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SUMMARY Stenotrophomonas maltophilia is an opportunistic pathogen of signifi-
cant concern to susceptible patient populations. This pathogen can cause nosoco-
mial and community-acquired respiratory and bloodstream infections and various
other infections in humans. Sources include water, plant rhizospheres, animals, and
foods. Studies of the genetic heterogeneity of S. maltophilia strains have identified
several new genogroups and suggested adaptation of this pathogen to its habitats.
The mechanisms used by S. maltophilia during pathogenesis continue to be uncov-
ered and explored. S. maltophilia virulence factors include use of motility, biofilm forma-
tion, iron acquisition mechanisms, outer membrane components, protein secretion sys-
tems, extracellular enzymes, and antimicrobial resistance mechanisms. S. maltophilia is
intrinsically drug resistant to an array of different antibiotics and uses a broad arsenal to
protect itself against antimicrobials. Surveillance studies have recorded increases in drug
resistance for S. maltophilia, prompting new strategies to be developed against this op-
portunist. The interactions of this environmental bacterium with other microorganisms are
being elucidated. S. maltophilia and its products have applications in biotechnology,
including agriculture, biocontrol, and bioremediation.

KEYWORDS Stenotrophomonas, antimicrobial agents, antimicrobial resistance,
biofilms, biotechnology, cystic fibrosis, genomes, S. maltophilia, pathogenesis, risk
factors

INTRODUCTION

Gram-negative drug-resistant bacteria are of significant concern for clinicians world-
wide. The ability of these microorganisms to exchange and acquire antimicrobial

resistance has contributed to the emergence of multidrug-resistant pathogens. The
antimicrobial resistance surveillance programs monitoring these pathogens have dis-
cerned troubling upward trends in resistance. Genomic sequencing and analyses have
enabled the epidemiological tracing of pathogens of significant virulence. Research
has focused on unearthing the molecular mechanisms used by these organisms during
infection and disease. A deeper understanding of these mechanisms has contributed
to the discovery of novel antimicrobials against these pathogens.

The World Health Organization currently lists Stenotrophomonas maltophilia as an
important Gram-negative multidrug-resistant bacterial pathogen in hospitals (https://
www.who.int/drugresistance/AMR_Importance/en/). Infections by this environmental
and opportunistic intrinsically drug-resistant organism are of significant concern among
the immunocompromised patient population and can be fatal (1).

This pathogen has certainly made an impact on human health worldwide. S. malto-
philia was one of the top six pathogens isolated from pneumonia patients in U.S. inten-
sive care units (ICUs) during 2015 to 2017 (2), among the top 10 pathogens causing
pneumonia in patients in Latin American medical centers during 2008 to 2010 (3), and
ranked in the top 10 pathogens most frequently isolated from hospitalized pneumonia
patients during 2009 to 2012, in which a high prevalence (4.4% in the United States
and 3.2% in Europe and the Mediterranean) of this pathogen was noted (4). In an anti-
microbial surveillance program during 1997 to 2016, the majority (62.6%) of the S. mal-
tophilia isolates recovered from the Asia-Pacific region were from hospitalized pneu-
monia patients (5), and from 2003 to 2010, S. maltophilia was among the top four
pathogens associated with intraabdominal infections (6).

As few new antimicrobials are available to treat this intrinsically drug-resistant
human opportunist, there is a critical need to understand the interactions of S. malto-
philia with its environment and develop new intervention strategies (7). This current
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review will address advances in the study of the biology of S. maltophilia since the
author’s previous review (1).

CLINICAL SIGNIFICANCE ANDMICROBIOLOGY

Stenotrophomonas maltophilia is an opportunistic pathogen with low virulence that
causes a variety of human infections. S. maltophilia is associated with significant crude
mortality rates as high as 69% in bacteremia patients (8, 9). Nosocomial and commu-
nity acquisition of this pathogen is possible (1). This bacterium is an environmental or-
ganism that was originally named in 1943 as Bacterium bookeri, then Pseudomonas
maltophilia, then Xanthomonas maltophilia, and finally classified as Stenotrophomonas
maltophilia (10–16). A detailed description of its growth requirements is found in the
author’s previous review of S. maltophilia (1). While S. maltophilia is characterized as ox-
idase negative, oxidase-positive strains of this pathogen have been identified (17, 18).
This microorganism is associated with plant rhizosphere and is important for elemental
cycling of sulfur and nitrogen, while as a human opportunist, it may be a participant in
polymicrobial infections (19).

S. maltophilia Infections and Risk Factors

S. maltophilia-associated human infections include bacteremia (20–44), respiratory
infections (20, 22, 26, 28, 30, 32, 38, 40, 43–76), eye infections (38, 40, 77–96), endocar-
ditis (97–100), nervous system and spinal cord infections (28, 101–105), gastrointestinal
tract infections (26, 28, 40, 43, 44, 106–109), liver infection (85), urinary tract infections
(20, 28, 40, 43, 44), soft tissue and bone infections (20, 22, 28, 40, 43, 44, 63, 110–123),
and medical implant infections (40, 43, 44, 99, 124–128) (Table 1). Rare S. maltophilia-
associated infections have been observed, including keratitis in patients with bandage
contact lens (82), osteomyelitis from S. maltophilia following an open distal tibial frac-
ture (113), death from neutropenic enterocolitis (106), oral cavity lesions (109), and sto-
matitis (118). A recent review addresses the management of S. maltophilia infection of
skin and soft tissues (117). S. maltophilia is able to grow in various bodily fluids; recently,
this pathogen was observed to grow in bronchial secretions following bronchoscopic
valve implantation (129). This pathogen can be recovered from cystic fibrosis (CF) patients’
airways and sputa (60, 67).

The identification of risk factors for S. maltophilia infection may provide insights for
the proactive prevention of S. maltophilia-associated disease in patients. Determining
the risk of infection requires one to consider several factors, including the immune sys-
tem of the patient, underlying malignancies, structural abnormalities, and the virulence
of the pathogen. Common risk factors associated with mortality in S. maltophilia bac-
teremia patients (with or without a hematological disorder) identified by univariate
analyses include septic shock (21, 23, 29, 42), ventilation (23, 29, 32, 39), and ICU admis-
sion/length of hospital stay (29, 32, 39, 42), and those identified by multivariate analy-
ses include an elevated sequential organ failure assessment (SOFA) score (29, 32)
(Table 2). Multivariate analysis of patients with S. maltophilia bacteremia identified
hypoalbuminemia, hematologic malignancy, quinolone-resistant S. maltophilia, septic
shock, and prior chemotherapy as risk factors for mortality (31, 42) (Table 2). Multivariate
analysis of patients with hematological disorders and S. maltophilia bacteremia identified
inadequate initial antimicrobial treatment, respiratory failure, nonremission posttreatment
for primary diseases, pneumonia, and elevated SOFA score as risk factors for mortality (21,
32) (Table 2). A recent study of S. maltophilia bacteremia patients identified risk factors for
30-day mortality that included anti-methicillin-resistant Staphylococcus aureus (MRSA) drug
use and high levels of aspartate aminotransferase, lactate dehydrogenase, and C-reactive
protein (27).

Risk factors for mortality in hospitalized patients with S. maltophilia infections com-
monly identified by univariate analyses include ICU stay (22, 28, 40), central venous or
urinary catheter use (22, 28, 40), prior antibiotic use (22, 28, 40), and mechanical venti-
lation (22, 28), and those identified by multivariate analyses include ICU stay (22, 40)
(Table 2).
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Common risk factors associated with developing S. maltophilia infection identi-
fied by univariate analyses include invasive procedures such as ventilation (33, 38,
71) and antibiotic use (33, 38, 71), and those identified by multivariate analyses
include antibiotic use (24, 33, 57, 61), invasive procedures in neonates and infants
,1 year old (38, 71), and ICU stay for pediatric patients (24, 71) (Table 3). In a retro-
spective study (2014 to 2016), univariate analysis identified patients 0 to 5 years of
age as being at risk for S. maltophilia nosocomial bloodstream infections (41)
(Table 3).

The judicial use of antibiotics used to treat S. maltophilia infections is important.
The potential for S. maltophilia infection in bacteremia and cardiovascular patients
receiving broad-spectrum antibiotics should be considered (20, 26). Hematologic
malignancy, thrombocytopenia, and previous quinolone use within 30 days have been
suggested as possible risk factors for hemorrhagic pneumonia in S. maltophilia bactere-
mia patients (30).

The challenge of treating pneumonia patients with S. maltophilia is significant. In
comparison to the number of studies of risk factors identified for S. maltophilia bac-
teremia, only a few studies report the risk factors for S. maltophilia pneumonia.
Mortality risk factors reported for S. maltophilia ventilator-associated pneumonia include
age and chronic heart failure (57). Risk factors for S. maltophilia pneumonia in ICU patients
were identified as higher SOFA score and immunosuppression (130). Computed tomogra-
phy findings of patients reveal differences between immunocompromised and immuno-
competent patients with S. maltophilia pneumonia, with patchy ground glass opacities
observed in patient lungs (59). Treatments of patients with S. maltophilia pneumonia have
indicated no difference between efficacy of trimethoprim-sulfamethoxazole (TMP-SMX) or
levofloxacin treatment (62) and that delay of adequate antimicrobial treatment and

TABLE 1 S. maltophilia associated infections

Organ/body part Infection Reference(s)
Blood Bacteremia 20–44
Respiratory tract Pneumonia, ventilator-associated pneumonia,

respiratory infection
20, 22, 26, 28, 30, 32, 38, 40, 43, 44, 53, 55, 57, 59,
62–64, 68, 70, 71, 76

Bronchiectasis 61
Acute and chronic CF infection 45–52, 54, 56, 58, 60, 65–67, 69, 72–75

Eye Endophthalmitis 77–81, 85, 86, 95
Keratitis 82–84, 89–92, 94, 96
Cornea 40, 88
Conjunctival ulcer, conjunctivitis 38, 87
Dacryocystitis 93

Heart Endocarditis 97–100

Nervous system and spinal cord Meningitis, cerebrospinal fluid 28, 102, 103
Discitis 101, 105
Brain abscess 104

Gastrointestinal tract Enterocolitis, gastrointestinal infection 26, 28, 43, 44, 106
Intraabdominal abscess 107
Peritonitis 40, 108
Oral cavity 109

Liver Hepatic abscess 85
Urinary tract 20, 28, 40, 43, 44

Soft tissue and bone Skin and tissue 20, 22, 28, 40, 43, 44, 63, 111, 112, 115–120, 122,
123

Arthritis 114
Osteomyelitis 110, 113, 121

Implants Catheter 40, 43, 44, 124, 126–128
Ventriculoperitoneal shunt infection 125
Cardioverter defibrillator lead 99
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combination antimicrobial therapy has no significant effect on mortality (55). No difference
in patient outcome was reported for patients treated with TMP-SMX and untreated
patients in a small study of tracheostomy-dependent pediatric patients with S. maltophilia
respiratory infection (70). A higher mortality rate has been reported for pneumonia
patients coinfected with Pseudomonas aeruginosa and S. maltophilia (76). Both of
these pathogens are biofilm formers in the respiratory tract, and biofilm infections
with multidrug-resistant pathogens such as these are notoriously difficult to treat
therapeutically. There is an urgent need to develop more effective strategies to treat
these mixed-culture infections.

Acquisition of TMP-SMX- and levofloxacin-resistant S. maltophilia in patients is of
concern. Multivariate analyses have identified risk factors for infection by TMP-SMX-re-
sistant S. maltophilia, including previous fluoroquinolone use (43) and prolonged hos-
pitalization (28) (Table 3). Previous fluoroquinolone use has been identified through
multivariate analysis as a risk factor for infection by levofloxacin-resistant S. maltophilia
(44) (Table 3). A recent report of an adverse drug effect resulting from levofloxacin
treatment of a neonate with S. maltophilia highlights the necessary monitoring of neo-
nates receiving drug therapy; in this report, levofloxacin was suggested to cause

TABLE 2 Risk factors associated with S. maltophiliamortality

Infection

Risk factor(s)

ReferenceUnivariate or bivariate analysis Multivariate analysis
Mortality in patients with
bacteremia

Elevated Charlson or SOFA score, septic shock, ICU
stay, mechanical ventilation, continuous renal
replacement therapy, urethral catheter or drainage
tube

Elevated SOFA score 29

Septic shock, mechanical ventilation, central venous
catheter, hemodialysis

NAa 23

ICU admission, ventilation NA 39
NA Hypoalbuminemia, hematologic malignancy,

quinolone-resistant S. maltophilia strains
31

Length of hospital stay, nosocomial source of
infection, septic shock, prior chemotherapy, prior
carbapenem use

Septic shock; prior chemotherapy 42

Mortality in patients with
hematologic malignancy
and S. maltophilia
bacteremia

Old age, length of hospital stay, polymicrobial
infection, prior S. maltophilia isolation, underlying
malignancy (refractory or recurrent), Charlson
comorbidity index (CCI)$3, prior ICU stay,
mechanical ventilation, renal replacement therapy,
elevated SOFA score, no. of prior antibiotics used

Hemorrhagic pneumonia, nonhemorrhagic
pneumonia, elevated SOFA score

32

Catheter reimplantation, accompanying
polymicrobial infection, APACHE II score, temp
.39°C; septic shock, respiratory failure, inadequate
initial antimicrobial treatment, nonremission
posttreatment for primary diseases

Inadequate initial antimicrobial treatment,
respiratory failure, nonremission posttreatment
for primary diseases

21

Mortality in hospitalized
patients with S. maltophilia
infections

ICU stay, mechanical ventilation, catheter (central
venous, urinary), prior antibiotic use

ICU stay, mechanical ventilation, catheter (central
venous, urinary), prior antibiotic use

22

ICU stay, catheter (central venous, urinary, other),
elevated white blood cell count, coisolation of
another Gram-negative pathogen, empirical use of
tigecycline, targeted therapy use of colistin,
tigecycline, and TMP-SMX

ICU stay 40

Arterial hypertension, type 2 diabetes, acute
myocardial infarction, leukemia, urinary catheter,
central venous catheter, mechanical ventilation,
hemodialysis or peritoneal dialysis, cardiac arrest,
length of hospital stay, ICU stay, use of
corticosteroids, antifungals, vasopressors,
vancomycin, and TMP-SMX

NA 28

aNA, not available.
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hyperbilirubinemia (540). In summary, these studies underscore the importance of
careful administration of antibiotics to treat S. maltophilia infections.

TMP-SMX and fluoroquinolones continue to show good efficacy against S. malto-
philia. As an example, a recent study of military trauma patients infected with S.

TABLE 3 Risk factors associated with developing S. maltophilia infection or acquisition of drug-resistant S. maltophilia

Infection

Risk factor(s)

ReferenceUnivariate or bivariate analysis Multivariate analysis
S. maltophilia bacteremia in
pediatric patients

NAa Prior use of carbapenems, prior ICU stay 24

Ventilator-associated pneumonia
due to S. maltophilia

Hematological organ failure, shock, female
gender

SOFA score.2 (respiratory and
coagulation), prior antibiotic use (uredio/
carboxypenicillin, carbapenems)

57

S. maltophilia bacteremia in
patients with hematologic
malignancy

Length of hospital stay, polymicrobial
infection, previous S. maltophilia isolation,
breakthrough bacteremia during
carbapenem therapy, UTI, pneumonia,
leukemia, allogenic stem cell
transplantation, elevated SOFA score,
mechanical ventilation, prior antibiotic
use (including TMP-SMX)

Polymicrobial infection, previous S.
maltophilia isolation, prior antibiotic use
(including TMP-SMX), breakthrough
bacteremia during carbapenem therapy

33

Nosocomial bloodstream infection
with S. maltophilia

Patient age (0–5 yrs) NA 41

Acquisition of S. maltophilia in
patients with non-CF
bronchiectasis

NA For single S. maltophilia isolation: lower
baseline % predicted FEV1 $3 lobes or
cystic bronchiectasis on computed
tomography; for chronic S. maltophilia
isolation: no. of courses of intravenous
antibiotics before and after S. maltophilia
isolation; absence of P. aeruginosa chronic
isolation

61

Severe S. maltophilia infection in
pediatric patients (mainly
newborns and infants,1 yr old)

Invasive procedures, mechanical ventilation,
ICU admission within prior 30 days, prior
use of carbapenems

Invasive procedures, mechanical ventilation,
ICU admission within prior 30 days

71

S. maltophilia infection in neonates Invasive procedures (mechanical ventilation,
urinary catheter), use of aminoglycoside
and carbapenem, total parenteral
nutrition, histamine 2 blockers, exposure
to steroids, cholestasis, length of hospital
stay

Invasive procedures, length of hospital stay 38

Acquisition of TMP-SMX-resistant
S. maltophilia

Bivariable analysis: prior exposure to
fluoroquinolones, length of ICU stay,
length of hospital stay

Prior exposure to fluoroquinolones 43

Gastrostomy or jejunostomy, tracheostomy,
length of hospital stay, lumbar puncture

Length of hospital stay 28

Acquisition of levofloxacin-
resistant S. maltophilia

Bivariable analysis of levofloxacin-resistant S.
maltophilia infected compared with
levofloxacin-sensitive S. maltophilia
infected: exposure to fluoroquinolones

Previous use of fluoroquinolones 44

Bivariable analysis of levofloxacin-resistant S.
maltophilia infected compared with
patients without S. maltophilia: prior ICU
stay, prior exposure to antibiotics (4th
generation cephalosporins, carbapenems,
glycopeptides, fluoroquinolones), no. of
different antibiotic classes in prior
exposure, previous indwelling devices
(central venous catheter, urinary catheter,
ventilation, nasogastric tube)

Previous use of fluoroquinolones, recent ICU
stay, no. of different antibiotic classes in
prior exposure

44

Predicting factors for S. maltophilia
bacteremia with quinolone-
resistant strains

High Charlson score, length of hospital stay
prior to bacteremia, central venous
catheter, Foley catheter, mechanical
ventilator

High Charlson score, central venous catheter 31

aNA, not available.
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maltophilia demonstrated that S. maltophilia isolates were susceptible to TMP-SMX
(99%), minocycline (100%), and moxifloxacin (97%) (63). Serial isolates remained sus-
ceptible to TMP-SMX (81%) and minocycline (100%) (63).

S. maltophilia is associated with a specific host immune response, compromised
lung function (51, 73, 74), and has been suggested as an indicator of CF lung disease
severity (46). Acute and chronic S. maltophilia infections in CF patients have been stud-
ied (45–52, 54, 56, 58, 60, 65–67, 69, 72–75). This pathogen can be a cocolonizer in the
lungs of CF patients, where it demonstrates genetic variability and adaptability to this
habitat. Guidelines for infection prevention in CF patients recognize the possible trans-
mission of aerosol particles containing S. maltophilia and recommend the use of masks
by CF patients within health care settings and the design of negative-pressure rooms
within patient care institutions (131, 132).

No seasonal pattern of acquisition has been noted for S. maltophilia in U.S. CF pedi-
atric patients (66). No significant difference has been observed for the presence of
Stenotrophomonas in lung microbiota across CF patient age groups (48). Data from the
U.S. CF Foundation patient registry during 2003 to 2011 and 2006 to 2012 and from
the European CF Society patient registry during 2011 to 2016 have indicated that the
prevalence of S. maltophilia has increased over time (54, 56, 67).

