sword. As an example, Enterobacter aerogenes has
been recently transferred to the genus Klebsiella as K. aerogenes (60). Wesevich et al.
(264) have found that the presence of K. aerogenes in the bloodstream of patients is
associated with a poor clinical outcome (death before discharge, recurrent BSI) in com-
parison to other Enterobacter species. In contrast to these findings, there is a concern
that the transfer of this species from the genus Enterobacter to Klebsiella may influence
suboptimal therapy (265). Munson (265) in a recent newsletter has done an outstanding
job of providing a detailed and comprehensive overview summarizing clinical issues con-
cerning proposed taxonomic revisions.

Possible classification models. One of the important aspects of bacterial taxonomy
for clinical microbiologists, physicians, epidemiologists, and related groups is that no-
menclature and taxonomy need to be practical, useful, and workable with the above-
mentioned groups in regard to daily communications concerning diagnosis, prognosis,
treatment, and the frequency and distribution of infectious diseases on a global basis.
While the ICNP establishes the rules for nomenclature, many exceptions have been
granted so that certain species that are genetically identical on the DNA level can
remain separate and distinct because of their enormous medical importance. Several
have previously been mentioned, including E. coli/Shigella and Yersinia pestis/Yersinia
pseudotuberculosis. While taxonomic progress is important, it needs to be balanced by
a needs assessment and general utility. Two obvious options are that the
Enterobacteriaceae could remain “status quo” or the proposals of Adeolu et al. (98)
could be adopted as published. Some other possible proposals are listed below.

(i) Proposal 1. Classification of genera into tribes. The classification of genera into
tribes would leave the family Enterobacteriaceae intact at the family level but create 7
to 9 tribes based upon the evolutionary work of Adeolu et al. (98). These tribes could
include the following: tribe 1, Escherichieae (revised definition); tribe 2, Erwinieae (re-
vised definition); tribe 3, Pectobacterieae (tribe nov.); tribe 4, Yersinieae (tribe nov.); tribe
5, Hafneae (tribe nov.); tribe 6, Proteeae (revised definition); tribe 7, Budviceae (tribe
nov.); tribe 8, Plesiomonadeae (tribe nov.); and tribe 9, Thorselleae (tribe nov.).

(ii) Proposal 2. Classification of genera into subfamilies. The classification of gen-
era into subfamilies is similar to that of proposal 1 but uses the taxonomic rank of sub-
family instead of tribes to group all genera.

(iii) Proposal 3. Classification of Enterobacteriaceae into “groups.” The classification
of Enterobacteriaceae into “groups” would use nonscientific names to group genera that
are close together in an evolutionary sense. Such a system could include the following:
group 1, core genera (Escherichia-Shigella-Salmonella-Citrobacter-Enterobacter-Klebsiella-
Cronobacter and others; group 2, Erwinia-Pantoea group; group 3, Pectobacterium group;
group 4, Yersinia-Serratia group; group 5, Hafnia-Edwardsiella group; group 6, Proteus-
Providencia-Morganella group; group 7, Budvicia-Leminorella-Pragia group; group 8,
Plesiomonas group; group 9, Thorsellia-Coetzeea group.

(iv) Proposal 4. Nonclassification system. The nonclassification system would sim-
ply be an alphabetical listing of genera in the family but with the type genus listed
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first, similar to what was published in Bergey’s Manual of Systematic Bacteriology, 2nd
edition.

Issue: Species Identification in the Modern Era for Clinical Laboratories

From conventional to commercial to molecular approaches. Despite all the tech-
nological advances over the past 20 years, phenotypic identification currently remains
the gold standard for identification of microorganisms (266). Both semiautomated and
automated commercial testing platforms that provide both an identification and a sus-
ceptibility test result still carry the major workload in volume in the United States and
elsewhere in diagnostic settings. Many molecular approaches are available to aid
microbiologists in achieving final identifications when initial test results provide correct
identification with low probabilities or no identification at all (267, 268). Advances con-
tinue to be made in this arena. One investigation has proposed that broad-range dnaJ
PCR and sequencing can produce a higher resolution of species identification within
the family than 16S rRNA gene sequencing (269). The only major impediment is the
Escherichia-Shigella group, which is one species at the genomic level.

Techniques versus a plethora of taxa: problematic issues. The relative explosion in
the number of new enterobacterial species isolated from human samples or clinical
infections over the past decade brings with it a number of clinical decisions for micro-
biologists regarding how far and to what extent an isolate should be characterized
prior to generating a final identification. The relevancy of modern taxonomy for clinical
laboratories has also been the subject of some questions and controversy (270). One of
the difficulties microbiologists face with the molecular taxonomic revolution in the cur-
rent era is that newly described species are typically “phenotypically light” in regard to
biochemical characteristics which are based upon gene expression and not gene struc-
ture (271). Phenotypic methods remain the mainstay for most laboratories in regard to
bacterial identifications as of 2020 (266). Thus, as modern taxonomy drives us forward,
how do laboratories deal with the onslaught of new genera and species whether phe-
notypic or molecular methods are used?

