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Abstract 
Lichens are symbiotic organisms formed by a fungus and one or more photosynthetic partners which are usually alga or 
cyanobacterium. Their diverse and scarcely studied metabolites facilitate adaptability to extreme living conditions. We 
investigated Evernia prunastri (L.) Ach., a widely distributed lichen, for its antimicrobial and antioxidant potential. E. 
prunastri was sequentially extracted by hexane (Hex), dichloromethane (DCM) and acetonitrile (ACN) that were screened 
for their antioxidant and antimicrobial (against Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli and 
Candida albicans) activities. The Hex extract possessed the highest antioxidant capacity (87 mg ascorbic acid/g extract) 
corresponding to the highest content of phenols (73 mg gallic acid/g extract). The DCM and Hex extracts were both active 
against S. aureus (MICs of 4 and 21 µg/ml, respectively) but were less active against Gram-negative bacteria and yeast. The 
ACN extract exhibited activity on both S. aureus (MIC 14 µg/ml) and C. albicans (MIC 38 µg/ml) and was therefore further 
fractionated by silica gel column chromatography. The active compound of the most potent fraction was subsequently char-
acterized by 1H and 13C-NMR spectroscopy and identified as evernic acid. Structural similarity analyses were performed 
between compounds from E. prunastri and known antibiotics from different classes. The structural similarity was not present. 
Antioxidant and antimicrobial activities of E. prunastri extracts originate from multiple chemical compounds; besides usnic 
acid, most notably evernic acid and derivatives thereof. Evernic acid and its derivatives represent possible candidates for a 
new class of antibiotics.
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Introduction

Antibiotic resistance is one of the biggest threats to global 
health and development today that is not counterbalanced by 
the development of new therapeutic agents: no new classes 
of antibiotics have been developed since 1987 (WHO 2020; 
Durand et al. 2019; Hutchings et al. 2019). New resistance 
mechanisms are emerging and spreading globally, threaten-
ing our ability to treat common infectious diseases (WHO 
2020). Considering that the most clinically relevant classes 
of antibiotics are derived from natural products (Hutchings 
et al. 2019), we identified lichens as a potential source of 
new antimicrobial compounds.

Lichens are organisms consisting of a fungus and a pho-
tosynthetic partner (cyanobacteria or algae) in a symbiotic 
relationship (Calcott et al. 2018). This unique symbiosis 
generates diverse and proprietary biochemical composi-
tions of lichen compounds which offer a vast potential for 
the discovery of novel classes of antimicrobial substances 
(Mitrovic et al. 2011; Zambare and Christopher 2012). For 
example, depsides, depsidones and usnic acid derivatives 
are so far uniquely found in lichens (Stocker-Wörgötter et al. 
2013).

In vitro studies suggest that lichen extracts may have a 
broad spectrum of activity against Gram-positive and -neg-
ative bacteria, fungi, and protozoan parasites (e.g., Schis-
tosoma mansoni, Leishmania spp., Toxoplasma gondii, 

Plasmodium berghei, Trypanosoma cruzi) as well as anti-
viral activity (Schmeda-Hirschmann et al. 2008; Fritis et al. 
2013; Lauinger et al. 2013; Luz et al. 2015; Ranković and 
Kosanić 2015; Si et al. 2016; Pastrana-Mena et al. 2016; 
Calcott et al. 2018; Araújo et al. 2019). Additionally to a 

Fig. 1   The lichen Evernia prunastri (L.) Ach.
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prominent antimicrobial activity, lichen compounds were 
shown to possess analgesic, anticoagulant, anti-inflamma-
tory, antipyretic, antiproliferative, wound healing, sun pro-
tecting (against UV irradiation) (Kohlhardt-Floehr et al. 
2010; Nguyen 2013), and high antioxidative properties 
(Crawford 2015; Ranković and Kosanić 2015).

The present study focuses on the evaluation of antimi-
crobial and antioxidative activities of the lichen Evernia 
prunastri (L.) Ach., genus Evernia.

Evernia prunastri is widely distributed across the North-
ern Hemisphere including Europe, North America and Asia. 
The thallus of E. prunastri (see Fig. 1) is on the upper side 
yellow-greenish, pale greenish, pale grey-green, with a cor-
tex, on the underside predominantly whitish and somewhat 
channelled, without cortex, shrub-like, with granular-mealy 
soralia on the upper side and the margins, almost never with 
apothecium (disks usually pale yellowish, pale greenish or 
beige), without cylindrical isidia, usually up to 5 cm long. 
Lobes are 1–3 mm wide (Wirth and Anderegg 1995). It 
grows on deciduous trees, especially oaks and other broad-
leaf trees, or shrubs (only occasionally on conifers in areas 
with high humidity) (Golubkova et al. 1996).