Recent studies have examined risk factors for S. maltophilia infection and loss of
lung function in CF patients (45, 49, 58, 69). Data analysis of the Toronto CF database
(1997 to 2008) indicated that a steeper rate of median forced expiratory volume in 1 s
(FEV1) decline was associated with a significant risk for S. maltophilia infection (69).
Acquisition of this pathogen has been linked to an increase in lung function deteriora-
tion in patients with chronic S. maltophilia infection (45).

In young CF patients, the isolation of S. maltophilia during the baseline year has been
identified as a risk factor for higher rate of FEV1 deterioration, along with high FEV1, $1
pulmonary exacerbation, frequent/productive cough, and a low body mass index (BMI)
(49). In CF patients with chronic S. aureus infection, one of the risk factors for lung function
decline identified was coinfection with S. maltophilia (58).

S. maltophilia is not simply a colonizer but is an independent pathogen that causes
infection. The occurrence of S. maltophilia infection in immunocompetent individuals
is rare (59) and is more likely to occur among immunocompromised individuals. In
both acute and chronic S. maltophilia infections, host immune responses are induced
(73, 75, 133). In a mouse model of acute S. maltophilia lung infection, mice infected
with a clinical CF S. maltophilia strain exhibited significant weight loss, greater invasion
of the spleens, and damage of the lungs and displayed significantly higher cytokine
(pulmonary tumor necrosis factor alpha [TNF-a], gamma interferon [IFN-g], interleukin
6 [IL-6], and macrophage inflammatory protein 2 [MIP-2]) levels than mice infected with
an environmental S. maltophilia strain (133). Chronic S. maltophilia infection results in a
specific immune response in which significantly greater antibody levels against S. malto-
philia flagellin and whole cells are observed than in patients with intermittent or no S. mal-
tophilia infection (73). The levels of antibody against flagellin have been found to inversely
correlate with FEV1 percent predicted. In another study of patients with chronic S. malto-
philia infection during 2008 to 2014, higher antibody levels were observed and associated
with increased risk of pulmonary exacerbation (75). In respiratory coinfections of BALB/cJ
mice with S. maltophilia (either K279a or a chronic CF sputum strain) and P. aeruginosa,
mice exhibited significantly higher histological damage, higher numbers of immune cells
and neutrophils, higher levels of TNF-a, IL-1a, IL-1b , and IL-6, and greater weight loss dur-
ing infection than in uninfected mice (60). Together, these studies highlight the findings
that both the humoral and cellular host immune responses are activated by S. maltophilia
infection.

A study of antibiotic susceptibility of nonfermenting Gram-negative pathogens in
CF patient respiratory samples from Spain, Northern Ireland, The Netherlands, United
States, and Australia showed that co-trimoxazole is the preferred treatment for S. mal-
tophilia infection; however, rates of resistance to this antimicrobial continue to rise
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among CF patients (52). The emergence of antibiotic-resistant bacterial pathogens remains
a significant concern for CF patients, particularly in countries where self-treatment is preva-
lent (134). These studies underscore the need for carefully considered use of antibiotics via
prescription.

In CF patients with chronic S. maltophilia infection, their FEV1 levels may not change
significantly across the years, and the decline in FEV1 may initiate prior to the patient
presenting infection (50). Infection with chronic S. maltophilia infection is significantly
associated with lung transplantation or mortality in comparison to that for infection
with intermittent S. maltophilia (72).

Taken together, these studies illustrate the impact of S. maltophilia infection in CF
patient populations. The CF patient with S. maltophilia infection is challenged through
the specific immune response raised to the opportunist, the drug resistance of the
pathogen, and deterioration of lung function.

Sources

Identification of sources of S. maltophilia in the clinical and community settings is
an important step toward the prevention of infection of susceptible individuals. S. mal-
tophilia has been recovered from surfaces, including invasive devices (124), a positive
expiratory pressure therapy device (135), catheters (126, 128), endoscopes (136, 137), a
hemodialyzer (127), water (138, 139), hydrotherapy equipment (140), ventilators (141),
heater-cooler units (142), kitchen ICU tubing (143), dental biofilm (144), a contact lens
storage case (145), and in hospital air (146). S. maltophilia has been isolated from food
and beverages and equipment used for their preparation (147–159), a dishwasher seal
(160), water sources (161–174), a contact lens storage case (145), dental biofilm (144),
manure (175), and soil (176–178) (Table 4).

Drug-resistant S. maltophilia has been recovered from foods, including edible ice
(151, 156), ready-to-eat street foods (155), fresh vegetables (147, 150, 153, 154), and
cheeses (149, 157, 158), and from milk processing plants (148) (Table 2). S. malto-
philia is able to survive in beverages (151). UV treatment has been recommended for
use in hydroponic farms to reduce S. maltophilia biofilm on leafy green vegetables
(154). These studies emphasize the need to improve sanitation and monitor these
products for the presence of this multiple-drug-resistant pathogen. As an opportun-
ist, the presence of this organism may pose a significant threat to susceptible
patient populations.

In addition to its recognition as a human opportunist, S. maltophilia is emerging as
an opportunistic veterinary pathogen of significance. S. maltophilia has been detected
in mammals (179–185), birds (186, 187), fish (188–191), reptiles (192–195), insects (115,
196–205), marine invertebrates (206, 207), nematodes (208–211), and protozoa (212–216)
(Table 5). S. maltophilia was denoted as a commensal, pathogen, or endocytobiont based
on its recovery from a healthy or an infected animal (Table 5); it is clear from these studies
that S. maltophilia can be a pathogen of certain species of mammals, fish, reptiles, insects,
nematodes, and protozoa. A recent report proposed the moth fly as a mechanical vector
for S. maltophilia disease (196). A recent molecular study of S. maltophilia strains from ani-
mals found some phylogenetic traits shared with human S. maltophilia strains (183).
However, larger-scale studies are required to establish whether animals are a significant
reservoir for S. maltophilia that causes infection in humans.

As S. maltophilia is a common water contaminant, it is important to understand its inter-
action with other waterborne microbes and humans. Amoebae (e.g., Acanthamoebae) have
been reported to harbor S. maltophilia and may provide a reservoir host and mode of trans-
mission of S. maltophilia to humans (212, 213, 215–217). S. maltophilia associated with amoe-
bae has been recovered from hospital water samples (216, 217). S. maltophilia associated
with amoebae in soil (214) is able to reside and replicate within the amoebae (215). Taken
together, these observations are significant for public health. Infection by this opportunistic
bacterial pathogen may also be community acquired (1, 53, 105, 218), and this poses a seri-
ous threat to immunocompromised individuals.
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NewMethods of Detection

The continued increase in antibiotic resistance of S. maltophilia worldwide empha-
sizes the importance of early detection of this pathogen in infection. We have seen
advances in cultivation and differential testing strategies. A new selective Steno me-
dium agar (SMA) for S. maltophilia has been used to isolate the pathogen from sputum
(219). The ease of preparation and recovery of S. maltophilia suggests that it could be
useful to detect its presence within polymicrobial samples. The chromogenic b-LACTA
test (BLT) has been assessed for detection of extended-spectrum b-lactamase (ESBL)-
Gram-negative bacteria directly on bronchial aspirates (220). More research is needed
to determine if the BLT can be applied to other types of clinical samples, e.g., blood or
nervous system samples. The presence of specific DNase activity enables the differen-
tiation between S. maltophilia and other nonfermenting Gram-negative bacteria (221).
A modified DNase tube test for identification of S. maltophilia has shown positive
results for various clinical samples (tracheal aspirate, pus, and urine) (222). These meth-
ods allow for putative qualitative identification of S. maltophilia. More rigorous testing
is needed to confirm the identification of this pathogen.

Nucleic acid detection methods have been developed to detect pathogens in
mixed-culture infections (105, 157, 223–231). These methods are limited as they do not
differentiate between live and dead cells, but they can provide the clinical laboratory
with results relatively quickly, resulting in appropriate treatment of infection without
having to wait for culture growth and identification by conventional biochemical assays.
Molecular typing methods for S. maltophilia have been reviewed recently; this review pro-
vides a list of advantages and limitations of these methods (232).

TABLE 4 Sources of S. maltophilia

Source Reference(s)
Hospital
Invasive devices 124
Water 138, 139
Positive expiratory pressure therapy device 135
Peritoneal dialysis catheter 126
Hemodialyzer 127
Intravascular catheter 128
Air 146
Hydrotherapy equipment 140
Flexible endoscopes 136, 137
Ventilator systems 141
Heater-cooler units 142
Hospital kitchen ICU tubing 143

Community
Milk processing plant 148
Raw cow’s milk 152
Ready-to-eat street foods 155
Cheese 149, 157, 158
Poultry meat 159
Edible ice 151, 156
Fresh vegetables 147, 150, 153, 154
Drinking water distribution systems 164–169, 171, 172
Dishwasher seal 160
Contact lens storage case 145
Dental biofilms 144
Groundwater 173
Seawater 161
River water 174
Wastewater 163, 170
Soil 176–178
Manure 175
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PCR amplification of 16S rRNA genes has been used to detect S. maltophilia in
human serum samples, and real-time PCR has quantified S. maltophilia flagellin gene
copy numbers in peripheral blood leukocytes (223). A SeptiFast (SF) real-time PCR test
has been used to identify S. maltophilia in bloodstream cultures from CF patients with
febrile pulmonary exacerbation (224). PCR has been used to detect the smeT gene
(encoding a transcriptional regulator of the SmeDEF multiple-drug efflux pump) of

TABLE 5 S. maltophilia in animals

Animal Hypothetical role of S. maltophilia Reference(s)
Mammals
Cat Pathogen 181, 183
Dog Pathogen 180

Commensal 183
Pig Pathogen 182
Horse Pathogen 183, 185
Cow Pathogen 179, 184

Birds
California condor Commensal 186, 187

Fish
Catfish Pathogen 188, 191
Frozen Antarctic krill Food spoilage 190
Rainbow trout Commensal 189

Reptiles and amphibians
Frog Pathogen 195
Prairie rattlesnake Commensal 193
Salamander Pathogen 194
Tortoise Commensal 192

Insects and arachnids
Asiatic rhinoceros beetle Commensal 202
Cockroach Commensal 201
Mosquito Commensal 115, 205
Moth fly Commensal 196
Bark beetle Commensal 200

Pathogen 204
Silkworm Commensal 197
Spider Commensal 203
Stable fly Commensal 199
Vespine wasp Commensal 198

Marine invertebrates
Anemonia sulcata Commensal 206, 207
Actinia equina
Holothuria tubulosa
Holothuria forskali

Nematodes
Mesorhabditis Commensal 209
Caenorhabditis remanei Pathogen 208
Pine wood nematode Commensal 210, 211

Protozoa
Acanthamoeba spp. Pathogen 213

Endocytobiont 215
Micriamoeba Endocytobiont 214
Naegleria pringsheimi Pathogen 213
Tetramitus Endocytobiont 214
Vermamoeba vermiformis Pathogen 212

Pathogen 213
Endosymbiont 216

Willaertia magna Endocytobiont 215
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S. maltophilia in cheeses (157). Quantitative real-time PCR using a conserved 4-kb genomic
sequence has been used to identify S. maltophilia in sputum, blood, endotracheal tube,
and other clinical samples (225). Multiplex PCR strategies have detected S. malto-
philia in CF patient respiratory samples and in water samples with high background
contamination (226, 227). Probes used in these methods should be tested to ensure
they do not demonstrate any cross-reactivity between them and other nontarget spe-
cies/strains. A loop-mediated isothermal amplification (LAMP) assay for rapid detection of
S. maltophilia in respiratory samples of patients with pneumonia has demonstrated no
cross-reactivity with other tested bacteria and, notably, no interference with amplification
when the bacteria were mixed with organic compounds (228). The quick delivery of results
and its sensitivity make the LAMP assay an attractive method for use in the clinical micro-
biology laboratory.

Diagnostic DNA microarrays and peptide nucleic acid fluorescence in situ hybridiza-
tion (PNA FISH) allowed detection of S. maltophilia in intracranial bacterial/fungal infec-
tions and tracheal aspirate and bronchoalveolar lavage samples (229, 230). Application
of the PNA FISH assay may be useful for studying the pathogen in its biofilm within
chronically colonized patients. Other applications of these methods need to be explored
using more clinical samples containing this pathogen.

Metagenomic sequencing has been used to identify S. maltophilia in spinal cord
aspirate and blood samples from pediatric patients, enabling subsequent successful
antimicrobial therapy and positive outcomes (35, 105). Direct-from-blood RNA sequenc-
ing has identified S. maltophilia in whole-blood samples from an immunocompromised
patient with CF and lung transplant (231). These sequencing methods do not provide in-
formation about the organism’s activity in the host. Next-generation sequencing (NGS) of
microbial cell-free DNA (cfDNA) in plasma from chemotherapy or transplant patients with
febrile neutropenia, sepsis, or infection has identified S. maltophilia (233), but larger studies
are needed to validate the use of microbial cfDNA NGS for diagnostic applications.

Recent protein-based methods developed to observe S. maltophilia infection in
patients have included a quantitative immunofluorescence assay that monitors the
level of S. maltophilia colonization in CF patients (234) and a method that uses unique
peptide markers and liquid chromatography-tandem mass spectrometry (LC-MS/MS)
to detect S. maltophilia directly in bronchoalveolar lavage samples (235). It should be
noted that to avoid cross-reactivity in the immunofluorescence assay, absorption with
other pathogens may need to be performed prior to quantification of the antibody
response to S. maltophilia. The LC-MS/MS methodology relies on the abundance of the
selected peptide in each strain, and this limitation should be recognized if this method
is to be used for clinical diagnosis of infection.

Volatile metabolites released by S. maltophilia may serve as useful biomarkers to
distinguish this pathogen from other organisms found in lung infections (236–239).
This noninvasive technique is attractive for use with patients. It should be noted that
the volatile organic compound (VOC) profile patterns are influenced by stage of culture
growth, being more readily distinguishable between bacterial species during logarith-
mic growth than during stationary growth (238). Fatty acid methyl esters (FAME) fin-
gerprinting combined with a random amplification polymorphic DNA (RAPD) method
provides a low-cost, high-throughput automated approach that may be useful for dif-
ferentiation of bacterial species and phylogenetic analyses (239). Due to the relatively
low number of samples used in these studies of volatile organic compounds, additional
clinical and environmental S. maltophilia strains need to be tested to see whether there
are clear differences in the production of these volatile metabolites. It remains to be
determined how useful this approach is with CF patients and patients with lung
infections.

Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-
TOF MS) has been used to identify patient isolates of S. maltophilia (78, 240) and to identify
bacterial pathogens in groundwater (173). For identification of clinical S. maltophilia,
MALDI-TOF MS has demonstrated a high concordance rate with 16S rRNA gene sequencing
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and superiority over conventional phenotypic identification (241). This method can be used
to identify bacteria in urine and blood cultures but, in the case of blood, may require the re-
moval of nonbacterial proteins prior to analysis (242). In a study, however, no identification
of two S. maltophilia strains was possible with samples prepared using the MALDI Sepsityper
kit (Bruker Daltonics, Billerica, MA) (243). The limitations of this kit were also seen in an earlier
study where only 1 of 5 S. maltophilia strains was identified to the genus and species levels
in comparison to that with standard phenotypic methods (244).

For more commonly encountered Gram-negative bacteria, the accuracy of MALDI-
TOF MS for microbial culture identification is comparable if not superior to automated
phenotypic culture identification systems (245). The updating of databases used with
the MALDI-TOF MS system is important to ensure the accuracy of the method (242).
MALDI-TOF MS may also be used to detect antibiotic resistance in bacterial pathogens
(242, 245). Clinical laboratories are currently using MALDI-TOF MS in conjunction with
automated identification systems and obtaining close to 100% correct identification
(245).

A recent study using S. maltophilia ATCC 13637 and Escherichia coli ATCC 25922
reported the combination of collision experiments and redox activity of bacteria to
identify single bacterial cells (246). S. maltophilia cell behavior contrasted with that of
E. coli cells. Additional studies are needed to assess this approach using a variety of dif-
ferent bacterial species to see whether this combination approach can truly distinguish
between the behaviors of the bacteria in single culture, polymicrobial cultures, and
biofilms.

A summary of the methods described above, including their application, sensitivity,
and accuracy, is presented in Table 6.

Genetics and Genomes of S. maltophilia

S. maltophilia demonstrates considerable genotypic and phenotypic diversity.
Genome sequences of several S. maltophilia clinical and environmental strains have
been recently reported (175, 247–250). The genomes of two type strains of S. malto-
philia, ATCC 13637T (175) and MTCC 434T (250), have been published recently. The
genomes of S. maltophilia clinical strains K279a (251) and D457 (252) have been pub-
lished. Novel genomospecies have been identified for clinical S. maltophilia isolates
(253).

Genomic comparisons between S. maltophilia K279a and two biocontrol agents, S.
maltophilia R551-3 and Stenotrophomonas rhizophila DSM14405T have shown that the
genomes share significant sequence similarity (254). Strain-specific genes between S.
maltophilia K279a and S. rhizophila DSM14405T may be expressed in response to adap-
tation to their particular habitats.

Various methods, including repetitive extragenic palindromic-PCR (Rep-PCR) finger-
printing (255, 256), gene sequencing (257, 258), genome sequencing (47, 253, 259–263),
pulsed-field gel electrophoresis (PFGE) (65, 258, 264–266), and multilocus sequence typing
(MLST) (256, 267–269), have been used to compare clinical and environmental S. malto-
philia strains. Worldwide, regardless of their origin, S. maltophilia strains demonstrate high
genetic heterogeneity, with an open pangenome and shared core genome (Table 7).
Phylogenetic analyses of 375 nonduplicated S. maltophilia complex genomes (including
104 of animal origin, 226 of human, 30 of environmental, and 15 of unknown origin) iden-
tified at least 20 genogroups; MLST analysis has shown the majority of strains in gen-
ogroups 1, 3, 6, and C are of human origin, and most of the strains in genogroups 2-b and
5 are of animal origin (269). MLST assessment of clinical S. maltophilia strains across multi-
ple French hospitals confirmed previous published reports of genogroups (232, 270, 271)
and observed a predominance of genogroups 6 and 2 (267); another MLST study of clinical
S. maltophilia strains from multiple institutions in the United States classed them in gen-
ogroups 6, 1, and C (268). Subculturing of isolates prior to genetic analyses need to be
minimized to reduce the possibility of increased mutation rates that can affect genotypic
profiling (272). Genome sequencing studies have identified recombination events that
contribute to genetic diversity (253, 263) and have shown no evidence of independent
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evolutionary lineages (261) (Table 7). A recent study has reported strains of S. maltophilia
lineages that are associated with human infections and clinical settings and propose line-
age Sm6 to be most suitable for infecting humans (273). These genomic studies under-
score the challenge of trying to dissect out the differences between clinical and environ-
mental S. maltophilia.