The first issue microbiologists face is keeping abreast of all the new enterobacterial
species, including classification changes. A few years ago, one had several options in
this area. Three journals, International Journal of Systematic and Evolutionary
Microbiology, Systematic and Applied Microbiology, and Antonie van Leeuwenhoek, pub-
lished the vast majority of new species. Today, while these journals still publish the ma-
jority of new proposals, many other journals now routinely publish articles on new
taxa. This makes the time and effort needed to review all of these periodicals more
demanding. Microbiologists can also search PubMed (https://pubmed.ncbi.nlm.nih
.gov/) for new groups using key words or terms, but this can also be fairly complicated
and articles can be missed. The website LPSN—List of Prokaryotic Names with
Standing in Nomenclature (https://www.bacterio.net/) is useful, but there are no easy
methods to search for new taxa of clinical relevancy for specific ranks such as families.
A second issue with the LPSN is that only validated species are published, and cur-
rently up to 40% of recently published species have not been validated according to
ICNP rules. Finally, two journals routinely publish updates on newly proposed species,
Diagnostic Microbiology and Infectious Diseases (since 2014) and Journal of Clinical
Microbiology (since 2017). While the articles published in both journals differ slightly in
scope, length, and structure, these are excellent sources for microbiologists to review
for important updates (65, 272).

A second issue is identification, phenotypic versus molecular. For the vast majority
of common infections such as those originating from the urinary tract (E. coli, P. mirabi-
lis), simple and inexpensive phenotypic tests should provide a definitive identification.
In some instances, even rapid spot tests may be applicable. For more-difficult-to-iden-
tify or unusual microorganisms not often seen in the laboratory, such approaches will
not be sufficient. In these cases, molecular approaches are needed, such as 16S ribo-
somal gene sequencing, MALDI-TOF, and WGS. Use of molecular approaches for a final
identification must be counterbalanced with need, as these techniques are more
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expensive and require skilled personnel and sophisticated instrumentation with main-
tenance contracts that are more costly (262). For newly published groups or species,
the majority of publications are generated on the basis of a single type strain (65). This
has several ramifications. Commercial panels or platforms will typically not include
new taxa without a data matrix of 25 or more strains. For MALDI-TOF users, this will
require laboratories to obtain the type strain from an international type culture collec-
tion (not inexpensive) and then add the spectral analysis to the manufacturer’s data-
base. However, single species strains may not be enough to recognize all isolates or
variants of a recently described taxon. For the present, it seems unwise to immediately
attempt to identify new infectious agents without recognizable biochemical markers
adaptable to multiple formats for phenotypic identifications (270).

Molecular identifications should be restricted to situations where the data gener-
ated are both relevant and required. Examples of situations where such analyses are
needed include the following: (i) where specific species identification is important in a
patient prognosis, diagnosis, or treatment, (ii) in outbreak disease investigations, (iii)
for description of new species, infectious agents, or pathotypes (such as STEC or PLA-
associated K. pneumonia), (iv) in epidemiologic or environmental surveillance surveys,
and (v) in publications defining unique infectious disease syndromes, pathogenic char-
acteristics, or unusual biochemical or metabolic properties.

CONCLUSIONS

Despite the voluminous number of publications, periodicals, and textbooks on
members of the family Enterobacteriaceae, we are just in our infancy in understanding
the scope, magnitude, and impact of this group on the world around us. Molecular
technology, taxonomy, and phylogenetic analysis have ushered in a new era such that
28 new validated genera and more than 200 new species have been described since
2005 (Table 2). This trend will continue to increase and evolve for the foreseeable
future, as witnessed by the recent description of Intestinirhabdus alba isolated from the
gut of plastic-eating larvae (273). Some species such as E. albertii (189) have already
been found to be important gastrointestinal pathogens in the Far East, while reclassi-
fied taxa such as K. aerogenes are being redefined by new epidemiologic criteria as im-
portant pathogens (264). Determination of the taxon frequency, clinical significance,
and defining markers of these recently described species seems daunting, and our suc-
cess in these endeavors remains to be determined.

What might eventually be of greater consequence is increasing our understanding
of how enterobacteria affect the biosphere outside of human hosts. Climate changes
will bring on a specter of new infectious diseases (274). Global warming will extend the
geographic range of many insects carrying enterobacterial species with them. As vec-
tors, insects could promote new and devastating diseases to trees, shrubs, flowers, and
consumable fruits and vegetables (Table 5). Whether we will be able to detect and
treat such an onslaught of vegetative pathogens remains to be seen.

The family or divisional constructs will continue to challenge a variety of scientific
professionals for both their positive benefits and their negative impact for decades to
come. The hope is that technologic developments and scientific advances will occur at
speeds able to adapt to our changing and evolving world.
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