The medicinal use of E. prunastri was already known in 
ancient Greece where it was used as a decoction or ointment 
for the treatment of diseases of the “womb”, against fatigue 
and as an astringent (Crawford 2015). In the European early 
modern era, it was used to treat intestinal weakness, fever 
and pulmonary afflictions (Crawford 2015). However, the 
form of preparation is unknown.

So far over 70 different metabolites have been identified 
and characterized in E. prunastri (Joulain and Tabacchi 
2009). The most studied compounds are usnic and evernic 
acids, atranorin (Golubkova et al. 1996; Joulain and Tabac-
chi 2009; Staples et al. 2020), chloroatranorin (Avalos and 
Vicente 1987; Staples et al. 2020), atranol and chlorobutanol 
(Joulain and Tabacchi 2009; Uter et al. 2013; Mowitz et al. 
2013; Andersen et al. 2015).

Especially usnic acid is known for its broad-spectrum 
antimicrobial activity. It is described to possess antibacterial 
properties against many Gram-positive bacteria (e.g., Strepto-
coccus spp., Pneumococcus spp., Bacillus spp., Enterococcus 
spp., Staphylococcus aureus (including methicillin resistant), 
Listeria monocytogenes) (Garcia Rowe et al. 1999; Vijayaku-
mar et al. 2000; Behera et al. 2005; Wang et al. 2006), some 
Gram-negative bacteria (e.g., Proteus vulgaris, Salmonella 
typhimurium) (Yılmaz et al. 2004), and mycobacteria Myco-
bacterium tuberculosis (at MIC of 32 μg/ml) (Ingólfsdóttir 
2002). Usnic acid is also described as an antifungal (e.g. Can-
dida spp.) (Proksa et al. 1996; Pires et al. 2012; Nithyanand 
et al. 2015), antiprotozoal (e.g. Leishmania ssp., Trypanosoma 
cruzi, Trichomonas vaginalis, liver stage parasites of Plasmo-
dium berghei) (Fournet et al. 1997; De Carvalho et al. 2005; 
Lauinger et al. 2013; Pastrana-Mena et al. 2016; Derici et al. 

2018) and antiviral (e.g. human papilloma virus) (Piorkowski 
1957; Yamamoto et al. 1995; Sokolov et al. 2012) agent. The 
sodium salt of usnic acid had been used as an antibiotic (under 
trade name Binan and Usno) against Gram-positive bacteria 
and mycobacteria in the USSR since 1955 (Belodubrovskaya 
et al. 2004). Furthermore, usnic acid can be found in various 
oral dietary supplements including Lipokinetix® marketed 
as a weight loss agent but that is now withdrawn due to the 
fulminant hepatotoxicity and acute liver failure (Han et al. 
2004; Pramyothin et al. 2004; Neff et al. 2004; Arneborn 
et al. 2005; Hsu et al. 2005). Interestingly, there is a claim 
that in a clinical study to treat Mycobacterium tuberculosis, 
30 patients received usnic acid tablets (90 mg/day or 1.5 mg/
kg/day) for about 71 days, and in another study for bronchi-
tis, 91 patients were treated with 30 mg usnic acid tablets/
day. 10 days were found to be the appropriate therapy period 
(Luzina and Salakhutdinov 2018).

Evernic acid has been studied much less than usnic acid 
and is described to have antibacterial activity against, for 
example, Bacillus mycoides, B. subtilis, Klebsiella pneu-
moniae and Candida albicans at MIC 0.25 mg/ml, against 
Escherichia coli at MIC 0.5 mg/ml and against Aspergil-
lus flavus, A. fumigatus, Penicillium purpurescens and P. 
verrucosum at MIC 1 mg/ml (Kosanić et al., 2013) as well 
as against Pseudomonas aeruginosa quorum-sensing sys-
tems (Gökalsın and Sesal 2016). Some studies also suggest 
its effectiveness against S. aureus which could, however, 
not be confirmed in another study (Lauinger et al. 2013). 
Also, evernic acid is shown to have moderate activity on 
the Epstein-Barr virus activation inhibition (Yamamoto et al. 
1995). Atranorin, among other compounds, has also been 
described to possess antibacterial and antiprotozoal activity 
(Araújo et al. 2015; Studzinska-Sroka et al. 2017).

Some lichen compounds (e.g., usnic acid, evernic acid, 
atranorin, fumarprotocetraric acid, lecanoric acid, diffrac-
taic acid, lobaric acid, stictic acid, salazinic acid, physodic 
acid, psoromic acid, norstictic acid, protocetraric acid) are 
described to possess antioxidant properties (White et al. 
2014; Araújo et al. 2015; Fernández-Moriano et al. 2017; 
Studzinska-Sroka et al. 2017).