As S. maltophilia is seen often in CF patients, particular attention has been focused
on comparing non-CF S. maltophilia strains with CF strains. While genetic heterogene-
ity is observed, studies have not shown strong genotype-phenotype correlation
among these strains (Table 7). Both global and local selection pressure forces are evi-
dent for S. maltophilia in the CF lung. Phylogenetic analyses of 552 isolates recovered
from 23 biopsy sites of a set of explanted CF lungs revealed multiple coexisting

TABLE 7 Genetic analyses of S. maltophilia

Method(s) S. maltophilia Main observations Reference
Rep-PCR fingerprinting and partial
gyrB sequencing

Environmental, clinical, Germany, Ireland,
USA, Sweden

Presence of potential virulence genes in all
isolates

255

PCR, DNA sequencing, DNA-DNA
hybridization, in silico
comparisons of gyrB gene

Environmental, clinical, Culture Collection
University of Gothenburg, Sweden

Strains shared 93–99% sequence similarity of
gyrB gene

257

Rep-PCR and MLST Clinical, hospitals in Iran High genetic diversity 256
MLST Clinical strains, multiple hospitals and

centers, mostly from France
Predominance of genogroups 6 and 2 266

Strains from U.S. hospitals, universities, and
centers

Predominance of genogroups 6, 1, and C for
clinical strains

267

Animal, human, environmental, unknown
origin, mostly from France

Open pangenome of 22,936 genes, core
genome of 1,740 genes. High genetic
diversity with most human strains in
genogroups 1, 3, 6 and C, most animal
strains in genogroups 2-b and 5

268

16S rRNA gene sequencing, MLST,
PFGE

Clinical strains from non-CF and CF patients,
hospital in Serbia

High genetic diversity across strains and
phenotypic differences between non-CF
and CF strains

258

PFGE Clinical, hospitals in Mexico Multiple distinct PFGE types 266
Environmental, clinical, hospital in Thailand High genetic diversity, no genotypic

relationship found between
environmental and clinical strains

264

Clinical from hospitals in Italy,
environmental from Czech Republic

High genetic heterogeneity with no
difference between CF and non-CF strains

265

Clinical, from lungs of chronically infected CF
patient across a 10-yr period

Growth rate of strains increased over time
with a decrease in biofilm formation,
virulence, and antibiotic susceptibility

65

Genome sequencing-based
phylogenomic core single
nucleotide polymorphism

Clinical, environmental frommultiple
institutions in Germany

High genomic diversity 259

Genome sequencing Clinical, hospital in India Shared core-genome, homologous
recombination and nonhomologous gene
transfer contributed to genetic diversity

253

Biopsy sites of a set of explanted CF lungs Adaptive evolution and positive selection of
genes

47

Clinical, CF pediatric patients in Italy over a
12-yr period

High genomic heterogeneity with a weak
genotype-phenotype correlation

260

Clinical from hospitals in Spain and the UK,
environmental from Netherlands,
Germany, USA, and Brazil

Strains showed no distinct independent
evolutionary lineages

261

Genome sequencing and genomic
analysis comparison to published
strains

Clinical from Australia, Spain, UK, and China,
environmental from Burkina Faso, France,
Brazil, UK, USA, China, Norway, and Portugal

No significant relationship between strain’s
source, clade assignment, or antibiotic
susceptibility

262

Bioinformatics and analyses of
genome sequences

Clinical from China, USA, Netherlands, and
Germany, environmental from USA,
Philippines, UK, Netherlands, China

Shared large open pan-genome and shared
core genome of 887 genes, recombination
events contributed to genetic
heterogeneity

263
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lineages, with major lineages present across most of the lung sites and the dispersal of
new mutations out of a lung site (47). PFGE analyses of S. maltophilia strains recovered
from the lungs of a chronically infected CF patient across a 10-year period categorized
the 13 strains into two groups and two different pulsotypes within each group; growth
rates of the strains significantly differed and increased over time, with a decrease in
biofilm formation, virulence, and antibiotic susceptibility (65) (Table 7). It is apparent
that S. maltophilia strains adapt according to their external niche. For example, expo-
sure to acidic pH impairs the growth of CF and non-CF strains (274). In another exam-
ple, altered transcripts for those used in metabolism, stress response, and drug resist-
ance were observed in CF strains exposed to synthetic CF sputum medium (275). It is
evident from these studies that S. maltophilia adapts to the human CF lung niche.
Further work is needed with models of infection to establish other factors that act as
selection pressures on strains colonizing different areas of the host lung.

Manipulating S. maltophilia genetics. Research into the molecular mechanisms
used by S. maltophilia has required the development of suitable genetic engineering
tools. Protocols for genomic DNA isolation, extraction of DNA for use with PCR, RNA
extraction, transfer of plasmid DNA into S. maltophilia, and the use of pEX18TC to gen-
erate allelic exchange mutants have been described for S. maltophilia K279a and may
be optimized for use with other strains (276).

An arabinose-inducible system in S. maltophilia has been developed (277). The arab-
inose inducible expression vector, pBBad22T, contains the pBBR1MCS-4 replicon, a mo-
bilization (mob) element that permits plasmid transfer by conjugation, multiple clon-
ing restriction enzyme sites, the PBAD promoter and araC (codes for repressor protein),
and a tetracycline resistance marker. Plasmid pBxylE is an araC-PBAD::xylE recombinant
plasmid that can be introduced into S. maltophilia by conjugation and used to assess
inducibility of pBBad22T (277). The expression vector pBBad22T can be useful for the
cloning, expression, and future targeted mutation of genes in S. maltophilia.

High-efficiency transformation of environmental S. maltophilia S21 by electropora-
tion with plasmid pBBR1MCS has been reported (278). Electroporation of S. maltophilia
using the EZ:: TN,R6K1ori/KAN-2.Tnp transposome mutagenesis kit (Epicenter
Technologies, WI) has been successfully achieved and generated transposon mutants
that were used to identify genes important for biofilm formation, lipopolysaccharide
synthesis, and assembly (279, 280).

MOLECULAR MECHANISMS OF PATHOGENESIS

S. maltophilia is considered to be an opportunistic pathogen of low virulence that is
multidrug resistant and produces various extracellular enzymes, including DNase, pro-
teases, lipases, hyaluronidase, and hemolysin. S. maltophilia is associated with a
decrease in lung function and forms biofilms in infected patients that are challenging
for the physician to treat. In each subsection below, this review focuses on presenting
the reader with some background information for context and emphasizes updated in-
formation (since the author’s last review in 2012) (1) about the mechanisms used by S.
maltophilia during pathogenesis. Figure 1 illustrates properties of S. maltophilia; for
clarity of viewing, not all properties are shown. A summary of pathogenic mechanisms
is presented in Table 8.

Various models have been used to study S. maltophilia in vivo. Mice (281, 282), rats
(283), Caenorhabditis elegans (284), zebrafish (285), and Galleria mellonella (wax moth)
(286) have been used to study S. maltophilia pathogenesis and infection. These models
have provided a better understanding of the host-pathogen interactions. BALB/c mice
treated with S. maltophilia fimbrin demonstrate a specific host immune response (IL-1b ,
TNF-a, and increased phagocytic activity) (281). The role of YajQ as a cyclic di-GMP effector
was clarified as contributing to the adherence, colonization, and persistence of S. malto-
philia in the murine (C57BL/6 mice) host (282). The effects of moxifloxacin on host lipid
peroxidation and inflammation have been examined in immunosuppressed Wistar rats
treated with this antimicrobial against S. maltophilia soft tissue infection (283). A study
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using C. elegans and S. maltophilia clinical invasive isolates has established that direct con-
tact is not required for S. maltophilia to kill its host (284). The zebrafish model of infection
and differential proteomic analyses have identified the expression of the Ax21 quorum-
sensing factor as correlating strongly with host mortality, adherence to HeLa cells, and se-
rum sensitivity (285). G. mellonella larvae have been used to identify the role of Hfq (host
factor I protein), an RNA chaperone, in the virulence of S. maltophilia K279a (286).
Virulence of a deletion mutant (Dhfq) was comparable to that of K279a against G.
mellonella larvae, while the mutant demonstrated impaired motility, biofilm forma-
tion, adherence to and invasion of IB3-1 bronchial epithelial cells, and ability to repli-
cate in RAW 264.7 murine macrophages. In summary, use of these animal models has
enabled us to identify general and specific changes that occur in the host during S.
maltophilia infection. Drug therapy development strategies benefit from these stud-
ies in which host-pathogen interactions are considered and possible suitable targets
for anti-infection strategies are identified.

S. maltophilia produces an array of enzymes that serve as virulence factors and help
protect this pathogen against host defenses. Gelatinase, hemolysin, hyaluronidase,
lipase, proteinase, and DNase have been identified in S. maltophilia (287). A putative al-
ginate lyase has been identified in S. maltophilia K279a and found to have a pH-medi-
ated substrate specificity for alginate, poly-b-D-glucuronic acid, and hyaluronic acid
(288). Further characterization is needed to identify a possible role for this alginate

FIG 1 Properties of S. maltophilia. For clarity of viewing, not all properties are shown. Not drawn to scale.

TABLE 8 Pathogenic mechanisms of S. maltophilia

Role Structure(s)a

Antimicrobial resistance Efflux drug pumps, class I integrons, reduced outer membrane permeability,
antimicrobial modifying or degrading enzymes, OMVs

Motility Flagella, type IV pili
Adherence to surfaces Flagella, fimbriae, LPS
Damage to host Protein secretion systems, extracellular enzymes, including proteinases, lipase,

DNase, gelatinase, lecithinase, heparinase, hemolysin, and hyaluronidase
Acquisition of iron Siderophores, siderophore and heme-mediated iron uptake systems
Biofilms Diffusible signal factor and quorum sensing system
Protection of pathogen against host defenses Superoxide dismutases, melanin, catalase, and hydroperoxidase
aOMVs, outer membrane vesicles; LPS, lipopolysaccharide.
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lyase in the pathogenesis of S. maltophilia and/or during interaction with other micro-
organisms. Protection of S. maltophilia against damage by the host defenses is pro-
vided by the production of a manganese-dependent superoxide dismutase (MnSOD;
SodA) and an iron-dependent SOD (FeSOD; SodB) (289), catalase (Kat), an alkyl hydro-
peroxidase (Ahp) (290), and the pigment melanin (287). It is clear from these studies
that S. maltophilia has a substantial arsenal to infiltrate and damage the susceptible
host while protecting itself.

Antimicrobial Resistance

S. maltophilia is intrinsically resistant to a wide range of antibiotics, including b-lac-
tams, carbapenems, fluoroquinolones, tetracyclines, chloramphenicol, aminoglycosides,
polymyxins, macrolides, and TMP-SMX (1). As part of its multiple-drug resistance, S. mal-
tophilia has been reported to use plasmid-mediated antimicrobial resistance, integrons,
and insertion sequence common region (ISCR) elements, SmQnr determinants, modifica-
tion of antibiotics, and efflux pumps (1).

TMP-SMX continues to be a drug of choice for treatment of S. maltophilia, though
reports of resistance have emerged (4, 268, 291). During 2009 to 2012, results from the
SENTRY antimicrobial surveillance program of pneumonia patients in U.S. and European
hospitals showed that 96.3% of 302 S. maltophilia isolates were susceptible to TMP-SMX
(4). In a recent study of isolates recovered from U.S. centers during 2006 to 2016, the sus-
ceptibility of 130 S. maltophilia isolates to TMP-SMX ranged from 79% to 96% (268). These
studies underscore the importance of continuing to monitor this rise in resistance while
developing new antimicrobials against this human opportunist.

Laboratory experimental evolutionary studies have been geared toward a deeper
understanding of the molecular mechanisms of antimicrobial resistance at play in S.
maltophilia (292–295). Some interesting findings have emerged from these studies
that should be considered when administering antibiotics to treat S. maltophilia infec-
tions. A study demonstrated that the alteration of the intrinsic resistance in S. malto-
philia affects the mutant selection window and suggested that inhibition of this intrin-
sic resistance could result in selection of S. maltophilia antibiotic-resistant mutants at
low antibiotic concentrations (295). Resistance to a particular antibiotic may be pro-
vided to S. maltophilia through its use of different efflux pumps. The ability of S. malto-
philia to acquire quinolone resistance appears linked with its intrinsic resistome, with
the type of quinolone resistance mediated by which efflux pumps are functional and
the degree to which they are expressed (294).

Recent studies have shown that exposure of S. maltophilia to increasing concentra-
tions of an antimicrobial can result in genomic changes without cost of bacterial fitness
(292) or in genomic mutations that are associated with a fitness cost (293). Increasing
concentrations of ceftazidime, for example, resulted in mutation of the resistance-nod-
ulation-division (RND) efflux pump transporter smeH, which ultimately led to resistance
to other b-lactam drugs (292). These studies clearly demonstrate that exposure to anti-
microbials can trigger changes in efflux pumps and unleash new mechanisms of anti-
microbial protection for S. maltophilia.

In addition to efflux pumps that expel antimicrobials out of the bacterial cell, pro-
teins involved in uptake of antimicrobials can provide a mechanism for resistance. The
TonB energy transducer in S. maltophilia mediates uptake of ceftazidime, and clinical S.
maltophilia isolates with TonB mutations exhibit resistance to siderophore-conjugated
lactivicin (296). This is an important observation as it raises the concern that emergence
of S. maltophilia strains with mutations in TonB may limit the use of recently developed
siderophore-conjugated antimicrobials.

In the subsections below that describe mechanisms of antimicrobial resistance,
research advances since the last review by the author are the focus of interest.
Background information about the general mechanisms of antimicrobial resistance
used by S. maltophilia can be found in the previous review (1).

b-Lactam resistance. There are complex and compensatory mechanisms used by S.
maltophilia for the expression and activity of its two chromosomally encoded
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b-lactamases, L1 and L2. NagZ (a b-N-acetylglucosaminidase)-dependent and NagZ-inde-
pendent mechanisms are important for b-lactamase expression (297). S. maltophilia har-
bors the mrcA gene (encodes penicillin-binding protein 1a) and regulatory proteins AmpR
(transcriptional regulator) and AmpN-AmpG (permease system) that influence basal b-lac-
tamase activity (298). Inactivation of mltD1 (encodes lytic transglycosylase D1) results in
increased uninduced b-lactamase activity and upregulated expression of L1 and L2 b-lac-
tamase genes (299). The function of AmpN/AmpG permease and AmpR is essential to the
mltD1 mutant phenotype, and disruption of nagZ results in partial decrease of the unin-
duced b-lactamase activity. Disruption of mltD1 also leads to creBC- (codes for a two-com-
ponent regulatory system) and ampNG-dependent increased expression of mltB1 and
mltD2 (code for two other lytic transglycosylases) (299). Disruption of the mrcA gene,
ampD1 gene (codes for enzyme used in peptidoglycan recycling), and at least one other
gene results in the hyperproduction of b-lactamase by S. maltophilia (300).

The exposure of a bacterium to an antimicrobial agent can lead to altered protein
expression and subsequent antimicrobial resistance. For example, exposure of S. malto-
philia clinical isolate 44/98 (LM 26824) to imipenem (25mg/ml) increased b-lactamase
production and expression of select proteins (for several efflux pumps, membrane
transport, peptidoglycan biosynthesis, flagellin, ATP-dependent ClpX and ClpA, UvrB,
the two-component system response regulator GGDEF signaling protein, protein trans-
lation, and metabolism) (301).

Aminoglycoside resistance. S. maltophilia has demonstrated resistance to amino-
glycosides through different enzyme activities and efflux pumps (302). A new amino-
glycoside modifying enzyme, 69-N-aminoglycoside acetyltransferase [AAC(69)-Iak], has
been identified in S. maltophilia that contributes to reduced sensitivity to aminoglyco-
sides (303). Two proteases, ClpA and HtpX, have been shown to contribute to the
intrinsic aminoglycoside resistance of S. maltophilia (304).

Quinolone resistance. RNase G inactivation, important for mRNA stability and gene
expression regulation (305), has been shown to decrease susceptibility of S. maltophilia
to quinolones (306). Overexpression of the heat shock response genes has also been
observed when RNase G is inactivated. Efflux pumps also contribute to quinolone re-
sistance in S. maltophilia, and these pumps are discussed below.

Class I integrons and dfrA and sul genes. Class 1 integrons have been found to
contribute resistance to kanamycin, tobramycin, and TMP-SMX in S. maltophilia clini-
cal isolates (307). A class 1 integron was found in S. maltophilia that harbored a sul1
gene and an aadA2 gene (encodes aminoglycoside resistance) within the resistance
gene cassette (308). The class 1 integrons provide a mechanism for the dissemina-
tion of antimicrobial resistance genes among S. maltophilia strains. S. maltophilia
has acquired sul and dfrA genes in a plasmid-mediated class I integron, resulting in
resistance to TMP-SMX (309). There is potential for horizontal gene transfer and the
spread of resistance to TMP-SMX among S. maltophilia strains. The sul1 gene has
been observed linked to class 1 integrons in S. maltophilia exhibiting resistance to TMP-SMX
(310). Horizontal gene transfer and recombination are both molecular mechanisms used by
S. maltophilia.

Efflux pumps. S. maltophilia uses several efflux pumps that enable resistance to antimi-
crobials, including quinolones, aminoglycosides, beta-lactams, tetracyclines, erythromycin,
and chloramphenicol. It is important to understand the molecular mechanisms needed for
the pumps to function as they may be targets for pharmacological therapy.

(i) ABC family. The MacABCsm efflux pump of S. maltophilia has been shown to be
important for drug resistance against aminoglycosides, macrolides, and polymyxins,
biofilm formation, and protection against oxidative and envelope stresses (311). A two-
component regulatory system of macS (sensor kinase MacS) and macR (response regu-
lator MacR) is positioned upstream of the macABCsm operon. TolCsm is probably an
outer membrane protein (OMP) that interacts with MacAB to generate a functional
efflux pump. The macABCsm operon is conserved among S. maltophilia genomes (311).
An earlier study examined the role of the pcm-tolCsm operon in drug resistance and
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showed the operon to be highly conserved across several S. maltophilia genomes
(312). TolCsm has been suggested to play a central role in drug resistance across several
efflux pumps (311–314).

The ATP-binding cassette (ABC) efflux pump SmrA has been shown to confer
increased resistance to fluoroquinolones and tetracycline (315). Checkerboard titration
assays demonstrated synergistic activity between the combination of anti-SmrA anti-
body with antibiotics (e.g., ticarcillin-clavulanate, ciprofloxacin, and co-trimoxazole)
seen in 33.3% of the tested S. maltophilia strains, while additive activity was observed
for 38.1% of the strains, and indifferent activity was shown in 28.6% of the strains.
Further work is needed to examine the precise mechanism of action of this polyclonal
antibody. Research to identify antibodies that display broad substrate specificity across
additional efflux pumps, may lead to the use of antibodies to increase the antimicro-
bial susceptibility of S. maltophilia.

(ii) MFS family. The major facilitator superfamily efflux pump of S. maltophilia,
EmrCABsm, has been reported to extrude hydrophobic antimicrobials, including nali-
dixic acid, the oxidative phosphorylation uncoupler 3-chlorophenylhydrazone (CCCP),
tetrachlorosalicylanilide (TCS), and erythromycin (316). Deletion of the EmrCABsm
pump restored susceptibility to nalidixic acid, CCCP, TCS, and erythromycin. EmrRsm is
a repressor of the emrRCABsm operon. Both emrCsm and emrABsm are needed for the
EmrCABsm pump to function (316).

The major facilitator superfamily protein MfsA of S. maltophilia is an efflux pump
that reduces susceptibility to aminoglycosides, cephalosporins, fluoroquinolones,
rifampin, chloramphenicol, erythromycin, tetracycline, and paraquat (317, 318). SoxR is
a transcriptional regulator that senses redox cycling drugs/superoxide and controls
expression of mfsA; in its reduced form, SoxR represses mfsA expression, and in its oxi-
dized form, SoxR activates mfsA expression (318). The mfsA gene has been found in the
genomes of S. maltophilia strains D457, JV3, and R551-3, suggesting that it is common
in this pathogen (317). Overexpression of MfsA on plasmid pMfsA was reported to
increase resistance of S. maltophilia to fluoroquinolones and paraquat (319). The heter-
ologous expression of S. maltophilia mfsA in Agrobacterium tumefaciens, Burkholderia
thailandensis, P. aeruginosa PA14, and E. coli K-12 demonstrated that plasmid transfer
of fluoroquinolone resistance and paraquat resistance from S. maltophilia to these
microorganisms is possible (319).

(iii) RND family. The genome of S. maltophilia K279a shows eight RND-type efflux sys-
tems to be present: SmeABC, SmeDEF, SmeGH, SmeIJK, SmeMN, SmeOP, SmeVWX, and
SmeYZ (251). Overexpression of the SmeABC efflux pump has been reported to contribute
resistance to the quinolones ciprofloxacin and levofloxacin (320).

The SmeDEF efflux pump has been shown to contribute to resistance against quin-
olones, TMP-SMX, tetracycline, macrolides, and chloramphenicol (294, 295, 321–326).
SmeT is a transcriptional regulator that represses expression of smeDEF; triclosan has
been found to bind SmeT, resulting in induced expression of smeDEF and reduced sus-
ceptibility to ciprofloxacin (321). Flavonoids have been reported to be effectors of
SmeT and induce smeD expression (322). The importance of a functional SmeDEF
pump for bacterial colonization has been demonstrated (322). Antimicrobial testing of
clinical S. maltophilia strain D457 and two isogenic mutants, D457R that overexpressed
the efflux pump SmeDEF and MBS411 containing a deletion of the smeE gene, demon-
strated that this efflux pump mediates resistance to TMP-SMX, trimethoprim, and sulfa-
methoxazole (323). Whole-genome sequencing of serial clinical isolates from a patient
with S. maltophilia bacteremia revealed a single-nucleotide variant in smeT that inacti-
vated the repressor function of SmeT and subsequently led to increased expression of
smeDEF and multidrug resistance (324). This last observation is significant, as occur-
rence of this particular mutation in smeT appears likely within S. maltophilia strains har-
bored by patients. This possibility of such a scenario increases our awareness to moni-
tor patients for signs of drug therapy failure and/or consider alternatives to using
quinolones as a monotherapy.
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Inactivation of smeT and consequent overexpression of the SmeDEF efflux pump has
been shown to increase sensitivity of S. maltophilia to aminoglycosides; the observed
aminoglycoside sensitivity was actually due to downregulation of smeYZ (325). This
is an important observation as it suggests regulatory mechanisms connect these
efflux pumps.

A SmeGH-TolCsm pump has been reported in S. maltophilia (313). The overexpres-
sion of SmeGH has been reported to contribute to the resistance of S. maltophilia to
fluoroquinolones, macrolides, chloramphenicol, and tetracycline (313).

A type of coordinated overexpression of smeJK and smeZ has been identified in S.
maltophilia that resulted in extended drug resistance, with increased MIC values for
aminoglycosides, tetracyclines, and ciprofloxacin and resistance to levofloxacin (327).
As mentioned above, this study too points to a regulated synchronized/integrated
expression of these different RND efflux pumps.

The SmeIJK pump of S. maltophilia strain has been studied and antimicrobial suscep-
tibility testing has suggested that the smeJ and smeK genes may be partially functionally
redundant (328). The expression of the smeIJK operon is regulated by RpoE-mediated en-
velope stress response, and cell envelope integrity appears compromised if the operon
is nonfunctional (328). Further work is needed to establish whether this pump provides
protection against envelope stressors found within animal models of infection.

The SmeOP-TolCsm efflux pump of S. maltophilia contributes to multidrug resistance
(314). SmeRo is a repressor of expression of smeOP. Antimicrobial susceptibility testing
indicated that TolCsm may play a role in the activity of the SmeOP pump to extrude a
variety of compounds, including antibiotics from different classes, and TolCsm may also
contribute to efflux pumps in S. maltophilia (314). This observation again suggests that
there is interplay at work between these efflux pumps.

The SmeVWX pump is a member of the RND family reported to provide S. malto-
philia with resistance to aminoglycosides and contributes to multidrug resistance
(329). The smeU1-V-W-U2-X operon is regulated by the smeRv gene. Overexpression of
the SmeVWX pump contributes to resistance to chloramphenicol, quinolones, and tet-
racyclines (329). Vitamin K3 has been identified as an inducer of the SmeVWX pump in
S. maltophilia (330). Antibiotic disc and checkerboard assays confirmed that vitamin K3

reduced susceptibility to chloramphenicol and ofloxacin. As plants produce vitamin K3,
this suggested that the SmeVWX pump is involved in plant-microbe interactions (330).
This study highlights the idea that efflux pumps have multiple functions beyond shut-
tling of antimicrobials out of the bacterial cell.

Recently, the contributions of SmeDEF, SmeVWX, and SmQnr to fluoroquinolone re-
sistance in S. maltophilia were examined (331). The SmeVWX pump was found to con-
tribute more than the SmeDEF pump to fluoroquinolone resistance. Inactivation of
Smqnr increased susceptibility to fluoroquinolone, while overexpression of smeDEF did
not contribute significantly to fluoroquinolone resistance (331).

The constitutively expressed SmeYZ efflux pump of S. maltophilia confers resistance
to aminoglycosides and is likely important for oxidative stress alleviation (327, 332).
TolCsm has been proposed as an OMP for SmeYZ (312). Further research is needed to
determine the role played by this pump in mediating virulence of S. maltophilia. In
addition to expression of efflux pumps as a defense against antimicrobials, it is impor-
tant to remember that mutations in commonly used proteins can lead to altered anti-
microbial sensitivity. For example, a mutation in the 50S ribosomal protein L1 (RplA)
has been shown to activate production of efflux pump SmeYZ in S. maltophilia (333).
This study raises our awareness of mutations that may occur in everyday proteins and
lead to drug resistance.

In S. maltophilia, the regulation of expression of the SmeYZ and SmeDEF efflux
pumps appears to be under the control of the SmeSyRy two-component regulatory
system (334). Increased expression of the SmeDEF pump was shown to provide com-
pensation for decreased expression of the SmeYZ pump. Interestingly, as transcription
expression and promoter activity assays indicated that SmeRy does not play a role in
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the increased expression of smeDEF or antibiotic susceptibility, the sensor, SmeSy, may
interact with other response regulators (334). Future work is needed to more fully elu-
cidate such interactions.

The PhoP protein (a DNA-binding response regulator of the PhoPQ two-component
regulatory system) of S. maltophilia has been reported to regulate antimicrobial sus-
ceptibilities (335). Antimicrobial sensitivity testing of a phoP mutant showed increased
sensitivity across a broad range of antimicrobials, including aminoglycosides, polymyx-
ins, b-lactams, and chloramphenicol. PhoP has been shown to respond to low Mg21

concentrations, regulate smeZ expression, and regulate genes involved in bacterial cell
membrane permeability (335). In summary, the identification of the regulators of efflux
pump expression and in-depth characterization of proteins such as TolCsm, which is a
major contributor to drug resistance, can help identify new pharmaceutical targets and
strategies against S. maltophilia.

(iv) Fusaric acid efflux pump. A fusaric acid efflux pump, FuaABC, and its transcrip-
tional regulator, FuaR, have been identified in S. maltophilia (336). The pump is
induced by fusaric acid. Experiments using selected antibiotics of different classes
established that the FuaABC pump only extrudes fusaric acid and that its function is
dependent on a membrane proton gradient (336).

(v) Efflux pump inhibitors and inducers. Inhibition of its drug efflux pumps is a
strategy that should diminish the drug resistance capability of a pathogen. Six efflux
pump inhibitors [CCCP, phenyl-arginine-b-naphthylamide, 1-(1-naphthylmethyl)-piper-
azine, omeprazole, verapamil, and reserpine] have been assessed for their effect on col-
istin (COL) resistance in multidrug-resistant Gram-negative bacteria, including S. malto-
philia (337). Compared with COL alone, COL with CCCP was the most effective
combination, reducing the MIC range 1- to 4-fold (0.5 to 2mg/liter versus 0.125 to
0.5mg/liter) against COL-susceptible S. maltophilia and reducing the MIC range 64- to
1,024-fold (16 to 256mg/liter versus 0.125 to 1mg/liter) against COL-resistant S. malto-
philia. Regrowth was observed among the COL-resistant S. maltophilia isolates at .24
h after challenge with COL and CCCP together (337). Studies such as this one enable
us to increase the sensitivity of S. maltophilia to older drugs used in treatment as well
as provide insight into new strategies for the development of specific inhibitors of par-
ticular efflux pumps.

A Biolog phenotype microarray has been developed with the goal of identifying
multidrug resistance efflux pump inducers (338). This methodology used microtiter
plates in combination with yellow fluorescent protein-based reporters of S. maltophilia
efflux pumps SmeVWX and SmeYZ to screen for inducers. This approach should be
tested using other efflux pumps. This combination strategy has the potential to
uncover scenarios for the development of novel efflux pump inhibitors.

Biocide resistance. A study has determined that the risk of antibiotic resistance
selection by biocides is likely low in S. maltophilia due to fitness cost (339). In this
study, benzalkonium chloride bound SmeT and induced smeD expression in S. mal-
tophilia. Examination of benzalkonium chloride-resistant mutants showed them to
have reduced antibiotic susceptibility without overexpression of the SmeDEF efflux
pump. Single nucleotide polymorphisms (SNPs) were found in the mutants, includ-
ing one in a gene encoding a hypothetical membrane transporter and one encoding
PhoP, and both mutants displayed a lower growth rate than the wild-type strain
(339).

Table 9 provides a summary of the recent reports about the genetic analysis of anti-
microbial resistance mechanisms used by S. maltophilia. Gene transfer, genetic rear-
rangements, and mutation events all contribute to the multidrug resistance of this
opportunist.

Surveillance studies. The reporting of surveillance studies is warranted worldwide
to allow us to track the emergence of new drug resistance determinants in S. malto-
philia isolates. Resistance to cell wall synthesis inhibitors, including TMP-SMX, ceftazidime,
b-lactams, and carbapenems, has been reported recently in clinical and environmental
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isolates in Brazil (177, 340), environmental isolates in Portugal (174), and clinical isolates in
China (341, 342), South Korea (343), India (344), Hungary (345), Iran (346), and Lebanon
(347). Quinolone resistance has been reported in clinical isolates in Japan (348) and Greece
(349) and in environmental isolates in Brazil (178). Tigecycline resistance has been reported
in clinical isolates in China (350). Class 1 integrons and plasmids bearing resistance genes
against cell wall synthesis inhibitors and quinolones indicate the possibility for horizontal
gene transfer (177, 178, 340, 341, 346, 348, 349).

Surveillance studies across years can reveal trends in antimicrobial resistance, for
example, in the resistance to TMP-SMX. A study of 300 clinical S. maltophilia isolates in
China showed significant increases in resistance between 2005 to 2009 and 2010 to
2014, with an increase from 29.7% to 47.1% for TMP-SMX and an increase from 28.9%
to 52.3% for ceftazidime; multidrug resistance (most often to minocycline, TMP-SMX,
and ceftazidime) also increased from 11.0% to 31.0% during the two time periods
(342). In another study of 400 clinical S. maltophilia isolates in China, resistance to TMP-
SMX was associated with multidrug resistance (341). In a retrospective study of 579 S.
maltophilia isolates recovered during 2008 to 2017 in Hungary, resistance to TMP-SMX
was detected significantly more frequently among inpatients, and extensive drug re-
sistance (to TMP-SMX, levofloxacin, amikacin, COL, and tigecycline) was also observed
(345). The data of these studies support the need for continued efforts to develop new
therapies against this pathogen.

TABLE 9 Recent publications reporting the genetics of S. maltophilia antimicrobial resistance

Antimicrobiala Genetics and description Reference(s)
b-Lactams blaSHV, blaCTX-M-Gp1, blaPER, blaNDM-1, blaOXA1-like, blaOXA48-like blaL1,L2,

mrcA, lytic transglycosylase D1, CreBC two-component
system, AmpNG-AmpD1-NagZ-AmpR circuit, NagZ-
dependent and NagZ-independent mechanisms, and
mutation of TonB gene

174, 177, 178, 296–301,
343

Aminoglycosides aac(69)-Iak and proteases clpA and htpX 303, 304, 308
Quinolones qnrA, qnrB, qnrS, oqxA, oqxB, Smqnr genes, aac(69)-Ib-cr, aadA2,

and mutation of smeT
178, 294, 295, 308, 324,
331, 348, 346

TMP-SMX Class 1 integrons, dfrA, sul1, and sul2 genes 178, 307, 309, 310, 340,
341, 346

MDR efflux pumps
ABC family
Aminoglycosides, macrolides, polymyxins MacABCsm (macRS-macABCsm cluster) 311
Fluoroquinolones, tetracycline SmrA (smrA) 315

MFS family
Erythromycin, nalidixic acid EmrCABsm (emrRCABsm) 316
Fluoroquinolones, paraquat MfsA (soxR-mfsA system) 317–319

RND family
Quinolones, b-lactams, aminoglycosides SmeABC (smeABC) 320, 326
Quinolones, tetracycline, chloramphenicol, TMP-SMX,

macrolides
SmeDEF (smeT-smeDEF system, association with the smeRySy
operon and smeYZ)

294, 295, 321–323, 325,
326, 331, 334

Quinolones, macrolides, chloramphenicol, polymyxin B,
tetracycline, some b-lactams

SmeGH (smeGH, tolCsm, mutations of smeH) 292, 313

Ciprofloxacin, levofloxacin, minocycline, tetracycline SmeIJK (smeIJK, association with smeZ) 327, 328
Nalidixic acid, doxycycline, macrolides, aminoglycosides,

chloramphenicol, TMP-SMX
SmeOP-TolC (tolCsm-pcm-smeRo-smeO-smeP cluster) 312, 314

Quinolones, tetracycline, chloramphenicol SmeVWX (smeRv-smeVWX system, association with vitamin K3,
inducers)

294, 329–331, 338

TMP-SMX, aminoglycosides SmeYZ (smeYZ, association with smeRySy system, association
with smeJK, inducers, association with rplAmutation)

327, 332–334, 338

Fusaric acid FuaABC (fuaR-fuaABC) 336
Biocides qacK, qacL, biocide binding to SmeT, relationship with fitness

cost
307, 339

aTMP-SMX, trimethoprim-sulfamethoxazole; MDR, multidrug resistant; ABC family, ATP-binding cassette (ABC) superfamily; MFS family, major facilitator superfamily; RND
family, resistance-nodulation-division superfamily.
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As indicated earlier in the review, S. maltophilia is an environmental organism.
Recent surveillance studies have shown that this bacterium carries drug resistance in
nature such as in river water (174) and soils, including those used for crops important
for animal feed (177, 178).

In summary, it is important to monitor antimicrobial resistance in and outside the
hospital, to control the spread of drug-resistant bacteria within susceptible human
populations. In addition to judicial use of antimicrobials to treat infections, controlling
the disposal of antibiotics and other biocides into water supplies, other aquatic envi-
ronments, and soils will limit the potential for the spread of antimicrobial resistance
among other organisms, including humans.

Motility

Attachment of a pathogen to a surface is needed for colonization. Flagella are viru-
lence factors of S. maltophilia, and cells display single or multiple polar flagella used for
adherence. S. maltophilia flagella enable adherence to mouse tracheal mucus (351). In
vitro on polystyrene, the high-affinity attachment of purified S. maltophilia flagellin is
inhibited by anti-flagellin antisera in a dose-dependent manner (352). These findings
indicate that flagella are important for the early stages of adherence of S. maltophilia
to surfaces.

S. maltophilia flagellin induces a specific host immune response; the flagellin is dis-
tinct from P. aeruginosa or Burkholderia cepacia flagellin (353). BALB/c mice instilled
with S. maltophilia flagellin and then exposed to S. maltophilia 4 h postinstillation
exhibited significantly increased levels of proinflammatory cytokines (IL-1b and TNF-a)
and IL-10. Myeloperoxidase and malondialdehyde levels in the mouse lungs increased
post-flagellin instillation and post-bacterial instillation, and the nitric oxide level
increased post-bacterial instillation. Flagellin instillation increased the number of neu-
trophils, lymphocytes, and monocytes in bronchoalveolar lavage fluid and also pro-
vided nonspecific protection for the mice against challenge with S. maltophilia and S.
aureus (354). In another study, delivery of wild-type S. maltophilia SM111 and an iso-
genic DfliI mutant by aerosol into DBA/2N mice resulted in a significantly higher level
of TNF-a in lungs early postexposure for the wild type than for the mutant (355). These
studies demonstrate the immunogenicity of flagellin in the host and suggest potential
use for flagellin in protection against S. maltophilia infection.

Flagellum expression and motility of S. maltophilia are tightly controlled and influ-
enced by the bacterium’s external environment. The regulation of flagellar gene
expression involves c-di-GMP and FleQ, an enhancer-binding protein (356). Swimming
motility and membrane stability are regulated through the expression of the CreBC
two-component system and CreD, an inner membrane protein (357, 358). CreD is
involved in the s E-mediated envelope stress response (358). In vitro twitching motility
of clinical S. maltophilia strains is significantly higher under iron-depleted conditions
(359). Further work is required to see if twitching motility is similarly affected in vivo
and, if it is, to determine the impact it has on virulence of this pathogen.

The contribution of S. maltophilia flagella to virulence is in the early stages of bacte-
rial adherence to surfaces. Similar to observations for the flagella of P. aeruginosa dur-
ing chronic CF lung infection progression, S. maltophilia flagella may be unnecessary in
the later stages of CF lung infection (360). Decreased S. maltophilia motility over time
has been observed during the progression of chronic CF lung infection (260). As flag-
ella are immunogenic, the loss of flagella could benefit S. maltophilia by reducing its
exposure to the host immune defenses.

Adherence, Colonization, and Persistence

Adherence and colonization of a surface enable S. maltophilia to form biofilms dur-
ing infection and disease. A recent study has shown that the adherence of S. malto-
philia Sm2 to abiotic (polystyrene) and biotic (mouse tracheal mucus, mouse trachea,
and Hep-2 cells) surfaces is influenced by type of culture media, oxygen concentra-
tions, and pH (361). These observations are not surprising given the genetic
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heterogeneity and subsequent diversity of cell surface structures (lipopolysaccharide
[LPS], OMPs, flagella, pili, etc.) expressed by different strains of this opportunist in vari-
ous environmental niches. GpmA, a glycolytic enzyme phosphoglycerate mutase, has
been recently identified as a mediator of the early stages in adherence of S. maltophilia
to polystyrene and to immortalized CF-derived bronchial epithelial cells (362).
Research is needed to identify whether GmpA is localized on the cell surface of S.
maltophilia.

In host. Colonization of S. maltophilia is integral to the pathogen’s ability to persist and
damage the susceptible host. In a study of adult patients colonized with multidrug-resist-
ant Gram-negative bacilli, including S. maltophilia following single cord blood transplanta-
tion, a multivariate analysis showed that persistence of these pathogens significantly
increased nonrelapse mortality and development of bloodstream infection (363).

The genetic heterogeneity of S. maltophilia strains may be reflected in their ability
to replicate and persist in mouse strains (364). Variation in replication and persistence
of S. maltophilia can be seen with clinical strains in A/J mice. The strain of mouse cho-
sen for study of pathogenesis is important, as demonstrated by observed differences
in replication of S. maltophilia K279a among mouse strains (A/J, BALB/c, C57BL/6, and
DBA/2) (364). Further research is needed to determine whether specific mouse strains
are more appropriate than others in the animal models of different S. maltophilia
infections.

Contact lenses. S. maltophilia has been recovered from contact lens storage cases.
Several recent studies have examined contact lens materials, lens cases, disinfectant
solutions, presence of organic materials, and their impact on S. maltophilia cell adher-
ence, viability, persistence, and biofilm formation (365–373).

The adherence of S. maltophilia ATCC 17676 on contact lenses of hydrogel material
(etafilcon A, ACUVUE 2; Johnson & Johnson Vision) and silicone hydrogel (senofilcon A,
ACUVUE OASYS; Johnson & Johnson Vision) has been studied in the absence or pres-
ence of an artificial tear solution (365). On senofilcon A, in the presence or absence of
artificial tear solution, this S. maltophilia strain exhibited significantly decreased viabil-
ity compared to that on etafilcon A. More work is needed to assess the efficacy of these
materials against multiple clinical S. maltophilia strains.

Stable organoselenium polymer has demonstrated good potential for its use as a
component of lens case material. Organoselenium polymer significantly reduced (7.5
log) S. maltophilia ATCC 13637 CFU/cm2 of biofilm, and as low as 0.1% organoselenium
inhibited biofilm formation (366). Studies are needed to test this material against more
S. maltophilia strains, and it remains to be seen whether the presence of organic mate-
rial exhibits interference with the antibiofilm activity of this polymer.

The results of a recent study indicate that attention should be paid to which tem-
perature and culture medium are being used to recover bacteria from biofilms in con-
tact lens cases (367). The number of viable S. maltophilia ATCC 17676 biofilm cells
recovered from Sight Savers contact lens cases (Bausch & Lomb) was higher at 32°C
than with incubation at 37°C, and the recovery of S. maltophilia was significantly higher
on Columbia agar with 5% sheep’s blood than on other tested agar media (367). Thus,
the incubation environment is important to consider when assessing the efficacy of
cleaning solutions for contact lens cases.

Multipurpose disinfecting solution 3 (MPDS-3) COMPLETE RevitaLens (polyquater-
nium-1 plus alexidine dihydrochloride plus EDTA), and MPDS-4 Biotrue (polyquater-
nium-1 plus polyhexamethylene biguanide [PHMB] plus EDTA) have shown efficacy
against S. maltophilia isolated from lens cases, separately reducing counts $4 log10 af-
ter 6 h of exposure and$4 log10 after 14 days of exposure (368). As this was a relatively
small study, larger studies are need to further assess these solutions. Povidone iodine
(PI) (50 ppm active iodine) has also demonstrated efficacy against biofilms of S. malto-
philia strains ALC01 and UD14 containing 107 to 108 CFU, with ,10 CFU recovered
postdisinfection (369). These studies underscore the importance of adequate disinfect-
ant solutions to maintain clean contact lenses.
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Recent studies have investigated the presence of organic materials and the adher-
ence, survival, and biofilms of bacterial contaminants on contact lenses (370–372). In
the presence of one of four contact lens care solutions, Biotrue (Bausch & Lomb; active
ingredients, 0.00013% polyaminopropyl biguanide, 0.0001% polyquaternium, hyalur-
onan, poloxamine, boric acid), PureMoist (Alcon Laboratories; active ingredients, 0.001%
polyquaternium-1, 0.0006% myristamidopropyl dimethylamine, Tetronic 1304, HydroGlyde
moisture matrix, boric acid), ClearCare (Alcon Laboratories; active ingredients, 3% hydro-
gen peroxide, Pluronic 17R4), and PeroxiClear (Bausch & Lomb; active ingredients, 3%
hydrogen peroxide, poloxamer 181, carbamide, and propylene glycol), on Lotrafilcon B
soft contact lenses containing RPMI medium and neutrophils, S. maltophilia ATCC 13637
demonstrated a 9-log to 10-log reduction. Confocal microscopy and LIVE/DEAD BacLight
staining showed the presence of nonviable bacteria and extracellular debris on the lens af-
ter cleaning with the lens solutions (370). The incubation of contact lenses in inoculum
with 10% organic soil has been reported to significantly increase the adhesion of two
strains recovered from lens cases, S. maltophilia 006 and S. maltophilia 002, to the lens sur-
face (372). The presence of neutrophil-derived debris accelerates S. maltophilia biofilm for-
mation on contact lenses, resulting in denser biofilms with higher CFU counts (371). S. mal-
tophilia Xmal10, a strain from a contact lens wearer, has been shown to bind lactoferrin.
Lactoferrin found in mucosal fluids did not kill but instead induced siderophore production
by this strain (373). Further work is needed to determine if lactoferrin contributes to and
favors the persistence of S. maltophilia strains. Together these observations indicate that
organic material present can influence pathogen colonization and biofilm formation on
contact lenses.

Implants. The type of material used in implants is important when the goal is to
prevent the colonization of biofilm-forming bacteria. A fluorine-phosphorus-doped ti-
tanium alloy shows promise for use in the prevention of bacterial colonization of or-
thopedic implants (374). The adhesion and viability of S. maltophilia ATCC 13637
decreased significantly by 80% and 47%, respectively, on bottle-shaped TiO2 nanotubes
samples of Ti-6A1-4V alloy. The alloy is compatible with osteoblastic cell proliferation and
matrix mineralization. The precise mechanism of bactericidal toxicity of the released alumi-
num from this alloy remains to be determined. Future research needs to include more S.
maltophilia strains to discern if there are any strain-specific effects and to determine the vi-
ability of this technique in different orthopedic applications.

Water systems. S. maltophilia is a common contaminant of drinking water. Its pres-
ence has been confirmed in drinking water distribution systems as well as in other
freshwater and marine environments. Chemical and physical methods are being assessed
for their reduction of microorganisms present in drinking water distribution systems (164,
167, 168). A recent study has shown that NaOCl (0.5mg/liter) treatment of S. maltophilia
biofilms increased resistance to removal by mechanical stresses and that a combination
treatment of NaOCl with mechanical stress did not improve biofilm removal (164). Copper
alloys (57%, 96%, and elemental) significantly inhibited S. maltophilia biofilm formation,
and combination treatment (free chlorine at 10mg/liter for 10min and shear stress of 1.5
m/s for 30 s) significantly reduced viable biofilm bacteria on the 57% copper alloy surface
(167). The choice of treatment of water must consider possible shifts in microbial popula-
tions that occur as a result of treatment. Exposure of wastewater to artificial solar radiation
resulted in increased relative abundance of ciprofloxacin- and rifampin-resistant bacterial
communities containing solely multidrug-resistant S. maltophilia (163). The antimicrobial
activity of photocatalytic gadolinium (Gd)-doped TiO2 nanoparticles against one strain of
S. maltophilia shows promise for use in wastewater treatment (375). Gd-doped TiO2 nano-
particles at concentrations of 0.1 and 1mol% reduced cell survival after 12 h of exposure
to visible light, with .97% cell inactivation. The toxicity of these nanoparticles against eu-
karyotic cells needs to be assessed. Further research using additional S. maltophilia envi-
ronmental strains may help reveal the exact mechanism of action of these nanoparticles.
N-Acetyl-L-cysteine-grafted siloxane polymer may have potential as antimicrobial and anti-
biofilm materials in industrial water distributions systems (171). Exposure to the polymer
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(at 0.25% concentration) resulted in significant reduction of adhesion (.96% as deter-
mined by luminometry assay) of S. maltophilia to glass (171). More research is needed to
determine the effect of the polymers on the growth inhibition, biofilm formation, and
elimination of established biofilms of S. maltophilia.

Protein Secretion Systems

Xps type II secretion system. Type II protein secretion systems have been identified
in several human pathogens as important virulence factors contributing to pathogene-
sis. The type II system enables a Gram-negative bacterium to secrete proteins into its
external environment. A recent review has examined the role of type II secretion in
Gram-negative bacteria (including S. maltophilia), their secreted proteins, and effects
on host cells (376). The S. maltophilia Xps type II secretion system is required for secre-
tion of caseinolytic and gelatinase activity. It mediates the secretion of serine pro-
teases, StmPr1, StmPr2, and StmPr3, resulting in actin rearrangement, rounding, and
detachment of A459 lung epithelial cells in vitro (Fig. 2) (377–379). These proteases

FIG 2 Effect of WT and Xps mutant supernatant on various human and murine cell lines. (A) The
A549, HeLa, MLE, and 3T3 cell lines were incubated for 3 h with 25% (vol/vol) supernatants from
strain K279a (WT), the xpsF mutant NUS4 (xpsF), the complemented xpsF mutant (xpsF/pxpsF), or a
medium control. Mammalian cell morphology was evaluated by phase-contrast light microscopy.
Data are representative of three independent experiments. (B) Cell lines were incubated with WT
supernatant at the indicated doses for 3 h and washed, and then the remaining adherent cells were
quantified by measuring absorbance at OD600. Data were normalized to the value for cells treated
with medium alone, which was set at 100% adherence. An asterisk indicates a statistically significant
difference from A549 and HeLa cells (P , 0.05). (C) Cell lines were incubated for 3 h with 25% (vol/vol)
supernatants from the WT, the mutant, and the complemented mutant. Cell detachment was
determined as described for panel B. Single and double asterisks indicate statistically significant
differences from the WT and the xpsF strain, respectively (P , 0.05). For panels B and C, data are means
and standard errors of the means (SEM) from three independent experiments. (Figure reproduced and
legend adapted from reference 379 with permission.) OD600, optical density at 600 nm.
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degrade extracellular matrix proteins and cytokine IL-8 (378, 379). StmPr1 is the major
player in lung cell damage, with its degradation of fibronectin, fibronectin receptor
integrin a5b1, collagen, E-cadherin, and occludin and through cleavage of PAR1 and
PAR2 proteins, recruiting neutrophils (378). When human CFEB41o- bronchial epithelial
cells are challenged with S. maltophilia K279a culture supernatants, the effects of serine
proteases are similar to the morphological changes seen in A459 cells and include dis-
ruption of the epithelial cell barrier and degradation of tight junction proteins ZO-1
and occludin (380). Clinical S. maltophilia isolates show various degrees of expression
of the Xps type II secretion system, suggesting that this system may promote spread of
S. maltophilia in vivo resulting in host lung damage (377). Taken together, these studies
underscore the significant roles of cell damage and disruption of the immune system
that proteases play as virulence factors against the susceptible host infected by S. mal-
tophilia. Further work is needed to determine if pharmaceutical strategies can block
the activities of these proteases without disrupting normal host cell function.

VirB/D4 type IV secretion system. A VirB/D4 type IV secretion system is conserved
among S. maltophilia strains, and it mediates the killing of human and bacterial cells,
inhibiting apoptosis of A549 cells and primary human bronchial/tracheal epithelial cells
(ATCC PCS-300-010) in a contact-dependent manner (381). Transwell experiments have
indicated that this secretion system caused the death of P. aeruginosa strains 7700,
PAO1, and PAK in a contact-dependent manner. This manner of killing by S. maltophilia
did not extend to all Pseudomonas species. Further work is needed to elucidate the rea-
sons for this limited killing of particular susceptible bacteria. These studies may provide
insights for new pharmacological intervention of infections caused by P. aeruginosa.
The disruption and killing of P. aeruginosa in a polymicrobial infection with S. malto-
philia could ease the host immune system’s ability to clear the infection. Recently, S.
maltophilia K279a has been shown to induce death in several Gram-negative bacteria
(E. coli, P. aeruginosa, Klebsiella pneumoniae, and Salmonella enterica serovar Typhi) in a
type IV secretion system-dependent manner, and secreted effectors from one species
can be recognized by other species and translocated using the other species’ type IV
secretion system (382). The conservation of the type IV secretion system machinery across
different bacteria is expected, as these microbes compete for space and nutrients.

Iron

S. maltophilia has been reported to produce catecholate siderophores (383–386) for
scavenging iron from its external environment. Iron is important for S. maltophilia bio-
film formation, oxidative stress response, and virulence (387). Under iron-restricted
conditions, compared to its parent, S. maltophilia K279a, an isogenic spontaneous fur
mutant, formed thinner biofilms with greater superoxide dismutase activity; the fur
mutant also exhibited greater virulence than K279a against G. mellonella larvae (387).
S. maltophilia produces a catecholate siderophore, stenobactin, and the fepA gene
equivalent (RS06850) encodes a siderophore receptor (384). S. maltophilia strains
K279a, R551-3, D457, and JV3 contain iron uptake mechanisms that include the iron
siderophore sensor and receptor system and the heme, hemin uptake, and hemin
transport system (385). Siderophore production is dependent on the entAFDBEC op-
eron, and heme uptake is controlled by hgbBC; S. maltophilia strains can use iron sour-
ces, including ferric iron, hemoglobin, lactoferrin, and transferrin, for growth (388). The
details of these uptake mechanisms have been presented in a recent review (388). The
importance of iron acquisition in virulence is highlighted by a recent study in which a
clinical strain (CS17) displayed significantly higher siderophore secretion and killed
higher numbers of nematodes under iron-restricted conditions than environmental
strain LMB959; in a comparison of iron-responsive proteins in these strains, CS17 also
exhibited higher expression of iron acquisition proteins than strain LMB959 (386).
Future work is needed to elucidate the roles of various iron-responsive proteins in S.
maltophilia pathogenesis.

The ampI and ampR genes of S. maltophilia are involved in iron transport (389, 390).
The ampI gene encodes an iron exporter that enables the pathogen to reduce
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b-lactam-induced stress, with significantly increased expression upon exposure to
b-lactams (390). AmpR, a regulator of b-lactamase expression, has recently been
shown to regulate iron depletion-mediated synthesis of the siderophore stenobactin,
with increased expression of ampR in cells under iron-restricted conditions and
exposed to b-lactams (389).

In summary, there are several mechanisms used by S. maltophilia to acquire and
use iron. The homeostatic control of iron within the bacterial cell is also noted through
observations of the cells when exposed to antimicrobials.

Outer Membrane

The outer membrane of S. maltophilia contributes to the antimicrobial resistance of
this pathogen and pathogenesis. S. maltophilia outer membrane vesicles (OMVs) con-
tribute to antibiotic resistance (391) and biofilm formation (392) and stimulate expres-
sion of host defenses (393). Outer membrane proteins (OMPs) of S. maltophilia have
demonstrated protective ability against this pathogen (191, 394, 395). Increased outer
membrane permeability of S. maltophilia increases the susceptibility of this pathogen
to aminoglycosides, macrolides, SDS, and bile salts (1, 396). Proteomic analyses are
ongoing to compare OMVs and outer membrane proteins (OMPs) across S. maltophilia
strains and identify proteins used in virulence, antimicrobial resistance, and pathoge-
nesis (397). From these studies, it is clear that the outer membrane of S. maltophilia is
multifunctional and that it plays a key role in the success of this opportunist.

Outer membrane vesicles and outer membrane proteins. The secretion of outer
membrane vesicles may be an indirect form of communication for the pathogen with
other bacteria. The secretion of outer membrane vesicles (OMVs) by S. maltophilia is
stimulated by imipenem, by diffusible signal factor (DSF) from S. maltophilia and, to a
lesser degree, Burkholderia cenocepacia DSF, and by ciprofloxacin (392, 398). Proteomic
analysis demonstrated that the S. maltophilia OMVs contained two Ax21 proteins,
Smlt0387 and Smlt0184 (392). The OMVs can package the active b-lactamases of S.
maltophilia, leading to degradation of b-lactams in the external milieu surrounding
the bacteria and subsequently increasing the MIC needed against cocolonizing patho-
gens (391). Commonly used antibiotics against S. maltophilia infections should be
tested for their effect on OMV secretion by this pathogen, as this will help us better
understand the interactions these OMVs may have with other microbial species found
in polymicrobial infections.

The OMVs of S. maltophilia generate host inflammatory responses in vitro and in
vivo (393). Cytotoxicity effects have been observed for A549 epithelial cells when
exposed to S. maltophilia OMVs, and OMVs induce visible inflammation and increased
expression of IL-1-b , IL-6, IL-8, monocyte chemoattractant protein 1 (MCP-1), and TNF-
a in BALB/c mouse lung tissues (393). Further research will discern whether OMVs of S.
maltophilia transport other molecules/compounds that contribute to the pathogenesis
of this organism.

The OMPs of S. maltophilia contribute to adherence and cell susceptibility to
stresses and can provide hosts with protection against this pathogen (191, 394, 395,
399). OMP MopB, for example, is important for adherence to glass, virulence toward
L929 fibroblasts, exposure to SDS and hydrogen peroxide, and protection against se-
rum-mediated killing (399). Vaccination with OMPs from an S. maltophilia strain along
with natural adjuvants, including propolis (Pro), Ficus carica polysaccharide (Fcps), and
glycyrrhizin (Gly), have provided protection for channel catfish against this pathogen
(191). Further research using various clinical and environmental S. maltophilia would
reveal any possible strain differences that may affect vaccine efficacy. Immunization
with recombinant OMP Smlt4123 has been reported to protect BALB/c mice against
early development of bacteremia following intraperitoneal challenge with S. malto-
philia (395). Immunization with recombinant outer membrane protein A (rOmpA) has
been shown to protect C57BL/6 mice against S. maltophilia infection; immunized mice
exhibited significantly higher serum levels of IgG, IgA, IgG1, and IgG2a, indicating a sys-
temic humoral immune response, and higher levels of IFN-g, IL-2, and IL-17A levels,
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reflecting a cellular immune response. Significantly reduced bacterial loads and signifi-
cantly reduced TNF-a and IL-6 levels in bronchoalveolar lavage fluid (BALF) were
observed in the immunized mice. Together, these studies highlight the promise of
OMPs as vaccine candidates against S. maltophilia.

Biofilms

Antimicrobial resistance. A significant feature of S. maltophilia is its ability to form
biofilms on moist surfaces (1). The antimicrobial resistance of biofilm cells is typically
greater than that of planktonic cells. S. maltophilia strains are typically resistant to a
wide range of antimicrobials, and the added formation of biofilm increases their resist-
ance to antimicrobial challenge (400). A recent study has proposed that biofilm forma-
tion by S. maltophilia may provide a mechanism for planktonic cells to resist antimicro-
bials that would otherwise be deleterious (401). This study also suggested that
diagnostic testing of S. maltophilia clinical strains include assessment of their biofilm-
forming ability and stresses the need for developing an antimicrobial testing protocol
for biofilms (401). As there are still no globally accepted cutoffs used in the testing of
some antimicrobials against S. maltophilia, it is urgent to have antimicrobial testing
against biofilms standardized, as new drug and drug combinations are being devel-
oped to combat biofilm infections.

Horizontal gene transfer activity has been shown to be greater in biofilms than
among planktonic cells, and plasmids are effective vehicles for antimicrobial resistance
gene transfer (402). When considering the antimicrobial resistance of the S. maltophilia
biofilms, one can look across at the biofilms of a cocolonizer, P. aeruginosa. The contin-
uous-flow biofilms of P. aeruginosa have shown that this bacterial pathogen is capable
of natural transformation of chromosomal and plasmid DNA aided by type IV pili (403),
and it is tempting to speculate that similar gene transfers that mobilize drug resistance
determinants are occurring within the safe haven of an S. maltophilia biofilm. S. maltophilia
biofilm formation is also sensitive to environmental conditions, for example, culture medium
composition and temperature (1, 140). Strategies to inhibit biofilm formation or reduce estab-
lished biofilms are discussed below.

S. maltophilia behavior in mixed biofilms. S. maltophilia is often found in vivo as a
member of polymicrobial communities. Recent studies of biofilms formed by S. malto-
philia with other microbes have increased our awareness of the interactions that occur
between these organisms (162, 404, 405). As S. maltophilia can cocolonize with other
pathogens in susceptible hosts, it is important to study the interactions of this oppor-
tunist with other organisms in multispecies biofilms. S. maltophilia and P. aeruginosa
both colonize the lung environment. Recent work has examined more closely the inter-
play of these two pathogens during biofilm development (60, 404, 406, 407).
Expression of S. maltophilia regulator element SmoR is induced by acyl homoserine lac-
tones (AHLs) of P. aeruginosa, resulting in increased swimming motility and high cell
density (406). Additional research will elucidate whether SmoR responds to other AHLs
or cellular molecules produced by additional bacterial pathogens colocalized with S.
maltophilia. In vitro, the adherence of S. maltophilia to catheter surfaces may result in
improved subsequent attachment and biofilms of other pathogens such as P. aerugi-
nosa and Acinetobacter baumannii (404). In in vitro mixed cultures of CF strains, S. mal-
tophilia has exerted several effects on P. aeruginosa, significantly reducing its produc-
tion of extracellular polymeric substance, significantly inhibiting its swimming motility
and adhesion to CFBE41o- cells, increasing P. aeruginosa expression of aprA (encodes a
protease) and algD (encodes alginate), and decreasing expression of rhlR and lasI (quo-
rum-sensing-related genes) while not altering cell viability (407). In turn, P. aeruginosa
has adversely impacted planktonic cells and reduced the cell viability of S. maltophilia.
Interestingly, in the mixed-culture biofilm, a CF S. maltophilia strain exhibited less susceptibility
than P. aeruginosa to tobramycin (407). Similar results were obtained in dual biofilms, where
S. maltophiliawas less susceptible to ciprofloxacin than P. aeruginosa (408).

The interactions of S. maltophilia and P. aeruginosa in biofilms are intriguing. In in vitro
dual-species biofilms of chronic CF S. maltophilia strains with P. aeruginosa, S. maltophilia has
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formed the base of the biofilm, with P. aeruginosa situated as a layer above S. maltophilia
(Fig. 3) (60). In mouse respiratory coinfections of P. aeruginosa and S. maltophilia, signifi-
cantly increased numbers of S. maltophilia cells were present and colocalized with algi-
nate in the lungs. Delayed clearance of S. maltophilia from the coinfected mice was also
noted (60).

In summary, from the studies described, it appears that S. maltophilia provides the
stable surface support for P. aeruginosa adherence and that P. aeruginosa can provide
a means for the persistence of S. maltophilia, resulting in a persistent and flourishing
coinfection. The mechanism used by P. aeruginosa that enables the persistence of S.
maltophilia is currently unclear. Such cooperative and organized behavior of these two
pathogens requires further study to elucidate the molecular mechanisms used in this
dual-species collaboration and to see whether, from an antibiofilm therapy standpoint,
it is possible to disrupt the delivery and receipt of cellular signals without damage to
the infected host.

Culture conditions can affect the interactions of microbes. In vitro studies of S. mal-
tophilia with E. coli K-12 PHL644 under continuous flow conditions showed that attach-
ment of S. maltophilia cells to the flow cell surface improved E. coli biofilm formation;
however, under static batch culture conditions, S. maltophilia impeded E. coli biofilm
formation (162). Future research is needed to determine if S. maltophilia affects other
bacterial pathogens within mixed culture biofilms in a similar manner and to identify S.
maltophilia-specific cellular components that contribute to the adherence of the other
pathogen.

Aspergillus fumigatus is another microbe that can be found in the human respiratory
tract (405). In mixed biofilms of A. fumigatus ATCC 13073 and S. maltophilia ATCC
13637, S. maltophilia exhibited antagonistic activity against A. fumigatus through
changes in fungal structure, such as modification of hyphae, a less dense hyphal network,
significantly delayed growth of the fungus hyphae, thicker cell walls of A. fumigatus, and a

FIG 3 S. maltophilia and P. aeruginosa stratify within polymicrobial biofilms in vitro. Structural composition of
polymicrobial biofilms was assessed via confocal imaging of S. maltophilia K279a (GFP1), P. aeruginosa
mPA0831 (mCherry1), or both grown at 30°C for 8 h. Single-species biofilms of S. maltophilia K279a (GFP1) (A)
and P. aeruginosa mPA0831 (mCherry1) (B) were imaged at �40 magnification. Dual-species foci were imaged
at �40 magnification (C) and zoomed 4� for a total magnification of �160 (D). (Figure reproduced and legend
adapted from reference 60 with permission.)
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thinner biofilm (405). Clinical (human and animal) and environmental strains of S. malto-
philia have been observed to exhibit different antagonistic effects against A. fumigatus,
and bacterial strain-dependent effects were also observed in virulence against the in vivo
model G. mellonella (409). Future research is needed to elucidate the exact mechanism(s)
imposed by S. maltophilia on A. fumigatus.

In recognition of the interactions occurring between S. maltophilia and other
microbes in mixed-culture biofilms, work is needed to understand how genetic mecha-
nisms in these organisms are regulated during biofilm development and within mature
biofilms. A recently developed multichannel microfluidic biosensor platform enables
users to monitor, in real time, the gene expression of cells within biofilms formed in
the system (410). This platform may provide an attractive method to monitor mixed-
culture biofilms in real time using simulated CF conditions.

Genetics. The genetic regulation of biofilm development by S. maltophilia is com-
plex. There are several mechanisms of control at the transcriptional level of gene
expression. FsnR (flagellum biosynthesis regulator) is a transcriptional regulator that
activates transcription of several flagellum-associated genes and mediates biofilm for-
mation (411). BsmR (biofilm and swimming motility regulator), an EAL domain-contain-
ing response regulator, is a positive regulator of swimming motility and positively reg-
ulates fsnR expression (412). Transcription factor BsmT mediates expression of BsmR
through a positive feedback mechanism (412). BfmA, a positive transcriptional regula-
tor, controls S. maltophilia biofilm development through regulation of the BfmA-BfmK
operon (encodes a two-component signal transduction system containing Smlt4209
[bfmA encodes a biofilm activator] and Smlt4208 [bfmK encodes a biofilm activator
cognate kinase]) and expression of Smlt0800 (acoT encodes an acyl coenzyme A [acyl-
CoA] thioesterase) (413). Identification of molecular mechanisms that are shared across
various clinical S. maltophilia strains and unique to S. maltophilia can provide possible
targets for pharmaceutical intervention.

DSF system and quorum sensing. A diffusible signal factor (DSF) was identified as a
cell-cell signaling molecule present in Xanthomonas campestris pv. campestris (414). S.
maltophilia, previously classified as Xanthomonas maltophilia (16), produces DSF that is
encoded by the rpf gene cluster (415). A S. maltophilia rpf mutant was reported as
unable to produce DSF (415). However, this paper was retracted due to errors in data
presentation (416). The DSF molecule produced by S. maltophilia has been identified
as cis-11-methyl-2-dodecanoic acid (417, 418).

The influential role of rpf (regulation of pathogenicity factors) was evident in a study
of the interaction of S. maltophilia with oilseed rape plants (419). The DSF quorum-
sensing system improved the plant colonization of S. maltophilia and growth of the
plants. FISH and confocal microscopy confirmed organized colonization and biofilm
formation of wild-type S. maltophilia in contrast to the diffuse scattered arrangement
of rpfF mutant cells and formed biofilm. The rpf/DSF system influences multiple genes
used in colonization of the plants, including those involved in motility, LPS, biofilm,
iron acquisition, antimicrobial sensitivity, and stress resistance. In the rpfF mutant,
genes used in synthesis and export of spermidine were downregulated (419). The im-
portance of rpf for virulence was demonstrated when an S. maltophilia K279a-derived
rpf mutant displayed reduced virulence against Candida albicans (420). From these two
studies, it is clear that the rpf/DSF system is a central player in the colonization and vir-
ulence of S. maltophilia.

The rpf gene cluster includes rpfF (encodes a synthase) and rpfC (encodes a sensor)
(421, 422). In S. maltophilia clinical isolates, two genetically and phenotypically distinct
populations of rpfF (rpfF-1 and rpfF-2), each associated with their respective rpfC vari-
ant, have been identified. Under wild-type conditions, S. maltophilia strain E77 carrying
RpfC-RpfF-1 exhibited DSF activity, in contrast to strain M30 carrying RpfC-RpfF-2 that
was unable to produce DSF (422). The RpfC-RpfF-2 complex was able to detect DSF; in
the presence of the rpf-1 strain, the rpf-2 strain produced DSF, and synergy was
observed when both strains were in close proximity (Fig. 4) (423). The rpf-2 strain also
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produced significant amounts of DSF in the presence of exogenous DSF. DSF produc-
tion is regulated by a positive feedback mechanism. The rpf-1 and rpf-2 strains acted
synergistically in a zebrafish infection model, resulting in 100% mortality and signifi-
cantly high DSF production (423).

The rpf/DSF system of S. maltophilia has been reported to regulate several factors
involved in virulence, motility, biofilm formation, resistance to oxidative stress, and
antimicrobial susceptibility (424, 425). Isogenic rpfF mutants of S. maltophilia K279a
exhibited reduced virulence, increased sensitivity to oxidative stress, decreased motil-
ity, and reduced production of protease, DNase, and lipase and displayed altered bio-
film; addition of exogenous DSF restored motility and increased biofilm production
(424, 425). It will be interesting to see whether the rpf/DSF system is mediated by other
regulatory circuits. Two recent reviews explored quorum sensing in S. maltophilia and
indicated that quorum-quenching applications had yet to be discovered (421, 426).

In summary, these studies emphasize the major role of DSF in the pathogenesis
and virulence of S. maltophilia and increase our awareness of the importance of study-
ing the communication between different genetic populations as well as different
microorganisms in mixed-culture infections.

A recent study of the rpf-1 and rpf-2 populations in diverse clinical S. maltophilia iso-
lates recovered from different geographical regions has reported important observations
between the type of rpf variant and antimicrobial susceptibility, biofilm formation, and
virulence (427). The strains of variant rpf-2 formed stronger biofilms and demonstrated
greater virulence against G. mellonella larvae than strains of variant rpf-1. Assessment of

FIG 4 (A) T-seeded colony-based DSF bioassay of strains E77 and M30. Arrow indicates DSF production
of M30 (rpf-2) strain upon detection of DSF molecules produced by E77 (rpf-1). (B) DSF quantification of
supernatants from axenic cultures of E77 and M30, a mixed culture E77:M30 (1:1), an axenic culture of
M30 supplemented with synthetic DSF at 0.05mM final concentration and a corresponding control (equal
volume of LB broth containing 0.05mM DSF), using the microtiter DSF bioassay; *, P , 0.05 by one-way
ANOVA and posttest. (C) Colony-based DSF bioassay of E77, M30 and their respective DrpfF mutants
seeded at different distances on the same agar plate. (Figure reproduced and legend adapted from
reference 423 with permission.) ANOVA, analysis of variance.
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genotypes and virulence revealed that a link of biofilm-forming ability with gen-
ogroup C was significant. Interestingly, antimicrobial resistance appeared to correlate
with rpf variant, as rpf-1 strains exhibited greater resistance to b-lactam antibiotics,
while the rpf-2 strains demonstrated greater resistance to colistin (427). This study
has demonstrated connections between S. maltophilia strains’ molecular mechanisms of
pathogenesis, genogroup, and geographical location. A larger scale study of this type
would provide valuable information about the spread of highly virulent variant strains
around the globe.

Ax21 (activator of XA21-mediated immunity) is a highly conserved, type 1, secreted
sulfated outer membrane protein found in plant and animal pathogens, including S.
maltophilia (428). Ax21 has been suggested to induce quorum sensing; though cur-
rently, its role remains unclear. A comparison of S. maltophilia and the effects of a
mutation in ax21 were reported (429); this study was retracted however, due to errors
in data presentation (430). An Ax21-like protein in Xanthomonas oryzae pv. oryzicola
was proposed to be positively regulated by DSF-mediated quorum sensing (431). A
recent report indicated that Ax21 alters biofilm formation and virulence of S. malto-
philia (432). S. maltophilia K279a, K279a ax21 mutant, and the complemented mutant
[strain K279a ax21(pSmlt0387)] were used in this study. In comparison to K279a and
the complemented ax21 mutant, the ax21 mutant had significantly impaired motility,
inhibited biofilm formation, increased susceptibility to tobramycin, and reduced viru-
lence in the G. mellonella larva assay. Addition of Ax21 or AX21Y (a nonsulfatable vari-
ant of Ax21) to the ax21 mutant was observed to restore motility (432). It may be that
Ax21 is a cell signaling molecule, but this remains controversial. More work is needed
to determine the role of Ax21 in vivo using animal models of infection.

Strategies to inhibit and eliminate biofilms. S. maltophilia biofilm formation can
vary with surface material, availability of nutrients, and culture conditions (1). The per-
sistence of biofilms in infection has necessitated research to find intervention strat-
egies that prevent or inhibit biofilms from forming and/or eliminate already estab-
lished biofilms.

Recent work has focused on the environments in which the biofilms are formed.
The stimulation of early immature clinical S. maltophilia biofilms by an extremely low-
frequency magnetic field (ELF-MF) resulted in strain and species ion-dependent effects,
with two of the three strains tested showing an improvement in growth, and different
effects were observed for biofilm biomass and biofilm viability (433). S. maltophilia
planktonic cells and biofilms have demonstrated sensitivity to blue light (400 nm), with
reductions in cell viability and biofilm-forming ability (seeding) after exposure (30min,
108 J/cm2) (434). Fluids used for continuous renal replacement therapy (CRRT) have
exhibited variation in their ability to inhibit S. maltophilia NCTC 10257 growth and bio-
film formation (435). CRRT fluids (monosol S, lactate-based solution [Baxter Healthcare];
Accusol 35, bicarbonate-based solution [Baxter Healthcare]; Prismocitrate, citrate-based
anticoagulant [Gambro]; 4% trisodium citrate [Fresenius]; and Ci-Ca K2, bicarbonate-based
calcium-free dialysis fluid [Fresenius]) were investigated. Of these fluids, Accusol 35 was
the most effective in inhibiting growth, and in Accusol 35, Prismocitrate, and trisodium ci-
trate, no biofilms were formed. Together, these studies demonstrated that the ability of S.
maltophilia to form biofilms is mediated by its external environment.

Differences in biofilm formation have been observed for strains from different sour-
ces. In one study, comparison of biofilms formed by S. maltophilia CF and non-CF iso-
lates showed that CF isolates were more sensitive to changes of temperature, CO2 con-
centration, and pH (436). In another study, non-CF strains produced significantly more
biofilm on polystyrene than CF strains, while CF strains demonstrated greater antimi-
crobial resistance (401).

Antimicrobial inhibitory concentrations are generally higher for biofilms than for
planktonic cells, and this holds for S. maltophilia (400, 437–439). For example, in one
study, tobramycin demonstrated a MIC90 of 1,600mg/ml against 101 S. maltophilia
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CF isolates in comparison to a 90% biofilm-inhibitory concentration (BIC) BIC90 of
3,200mg/ml (405).

Fluoroquinolones, used in treatment of S. maltophilia infections, have exerted in-
hibitory activity against biofilm formation in vitro (438–440). The use of levofloxacin
against CF biofilms has received some attention. Against CF patient isolates, levo-
floxacin at 100mg/liter has demonstrated high effectivity against planktonic and
biofilm S. maltophilia cultures (440). Under standard culture conditions (cation-
adjusted Muller-Hinton broth at 37°C, pH 7.3, aerobiosis) and under CF-like culture
conditions (synthetic CF medium at 37°C, pH 6.8, 5% CO2), clinical S. maltophilia
strains produced biofilms that were significantly more resistant to levofloxacin than
their respective planktonic cultures (438). Levofloxacin exposure significantly
reduced biofilm viability of all strains under both medium conditions but was unable
to remove completely the biofilm, and no dose-dependent antibiofilm efficacy was
observed.

The timing of exposure of the biofilm to fluoroquinolone is important. Delivery of
fluoroquinolones (moxifloxacin, levofloxacin, and ciprofloxacin) against early immature
biofilms formed by clinical S. maltophilia isolates on polystyrene resulted in greater in-
hibition of biofilm formation than delivery against mature biofilms (439). It should be
noted too that the inhibitory effects of the fluoroquinolones were not dose
dependent.

Treatments of S. maltophilia biofilms in vitro with antimicrobial combinations
have shown some interesting results. Erythromycin with levofloxacin treatment has
resulted in altered biofilm architecture and reduced numbers of bacteria in the bio-
film; erythromycin in combination with cefoperazone/sulbactam or with piperacillin
also reduced biofilm colony density (400). In contrast, azithromycin has demon-
strated interference with the inhibitory activity of fluoroquinolones against the bio-
films (439). Polymyxins have demonstrated relatively good in vitro activity against
Gram-negative pathogens, except for S. maltophilia (441). Combinations of sub-MIC
polymyxin B and polysorbate 80 (0.05%) have been reported to inhibit growth and
biofilm formation by S. maltophilia K279a and two other clinical strains, with mean
growth and biofilm reductions of 89% and 98%, respectively (442). Minocycline-
rifampin-impregnated central venous catheters with added chlorhexidine (CHX-M/R
CVCs) have been reported to completely inhibit biofilm formation at 24 h by S. mal-
tophilia 5572 and maintain antimicrobial activity after 1-year storage at 25°C (443).
The outcomes of some of these studies indicate that it may be possible to bring
back older antimicrobials into use.

There has been recent interest in testing the activity of plant-based compounds
against S. maltophilia (444–447). An extracted compound (emodin) from traditional
Chinese medicinal herbs significantly inhibited biofilm formation of S. maltophilia
GIMT1.118 at 20mM and, at 200mM, caused almost complete cell detachment and
dispersal (444). Chlorogenic acid from plant materials demonstrated a MIC range of
8 to 16mg/ml against S. maltophilia and, at 1�, 2� and 4� MICs, reduced estab-
lished biofilm viability of S. maltophilia ATCC 13637 (445). Hexane extracts (ASHE)
and dichloromethane extracts (ASDE) of Allium stipitatum inhibited growth of S. mal-
tophilia ATCC 13637, demonstrated MIC values for both of 64mg/ml and minimal
bactericidal concentration (MBC) values for both of 256mg/ml, and exhibited bacte-
ricidal killing at 1�, 2�, and 4� MIC, eliminating .90% of S. maltophilia cells by 4 h
of exposure (446). Against preformed S. maltophilia biofilms, treatment with ASHE
and ASDE reduced viability in a concentration-dependent manner and disrupted
biofilm structures. Celastrol, a triterpenoid compound obtained from the roots of
Tripterygium wilfordii, exhibited MIC values of 20mg/ml and 80mg/ml against S. malto-
philia strains 13637 and GNU2233, respectively, and inhibited biofilm formation without
impeding planktonic growth (447). Against established biofilms, celastrol caused biofilm
dispersal and reduced metabolic activity in a dose-dependent manner. At subinhibitory
concentrations, celastrol inhibited S. maltophilia swimming motility and protease secretion
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and repressed the transcription of smeYZ (of the SmeYZ efflux pump), fsnR (encodes the
FsnR response regulator used for swimming and biofilm formation), bfmA, and bfmK (both
used for biofilm formation) (447). Further research can show whether, in combination, any
of these plant-derived compounds (at sub-MICs) can improve the efficacy of established
antimicrobials against S. maltophilia.

Prevention of S. maltophilia biofilms on surfaces that can come into contact with
humans is a major step to reducing infections by this opportunist. Cellobiose dehydrogen-
ase (CDH) incorporation in lubricant may have potential to prevent S. maltophilia urinary
catheter infections; a preliminary study indicates that growth of S. maltophilia U-57/28 was
strongly inhibited in the presence of 10mM CDH/cellobiose (448). More research is war-
ranted to assess the efficacy of CDH against S. maltophilia biofilms.

The biofilm formation by S. maltophilia has been studied in drinking water con-
taining chemical compounds (165, 166). Exposure of S. maltophilia to environmen-
tal contaminants, including nonsteroidal anti-inflammatory drugs (NSAIDs; antipyr-
ine, diclofenac sodium salt, and ibuprofen), musk fragrances (galaxolide and tonalide), a
neuroactive drug (carbamazepine), a lipid regulator (clofibric acid), and a veterinary antibi-
otic (tylosin), at drinking water concentrations did not significantly affect biofilm formation
by S. maltophilia and did not alter cell viability of preformed biofilms (166). The triple
combination of clofibric acid, carbamazepine, and ibuprofen at 100� drinking
water concentration (100�DW) significantly reduced biofilm production, and these
biofilms exhibited significantly more resistance to removal by NaOCl; in contrast,
exposure to diclofenac, ibuprofen, and tylosin at 100�DW significantly increased
biofilm production. Drinking water S. maltophilia biofilms exposed to clofibric acid
at 100�DW had a significantly increased resistance to erythromycin and reduced
resistance to ciprofloxacin (165). The alteration of S. maltophilia biofilm production
and viability by environmental contaminants in drinking water is worthy of consid-
eration during development of new water distribution systems.

A summary of recently tested agents against S. maltophilia biofilm formation or
established biofilms is presented in Table 10.

TABLE 10 Recently tested agents against S. maltophilia biofilm formation or established biofilms

Agent
Forming or established
biofilm Activity against biofilm Reference

Minocycline-rifampin impregnated CVCs with
added chlorhexidine

Forming Proprietary sequential coating, complete inhibition 443

Continuous renal replacement therapy fluids
(monosol S-lactate based solution, Accusol
35-bicarbonate based solution, Prismocitrate-
citrated based anticoagulant, Ci-Ca K2
bicarbonate-based calcium-free dialysis fluid,
4% trisodium citrate)

Forming Complete inhibition by Prismocitrate, Accusol 35,
and trisodium citrate

435

Erythromycin in combination with levofloxacin,
cefoperazone-sulbactam, or piperacillin

Forming Decreased colony density of biofilms 400

Polymyxin in combination with polysorbate 80 Forming Significant inhibition at sub-MIC polymyxin and
0.05% polysorbate 80

442

Extremely low-frequency magnetic field Forming Strain and ion species effects were noted for
biomass and viability

433

Chinese herb compound Emodin Forming 20 and 200mM, significant inhibition 444
Clofibric acid Forming 10� or 100� drinking water concn, no effect 165

Established 100� drinking water concn, demonstrated reduced
removal after chlorine treatment

Celastrol Forming 5mg/ml inhibition by.50% 447
Established 40mg/ml, complete elimination and cell dispersal

Azithromycin in combination with
fluoroquinolones

Established Significantly reduced inhibitory effect of
fluoroquinolones against biofilms

439

Chlorogenic acid Established 8mg/ml, reduced cell viability 445
Hexane and dichloromethane extracts of Allium
stipitatum

Established 128mg/ml, disruption and reduction of biofilm
structures

446
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TREATMENT OF INFECTIONS
Antimicrobials: Old and New

There remains a need to develop standardized globally accepted antimicrobial test-
ing procedures for S. maltophilia. MIC determinations of antimicrobial resistance vary
between countries, as they follow standards set by different agencies (e.g., Clinical and
Laboratory Standards Institute, European Committee on Antimicrobial Susceptibility
Testing, and the European Medicines Evaluation Agency for European Chemotherapy)
(1). A recent review of treatment of invasive infections associated with S. maltophilia indi-
cated that TMP-SMX was the therapy most frequently given to patients and often used in
a combination therapy or as part of a sequence of antibiotics (449). Alternatives to the use
of TMP-SMX for treatment of S. maltophilia infections have been sought. Another recent
review has suggested that fluoroquinolones provide an appropriate alternative, and this
has been demonstrated in a retrospective study of ventilator-associated pneumonia cases
(450, 451).

Combination therapies have successfully treated S. maltophilia infections; a recent
report indicated that a combination treatment of TMP-SMX and polymyxin-based ther-
apy and then administration of fluoroquinolone successfully treated two patients with
hematologic malignancy and S. maltophilia hemorrhagic pneumonia (64). A study of
the use of combination therapy versus monotherapy to treat S. maltophilia pneumonia
infections has found no difference between combination therapy and monotherapy
for clinical response, development of resistance, and infection-related mortality (452).
As this was a relatively small study of 458 patients, larger studies are needed to identify
significant differences between these therapy approaches.

Strategies against S. maltophilia

Siderophore-based agents. Siderophore-based antimicrobials have been devel-
oped with good activity against S. maltophilia (453–471). Relatively early examples of
how the active uptake of siderophores by S. maltophilia can be exploited to improve
both the uptake and activity of antimicrobials include BAL30376 (combination of side-
rophore monobactam BAL19764, monobactam BAL29880 [inhibitor of class C b-lacta-
mases], and clavulanic acid [an inhibitor of class A b-lactamases]) and the modification
of lactivicin through incorporation of a catechol-type siderophore (455, 469).

Cefiderocol is a catechol siderophore cephalosporin that has received a lot of atten-
tion. This antimicrobial chelates ferric iron and uses the iron uptake system of Gram-
negative bacteria to traverse the outer membrane and enter the periplasmic space,
where it binds to bacterial penicillin binding protein 3 and inhibits cell wall synthesis
(460, 463). Cefiderocol has demonstrated effective in vitro activity against multidrug-re-
sistant S. maltophilia, P. aeruginosa, A. baumannii, and Enterobacteriaceae (453, 461).
Against S. maltophilia, cefiderocol has exhibited a MIC50 range of 0.06 to 0.25mg/ml,
MIC90 range of 0.25 to 0.5mg/ml, and a MIC range of #0.03 to 4mg/ml (458–462,
464–466, 470, 471). Interestingly, in two SIDERO-WT studies, cefiderocol exhibited a
higher MIC90 (0.5mg/ml) against North American S. maltophilia isolates than against
European isolates (MIC90 of 0.25mg/ml) (460, 461, 466). Cefiderocol has exhibited a
lower MIC90 value than cefepime, ceftazidime-avibactam, ceftolozane-tazobactam,
ciprofloxacin, COL, piperacillin-tazobactam, and meropenem (459, 460, 462) and lower
MIC value than ceftazidime, cefepime, meropenem, piperacillin-tazobactam, ceftazi-
dime-avibactam, ceftolozane-tazobactam, COL, amikacin, and ciprofloxacin (464). In
the ARGONAUT (ARLG reference group for the testing of novel therapeutics) study,
cefiderocol exhibited a MIC90 of 0.25mg/liter against S. maltophilia clinical isolates
(with blaL1) collected worldwide, lower than that of tigecycline (MIC90 of 2mg/liter)
(465). Breakpoints for cefiderocol of 4mg/ml (susceptible), 8mg/ml (intermediate), and
16mg/ml (resistant) against S. maltophilia have been approved by CLSI (457).

The pharmacokinetic and pharmacodynamics profiles of cefiderocol have been
reported (467, 468). In the murine lung infection model, the mean cumulative percent-
age of a 24-h period in which the free drug concentration in plasma exceeds the MIC

Advances in the Microbiology of S. maltophilia Clinical Microbiology Reviews

July 2021 Volume 34 Issue 3 e00030-19 cmr.asm.org 37

https://cmr.asm.org


(%fT.MIC) for S. maltophilia was 53.9% 6 18.1% (468). In the murine thigh infection
model, infusion of cefiderocol using human therapeutic dose regimens resulted in .2-
log killing and overall significantly higher antibacterial activity than ceftazidime (456).
An international, multicenter phase 3 CREDIBLE-CR study has found that cefiderocol
may be a viable therapy for patients with carbapenem-resistant Gram-negative infec-
tions (454). Resistance to siderophore-based antimicrobials is of concern. In one study,
S. maltophilia resistance emerged to the siderophore-incorporated triple combination
antimicrobial BAL30376 (468). In summary, cefiderocol shows promise against S. malto-
philia, including multidrug-resistant strains.

Tetracyclines. From surveillance studies of the tetracycline antibiotics, tigecycline,
eravacycline, and minocycline, have demonstrated efficacy against S. maltophilia (2, 5,
472–478). Across five surveillance studies, tigecycline exhibited a range of MIC50/90 val-
ues of 0.5 to 2/2 to 4mg/ml and MIC range of 0.06 to .16mg/ml (2, 474, 475, 477, 478).
In a 2011–2014 SENTRY surveillance study of 141 S. maltophilia isolates from Latin
American medical centers, tigecycline demonstrated a MIC50/90 of 0.5/2mg/ml with
91.5%/83.0% inhibited at #2/#1mg/ml (477). In a global 2013–2014 SENTRY surveil-
lance study of 372 S. maltophilia isolates from medical centers in Europe and the Asia-
Pacific region, tigecycline demonstrated a MIC50/90 of 0.5/2mg/ml and a MIC range of
0.06 to 8mg/ml (475). In a CANWARD 2014–2015 surveillance study, tigecycline exhib-
ited a MIC50/90 of 1/4mg/ml with a range of 0.25 to 16mg/ml against 118 S. maltophilia
isolates (478). In an International Network for Optimal Resistance Monitoring (INFORM)
2015–2017 study including 309 S. maltophilia isolates, tigecycline exhibited a MIC50/90

of 1/2mg/liter, and minocycline exhibited a MIC50/90 of 0.5/2 mg/liter with 100% sus-
ceptible isolates (CLSI) in comparison to TMP-SMX with a MIC50/90 of#0.5/#0.5mg/liter
with 95.5%/98.1% susceptible isolates (CLSI/EUCAST) (2). In a recent study of 1,210 S.
maltophilia isolates recovered worldwide during 2013 to 2017, tigecycline demon-
strated a MIC50/90 of 2/4mg/ml and a MIC range of 0.06 to .16mg/ml in comparison to
TMP-SMX (tested against 1,080 isolates), with a MIC50/90 of 0.5/4mg/ml, MIC range of
,0.03 to .64mg/ml, and 84.3% (CLSI) and 90.3% (EUCAST) susceptible isolates (474).
In a small study of 48 S. maltophilia isolates from Brazilian hospitals, tigecycline exhib-
ited a MIC50/90 of 1/4mg/ml and a MIC range of 0.25 to 16mg/ml; in comparison, mino-
cycline demonstrated a MIC50/90 of 0.5/2mg/ml with a MIC range of ,0.25 to 8mg/ml
(476). Synergy has been observed in vitro for tigecycline-cefoperazone-sulbactam and
tigecycline-levofloxacin combinations against S. maltophilia (479). Infection model
studies are required to assess the efficacy of such combinations. In summary, tigecy-
cline continues to be a reasonable therapeutic option for treatment of S. maltophilia
infections.

Across four surveillance studies, minocycline has demonstrated a MIC50/90 range of
0.5 to 2/2 to 4mg/ml against S. maltophilia (2, 5, 472, 473). Minocycline exhibited the
highest in vitro antimicrobial activity against 6,467 S. maltophilia clinical isolates recov-
ered from 259 medical centers in the Asia-Pacific, Latin American, and North American
regions in the 1997–2016 SENTRY surveillance study (5). Minocycline was included in
the SENTRY program starting in 2005 and tested against 59.8% of the total number of
S. maltophilia isolates. Minocycline exhibited a MIC50/90 of #1/2mg/liter with 99.5%
susceptible isolates (CLSI concentration). The activity of minocycline was higher than
that of TMP-SMX, which exhibited a MIC50/90 of #0.5/1mg/liter with 96.2% susceptible
isolates (EUCAST concentration), and higher than that of tigecycline or levofloxacin.
Minocycline exhibited in vitro activity with a MIC50/90 of 1/4mg/liter and 90% suscepti-
ble isolates against TMP-SMX-resistant S. maltophilia isolates that also demonstrated
levofloxacin MIC values of $4mg/liter. The S. maltophilia isolates recovered from all
geographic regions showed an overall susceptibility of .99.0% to minocycline (5). In a
2014–2018 SENTRY surveillance study including 1,289 S. maltophilia isolates, minocy-
cline exhibited a MIC50/90 of 0.5/2mg/ml with 99.5% susceptible isolates; against TMP-
SMX-resistant S. maltophilia isolates, minocycline demonstrated activity (92.8% of the
isolates were susceptible) with a MIC50/90 of 1/4mg/ml (473). In a 2008–2018 SENTRY

Brooke Clinical Microbiology Reviews

July 2021 Volume 34 Issue 3 e00030-19 cmr.asm.org 38

https://cmr.asm.org


surveillance study including 41 S. maltophilia isolates, minocycline exhibited a MIC50/90

of 2/4mg/ml with a MIC range of 0.125 to 8mg/ml with 92.7% susceptible isolates;
78.6% of the isolates that were both levofloxacin resistant and TMP-SMX resistant dem-
onstrated susceptibility to minocycline (472). In summary, the data described above
indicate that minocycline may present an alternative treatment for S. maltophilia iso-
lates resistant to levofloxacin and/or TMP-SMX.

Eravacycline and tigecycline both exhibited a MIC50/90 of 1/4mg/ml and a MIC range
of 0.25 to 16mg/ml against 118 S. maltophilia isolates acquired from Canadian hospital
laboratories in a CANWARD surveillance study during 2014 to 2015 (478). Against 1,210
S. maltophilia isolates recovered worldwide during 2013 to 2017, eravacycline demon-
strated a MIC50/90 of 1/2mg/ml and a MIC range of 0.03 to 16mg/ml in comparison to
tigecycline (MIC50/90 of 2/4mg/ml and MIC range of 0.06 to .16mg/ml) and TMP-SMX
(tested against 1,080 isolates, MIC50/90 of 0.5/4mg/ml, MIC range of #0.03 to .64mg/
ml, and 84.3% [CLSI] and 90.3% [EUCAST] susceptible isolates) (474). Eravacycline has
exhibited greater activity than tigecycline across difficult-to-treat pathogens (474).
Eravacycline thus provides another option for treatment of S. maltophilia infection.

b-Lactamase inhibitors. The b-lactamases (L1 and L2) of S. maltophilia continue to
be a target for pharmaceutical intervention. The b-lactamase inhibitor avibactam has
been reported to competitively and reversibly inhibit L2 and reestablish sensitivity of S.
maltophilia to aztreonam (36, 480). Synergy has been observed between ceftazidime-
avibactam and aztreonam, and this combination has been used to treat bacteremia
due to a S. maltophilia strain with resistance to trimethoprim-sulfamethoxazole and
other antibiotics, including ceftazidime, meropenem, levofloxacin, minocycline, and
colistimethate sodium (36). In addition to avibactam, two other b-lactamase inhibitors,
clavulanic acid and bicyclic boronate 2, have demonstrated reversal of aztreonam re-
sistance in ceftazidime-susceptible S. maltophilia, and all of the inhibitors reversed cef-
tazidime and aztreonam resistance in a ceftazidime-resistant hyperproducing b-lacta-
mase S. maltophilia mutant (481). Against S. maltophilia from chronically infected adult
patients, aztreonam-avibactam demonstrated an MIC range of 1 to 32mg/ml with a
MIC50/90 of 8/16mg/ml in comparison to aztreonam alone (MIC range of .128mg/ml
and MIC50/90 of .128mg/ml), suggesting that aztreonam-avibactam may be a viable
treatment against S. maltophilia infection (482).

In a SENTRY surveillance study, a different b-lactamase inhibitor, vaborbactam,
when used in combination with meropenem against S. maltophilia, exhibited a MIC50/90

of .32/>32mg/ml, indicating that the combination exhibited limited efficacy against
this pathogen (483).

Improved antimicrobial activity of a cephalosporin through combination with other
b-lactamase inhibitors is possible. Against bloodstream S. maltophilia isolates, ceftolo-
zane-tazobactam demonstrated greater activity than ceftazidime alone (484), and cefe-
pime-tazobactam exhibited lower MIC values than cefepime alone against S. malto-
philia clinical isolates (485). Ceftolozane-tazobactam has demonstrated reasonable
activity against S. maltophilia from CF adult patients, with a MIC50/90 of .256/1.5mg/
ml; no clinical breakpoint has been established, but with using a selected value of
#4mg/ml, approximately 60% of S. maltophilia isolates were susceptible to this combi-
nation treatment (486). In another study, ceftolozane-tazobactam exhibited a MIC90 of
8mg/ml against S. maltophilia from CF respiratory samples (487).

In a small study, S. maltophilia isolates that exhibited resistance to b-lactams
(aztreonam), fluoroquinolones, colistin, and TMP-SMX demonstrated susceptibility to
the combinations of aztreonam with ceftazidime-avibactam, ceftolozane-tazobactam,
or amoxicillin-clavulanate; aztreonam in combination with amoxicillin-clavulanate has
been used to successfully treat a 60-year-old patient with decompensated chronic ob-
structive pulmonary disease (488).

Few studies have examined the activity of the combination ceftazidime-avibactam
(489–491). Ceftazidime-avibactam did not show improved activity compared to that of
ceftazidime alone against 34 S. maltophilia isolates recovered from CF patient
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respiratory samples (MIC50/90 of 140/256mg/liter with 35% susceptible isolates) (489).
Similar findings were observed when ceftazidime, ceftazidime-avibactam, ceftolozane-
tazobactam, meropenem, meropenem-vaborbactam, and piperacillin-tazobactam were
tested against 100 S. maltophilia CF isolates; none of the b-lactam–b-lactamase inhibi-
tor combinations demonstrated improved activity compared to that of their respective
b-lactam counterpart (490). In a third study of 54 clinical S. maltophilia isolates recov-
ered in one hospital, ceftazidime-avibactam demonstrated a MIC of ,1mg/ml with
30% susceptible isolates compared to only 2% of the isolates with this MIC for ceftazi-
dime alone. The MIC50 values for ceftazidime-avibactam and ceftazidime were 2 and
12mg/ml. The proportion of susceptible isolates for ceftazidime-avibactam was 66.7%
in comparison to 38.9% of the isolates demonstrating susceptibility to ceftazidime
alone (491). The disparity between these studies may reflect possible clonally related
isolates used in the latter study. In summary, these studies indicate that b-lactamase
inhibitors may be able to reverse resistance to some antimicrobials, but their use in
combination therapies is limited, as only select antimicrobials have shown improved
activity when combined with a b-lactamase inhibitor.

Antimicrobial peptides. Several antimicrobial peptides have been assessed for their
activity against S. maltophilia and its biofilms (492–499). Esculentin-2CHa and its ana-
logs have been tested for their activity against clinical meropenem-resistant S. malto-
philia; the analogs (D20K and D27K) exhibited the lowest MIC values (1.5 to 3mM)
against S. maltophilia strains but demonstrated significant hemolytic activity (492).
Pseudhymenochirin-1Pb and pseudhymenochirin-2Pa that exhibited lethal activity
against adenocarcinomas and S. maltophilia clinical isolates also demonstrated hemo-
lytic activity (493). For use in treatment of cancer or bacterial infections, further modifi-
cations of these peptides are required to eliminate cytotoxicity toward erythrocytes. In
comparison, the dimer peptide LfcinB (20-25)2, derived from bovine lactoferrin, has
exhibited a MIC of 50mg/ml against S. maltophilia ATCC 13636 and has no hemolytic
activity (494). Future studies will determine the efficacy of LfcinB (20-25)2 against S.
maltophilia biofilms in vitro and in vivo.

Cathelicidin-derived peptides SMAP-29, BMAP-27, and BMAP-28 at sublethal con-
centrations significantly inhibited biofilm formation, exhibited dose-dependent effects
against established clinical S. maltophilia biofilms, and demonstrated some strain-spe-
cific effects (495). BMAP-27, BMAP-28, and artificial peptide P19(9/B) demonstrated
strain-specific bactericidal activity against S. maltophilia and significantly inhibited bio-
film formation of S. maltophilia when tested at subinhibitory concentrations; however,
they were not as effective at inhibition as tobramycin (496). A study of shortened
BMAPs reported that BMAP-27(1-18) demonstrated the lowest toxicity in C57BL/6NCrl
mice and exhibited various degrees of bactericidal and antibiofilm activity against CF
patient S. maltophilia strains (497). Combinations of peptides with antimicrobials have
been tested. Peptide LL37 and the macrolide azithromycin have exhibited synergy
against S. maltophilia K279a cells cultured in tissue culture medium (RPMI plus 10% LB)
(498). Against clinical S. maltophilia, LL37 has exhibited MIC values of 3.3 to 34.6mg/li-
ter; at the lower range of the MIC, this was comparable to that of ciprofloxacin (499). In
summary, use of antimicrobials in combination with antimicrobial peptides may hold
some promise for use in treatment of S. maltophilia biofilms, providing the peptide
does not present adverse effects to the infected host.

Cell envelope targets. The outer membrane of S. maltophilia serves as a barrier of
protection against antimicrobials. The multidrug-resistant efflux pumps have been
considered targets for lowering the MIC values for antimicrobials used to treat S. malto-
philia infections. For example, the efflux pump inhibitor elacridar has exerted a dose-
dependent decrease on the MIC for ciprofloxacin against S. maltophilia (500). As this
study tested one S. maltophilia strain, it would be useful to determine if elacridar treat-
ment results in strain-specific effects when more S. maltophilia strains are tested.
Exposure to COL increased the outer membrane permeability and reduced the MIC
of MD3, a type I signal peptidase inhibitor, against clinical and environmental
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S. maltophilia isolates (501). Further research is needed to identify additional peptidase
inhibitors that may be useful against S. maltophilia if used in combination with mem-
brane-permeabilizing agents. S. maltophilia demonstrates susceptibility to argyrin B, a
natural cyclic peptide inhibitor of bacterial elongation factor G; the susceptibility of
E. coli to argyrin B is reduced when efflux pumps are nonfunctional (502). It will be
interesting to see if the efflux pumps of S. maltophilia also play a role in determining
resistance to argyrin B. In addition to the inhibitors described above, a recent study
has reported inhibitors of the cell division protein FtsZ have activity against S. aureus
(503). It remains to be seen whether effective anti-FtsZ agents can be generated
against S. maltophilia.

Silver. Silver has long been recognized for its antimicrobial activity. In a small study
that assessed the efficacy of silver alginate (SA) and silver carboxymethylcelluose
(SCMC) dressings against multidrug-resistant S. maltophilia recovered from burn
patients, both dressings were significantly more effective at pH 5.5 than at pH 8.5, and
the SCMC dressing was significantly more effective than the SA dressing at pH 8.5
(504). Silver nanoparticles have demonstrated activity against S. maltophilia (505–507).
Silver nanoparticles are known to disrupt outer membrane integrity via the production
of reactive oxygen species (508), and they are active against S. maltophilia planktonic
cells and biofilms. Radiosterilized pig skin-silver nanocomposites impregnated with dif-
ferent suspension concentrations (ppm) of silver nanoparticles inhibited S. maltophilia
(recovered from burn patients) growth in a dose-dependent manner and inhibited bio-
film formation, and no viable bacteria were recovered from disaggregated biofilms
exposed to nanocomposites impregnated with a silver suspension of 250 ppm (505).
At this concentration of silver, exposure of adipose-derived mesenchymal stem cells
resulted in a cell viability of $80% and positive cell culture; against these cells, the
nanocomposites exhibited dose-dependent cytotoxicity (505). In another study against
CF respiratory S. maltophilia strains, the MIC of silver nanoparticles (AgNPs) was
4.25mg/ml, and the killing of bacteria by the AgNPs was time and concentration de-
pendent (506). At 4� MIC, the AgNPs were able to reduce preformed biofilm viability
of the strongest biofilm-producing strain tested. At the concentrations tested, the
AgNPs did not demonstrate toxicity against G. mellonella larvae. In a small study, syn-
ergy has been reported for the combination of polymyxin B and silver nanoparticles
against a polymyxin B-resistant S. maltophilia clinical isolate in vitro, and synergy was
also seen at clinically relevant concentrations against polymyxin-resistant P. aerugi-
nosa, A. baumannii, and Klebsiella pneumoniae (507). Quaternary ammonium polyethy-
leneimine nanoparticles have demonstrated a MIC of 12.5mg/ml and inhibited growth
of a clinical drug-resistant S. maltophilia isolate; the MIC was well below the cytotoxic
concentration of 100mg/ml for the human cell line HEK293T (509). Larger-scale studies
with these nanoparticles against more S. maltophilia strains recovered from different
infections should provide information about any strain-dependent effects. In summary,
to consider therapeutic applications for these nanoparticles and nanocomposites,
research is needed to test the efficacy of them in vivo.

N-Acetylcysteine. The mucolytic agent N-acetylcysteine has demonstrated activity
against S. maltophilia planktonic cells and established biofilms (510, 511). N-Acetylcysteine
exhibited a range of MICs of 16 to 32mg/ml, and a dose-dependent, time-dependent, and
strain-dependent antibiofilm effect of N-acetylcysteine was observed against S. maltophilia
(510). Against established biofilms of some strains, N-acetylcysteine reduced the cell viabil-
ity by at least 4 log CFU/peg (510). Synergy has been observed in vitro for COL and N-ace-
tylcysteine against S. maltophilia planktonic cells and biofilms (511). Against planktonic
cells, a dose-dependent enhancement of colistin activity by N-acetylcysteine was observed,
and against most COL-resistant preformed S. maltophilia biofilms, this combination dem-
onstrated synergy. N-Acetylcysteine enhanced COL antibiofilm activity in a dose-depend-
ent manner (511). It will be interesting to see the efficacy of N-acetylcysteine in vivo and to
determine whether its combination with other membrane-permeabilizing agents such as
polymyxin B also results in synergy.
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Plant compounds. Plant compounds have demonstrated antimicrobial activities
against S. maltophilia (512, 513). Against CF S. maltophilia isolates in vitro, green tea
compound epigallocatechin-3-gallate (EGCg) exhibited a MIC range of 64 to 512mg/li-
ter. C57BL/6 mice and Cftr mutant mice were treated with EGCg (1,024mg/liter) and
challenged with S. maltophilia. EGCg-treated mice had significantly reduced S. malto-
philia counts compared to mice treated with COL. EGCg protected Cftr mutant mice
against pulmonary S. maltophilia infection. Against young and established biofilms, EGCg
displayed strain-dependent effects, and a lack of dose dependency was observed for the
viability of mature biofilms (512). Cinnamic acid, phloretin, ferulic acid, p-coumaric acid,
caffeic acid, (2)-epigallocatechin, and (2)-gallocatechin have demonstrated inhibitory
action against S. maltophilia; cinnamic acid exhibited the lowest MIC (0.125mg/ml) and
damaged the bacterial cell membrane integrity (513). To the author’s knowledge, these
plant compounds have not been used against S. maltophilia infection in humans. Research
is needed to see if these compounds can improve the activity of older antimicrobials with-
out adverse effects on the host.

Preliminary studies. Three new antimicrobial agents have demonstrated activity
against S. maltophilia (514–516). A novel membrane-active agent with aromatic linker,
compound 2n, exhibited a MIC value of 1mg/ml against S. maltophilia, with low toxicity
(514). POL7306, a peptidomimetic antibiotic, exhibited a MIC50/90 of 0.06/0.25mg/liter
against 51 S. maltophilia isolates in a 2017–2018 SENTRY survey in comparison to TMP-
SMX and levofloxacin, with MIC50/90 values of #0.5/#0.5mg/liter and 1/4mg/liter,
respectively (515). POL7306 acts by binding to an outer membrane protein (517).
Glucocorticoid PYED-1 (pregnadiene-11-hydroxy-16a,17a-epoxy-3,20-dione-1), a syn-
thetic precursor of deflazacort, demonstrated a MIC range of 64 to 512mg/ml against
clinical S. maltophilia isolates and significantly inhibited biofilm formation at subinhibi-
tory concentrations, and synergy was noted for PYED-1 when combined with gentami-
cin and amikacin (516). As each of these compounds has been identified recently,
more research is needed to look at the activity of these compounds across S. malto-
philia strains of different origins, examine their effects on host cells, and determine
their pharmacokinetics.

In summary, there has been much creative thought given to the development of
new anti-infective strategies against this pathogen. Given the extensive array of drug
resistance determinants possessed by S. maltophilia, it is likely that novel combinations
of antimicrobials and not single antimicrobial agents will provide an effective measure
to impede infection by, if not eliminate, this opportunist.

S. MALTOPHILIA AND BIOTECHNOLOGY

S. maltophilia is an environmental bacterium of keen interest in biotechnology due
to its ability to produce inhibitory molecules, nanoparticles, and enzymes useful for
applications, including anti-infection, food production, agriculture, and protection of
the environment. Some recent examples are described below.

Antimicrobial Activity against Clinically Relevant Pathogens

Environmental S. maltophilia strains have exhibited antimicrobial activity against
bacteria and fungi (518–523). S. maltophilia strain BJ01 secretes cis-9-octadecenoic acid
that exhibited quorum-quenching activity and inhibited biofilms by P. aeruginosa
ATCC 9027 (518). S. maltophilia recovered from the shrub Fagonia indica has demon-
strated inhibitory activity against K. pneumoniae ATCC 4649, Bacillus subtilis ATCC 6633,
Mucor mycosis FCPB 0041, Aspergillus flavus FCPB 0064, A. fumigatus FCPB 1264,
Aspergillus niger FCBP 0198, and promastigotes of Leishmania tropica and cytotoxicity
toward Streptomyces 85E (519).

S. maltophilia strains have demonstrated antimicrobial activity against major clinical
pathogens, including K. pneumoniae, P. aeruginosa, and S. aureus (520, 521). A selenite-
reducing S. maltophilia SelTE02 strain isolated from the roots of Astragalus bisulcatus
(520) produced selenium nanoparticles that demonstrated nanoparticle size-depend-
ent antimicrobial activity, with MIC values of 125mg/liter for E. coli JM109 and E. coli
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ATCC 25922 and 250mg/liter for P. aeruginosa PAO1, P. aeruginosa ATCC 27853, and S.
aureus ATCC 25923 (521). S. maltophilia SelTE02 selenium nanoparticles have demon-
strated MIC values in the clinical usage range (8 and 16mg/ml) against 4 of 7 P. aerugi-
nosa clinical strains (522). At a concentration of $100mg/ml, these nanoparticles inhib-
ited biofilm synthesis as high as 96%6 1.5% by tested P. aeruginosa strains and, with
tested Candida strains, inhibited biofilm synthesis 60% to 70% at a nanoparticle con-
centration of 50mg/ml (.92% inhibition at 500mg/ml). At the highest tested dose
(500mg/ml), the nanoparticles did not induce apoptosis of, induce cytokine release
from, or stimulate the production of reactive oxygen species in isolated human dendri-
tic cells or human primary fibroblast CCD1112Sk cells (522). Denaturation of these
nanoparticles following treatment with SDS and elevated temperature reduces their
antimicrobial and antibiofilm activity and results in increased MIC values for P. aerugi-
nosa, S. maltophilia, Achromobacter xylosoxidans, B. cenocepacia, S. aureus, Staphylococcus
haemolyticus, and Staphylococcus epidermidis (523). As these nanoparticles show promise
for treatment of infections in vivo, work is needed to fully elucidate the mode of action of
these nanoparticles. It would be interesting to use a model of infection and determine
whether host cell components interfere with the activities of the nanoparticles.

Antimicrobial activity of S. maltophilia can also be observed against different strains
of S. maltophilia. The bacteriocin maltocin P28, produced by S. maltophilia strain P28,
exhibits bactericidal activity against some S. maltophilia strains (524). Endolysin P28
(encoded within the maltocin P28 gene cluster) produced by S. maltophilia exhibits
lytic activity against genera that include Pseudomonas, Staphylococcus, Escherichia,
Bacillus, Klebsiella, Xanthomonas, Proteus, Salmonella, Listeria, Shigella, and Aeromonas
and demonstrates hydrolysis of peptidoglycan (525).

Biocontrol and Bioremediation

Additional insights about S. maltophilia can be seen in the areas of biocontrol and
bioremediation. Recent studies have investigated the use of environmental S. malto-
philia strains in such applications (199, 526–534).

In a study to investigate its potential as a biocontrol agent, endophyte isolate S.
maltophilia CR71 culture supernatant demonstrated weak antifungal activity against
gray mold phytopathogen Botrytis cinerea (526). On the other hand, S. maltophilia has
impeded another biocontrol agent (199). S. maltophilia recovered from the mucus and
macerate of Stomoxys calcitrans (stable fly) larvae has exhibited growth inhibition of
Beauveria bassiana sensu lato isolates CG 138, CG 228, and ESALQ 986 and subse-
quently hindered the use of this fungus for biocontrol of the parasitic S. calcitrans
(199). It is not clear which component of S. maltophilia is responsible for these antifun-
gal activities. The proteolytic activity of S. maltophilia (PD 4560) has demonstrated bio-
control of Ralstonia potato wilt disease through its antibacterial activity against the
soil-associated pathogen Ralstonia solanacearum in vitro and in vivo (527). An extracel-
lular protease of rhizosphere S. maltophilia N4 has exhibited biocidal activity toward
the nematodes, C. elegans and Panagrellus spp. (528).

Studies have identified S. maltophilia strains that are capable of degrading and trans-
forming antimicrobials and environmental contaminants that may be released into the
environment as wastes (529–532). S. maltophilia ZJB-14120 has been reported to degrade
abamectin (an antiparasitic and acaricide), emamectin, erythromycin, and spiramycin, indi-
cating a potential application for its use in the treatment of contaminated soils and water
(529). S. maltophilia has been reported to degrade carbendazim (a fungicide) in polluted
water, and the bacterium’s degradation kinetics have been reported (530, 531). S. malto-
philia strain DT1 has been reported to transform tetracycline (532). S. maltophilia strains
SJTH1 and SJTL3 have demonstrated the ability to degrade estrogen in various environ-
ments (533, 534).

Agriculture

The rhizospheric S. maltophilia strains have contributed to agriculture through their
association with plants. S. maltophilia is recognized as a plant endosymbiont (535, 536).
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Promotion of seed germination and plant growth by S. maltophilia R551-3 has been
reported for oilseed rape plants, and the rpf/DSF system contributes to the bacterium’s col-
onization of the plant (419). In a recent study, S. maltophilia SPB-9 was observed to
improve the growth of wheat plants, provided them with protection against salinity stress,
and increased their immune defenses against challenge with a fungal pathogen (537).
Halotolerant S. maltophilia BJ01 promoted growth of peanut plants under salinity stress
and nitrogen limiting conditions (538, 539). In summary, these studies demonstrate the
beneficial qualities of environmental S. maltophilia strains for agricultural crops.

FUTURE CHALLENGES

Continued surveillance and monitoring of the resistance of S. maltophilia to antimi-
crobials is warranted. Due to the observed increase in antibiotic resistance of S. malto-
philia over the decades, new strategies will need to be developed against this oppor-
tunistic pathogen. Several strategies have been discussed in this review, and there are
still others that remain to be explored.

Research has focused on gaining a more thorough understanding of the resistance
mechanisms used by S. maltophilia against antimicrobials. The interplay of genetic
mechanisms between the various strategies used by S. maltophilia in its defense
against antimicrobials and its ability to survive, colonize, form biofilms, and persist
needs to continue to be elucidated.

S. maltophilia has, at its disposal, a wide array of properties to deploy during coloni-
zation and infection. Advances are being made in our knowledge of the virulence fac-
tors used by this pathogen. Further work is needed in the area of host-pathogen inter-
actions to identify suitable strategies for prevention and treatment of S. maltophilia
infection.

The antimicrobial resistance of the biofilms of S. maltophilia is a significant feature
of this human opportunist. These biofilms are sensitive to nutrient conditions and
other environmental factors. Climate change may well alter how this pathogen colo-
nizes, survives, and forms biofilms within susceptible individuals and on abiotic surfa-
ces. The work under way to examine genetic heterogeneity among strains of S. malto-
philia is of particular interest as genogroups and lineages are characterized, raising the
possibility of antibiotic resistance reservoirs, in particular, host populations, and posing
questions about the possible adaptation of strains to their habitat.

Progress is being made toward our understanding of the differences in infections
by S. maltophilia alone and S. maltophilia-associated polymicrobial infections. It is im-
portant to develop standardized globally accepted protocols for antimicrobial suscep-
tibility testing of S. maltophilia biofilms. For the development of appropriate pharmaceu-
tical interventions/treatments, work needs to continue toward a better understanding of
the interactions between S. maltophilia and other microbes in biofilms, during different
types of infection, and subsequently with the susceptible host.

In the clinical setting, the maintenance of good hygiene practices such as hand-
washing, use of sterilized water, and the deliberate measured appropriate use of anti-
biotics are steps toward reducing the risk of S. maltophilia infection. In both the com-
munity and clinical environment, the monitoring of the water distribution systems and
appropriate disinfection of contaminated hardware and devices that come into contact
with humans can also help reduce transmission of S. maltophilia to susceptible
individuals.

S. maltophilia is an environmental biofilm-forming microbe and often multidrug re-
sistant. As mentioned earlier, biofilms can serve as niches for antimicrobial resistance
gene transfer between cells. It is reasonable that this drug resistance is maintained by
the S. maltophilia strains on entry into the susceptible debilitated host and, subse-
quently, the clinical setting. Currently, S. maltophilia infection of healthy individuals
remains infrequent.

In addition to its activities as an opportunistic pathogen, S. maltophilia has several
beneficial qualities that include as a plant endosymbiont to enhance plant growth, its
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secretion of compounds that inhibit other pathogens, and its degradation of antimi-
crobials and contaminants released into soils and water in the environment. The chal-
lenge is to control its ability to come in contact with, infect, and cause disease in
humans and other organisms.
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