In the current work, we investigated the antimicrobial and 
antioxidative properties of different extracts from the lichen 
Evernia prunastri (L.) Ach. and subsequently performed a 
bioassay-guided fractionation of the most active extract in 
order to isolate the active antimicrobial compound(s).

Materials and methods

Materials

Lichen samples of Evernia prunastri (L.) Ach. were col-
lected in the Mari El Republic of the Russian Federation 
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in June 2012. The lichen was identified by lichenologist 
G.A. Bogdanov of the Bolshaya Kokshaga Natural Reserve. 
The voucher specimen of the lichen was deposited at the 
Department of Forestry and Ecology, Volga State University 
of Technology, Yoshkar-Ola, Russia.

Antimicrobial assays were conducted using four clinical 
strains of human pathogens: Escherichia coli ATCC 25922, 
Staphylococcus aureus ATCC 29213, Pseudomonas aerugi-
nosa ATCC 27853 and the yeast Candida albicans ATCC 
90028. Tryptic Soy Broth (TSB) for S. aureus, P. aeruginosa 
and C. albicans cultivation and Luria Broth medium (LB) 
(Merck KGaA, Darmstadt, Germany) for E. coli cultivation 
were used.

Sample preparation

Extraction

Air-dried powdered thalli of the lichens were extracted by 
sequential maceration with hexane, dichloromethane (DCM) 
and 60% acetonitrile in water (ACN) at room temperature 
for 24 h with each solvent. The extracts were filtered and 
then concentrated under reduced pressure in a rotary evapo-
rator Rotavapor R (Buchi Labortechnik AG, Flawil, Swit-
zerland). The dry extracts were stored at room temperature 
until usage.

Fractionation and isolation of chemical constituents

Chemical constituents of 60% ACN extract of E. prunastri 
were separated by silica gel column chromatography. The 
glass column with inner diameter of 40 mm was packed 
with silica gel 60 (Merck, Darmstadt, Germany). Four elu-
ents were used sequentially: (1) cyclohexane: acetone (7:4, 
v/v); (2) cyclohexane: acetone: methanol (7:4:1, v/v/v); (3) 
cyclohexane: acetone: methanol (7:4:2, v/v/v); (4) methanol.

In total 91 fractions with volume of 8 ml each at flow rate 
of 15 ml/min were collected. Based on TLC analysis frac-
tions containing identical compounds were combined. Batch 
85 and 86–89 were further separated by semi-preparative 
and preparative RP-HPLC.

TLC was carried out on Silica gel 60 F254 0.25 mm Alu-
minium plates (Merck, Darmstadt, Germany). Solvent sys-
tem cyclohexane: acetone: methanol (7:4:2, v/v/v) was used. 
Zones were visualized under UV light and by dipping into a 
vanillin-sulfuric acid reagent followed by heating at 120 °C.

Preparative and semi-preparative HPLC was conducted 
on Äkta Basic 10 HPLC system (Amersham Pharmacia Bio-
tech, Sweden) with C18 columns. The flow rate was set to 
10 and 4 ml/min and the UV-900 detector was operated at 
wavelengths of 215, 254 and 280 nm. The mobile phases 
consisted of 10% (A) and 60% (B) aqueous acetonitrile, both 

containing 0.05% trifluoroacetic acid. The gradient was set 
to 10–100% (B) over 21 min.

Characterization and identification of compounds

1H and 13C NMR spectra were recorded on a “Bruker 
AVANCE 400” of the Centre of Collective Facilities, FRC 
Kazan Scientific Centre, at operating frequencies of 400.13 
and 100.62 MHz, respectively. Chemical shifts were meas-
ured with reference to the residual protons of the solvent 
(CDCl3, 1H, 7.26 ppm, 13C, 77.16 ppm).

Antioxidant activity

Total antioxidant capacity

The total antioxidant activity of the studied extracts was 
evaluated by the phosphomolybdenum method as described 
by Manojlovich et al. (2012). Briefly, 0.2 ml of sample 
extract was combined with 3 ml of reagent solution (0.6 M 
sulfuric acid, 28 mM sodium phosphate and 4 mM ammo-
nium molybdate). The tubes containing the reaction solution 
were incubated at 95 °C for 90 min. Then the absorbance of 
the solution was measured at 695 nm using a spectropho-
tometer against blank after cooling to room temperature. 
Methanol (0.3 ml) was used as the blank. Ascorbic acid 
(AA) was used as a standard and the total antioxidant capac-
ity is expressed as milligrams of ascorbic acid per gram of 
the dry extract.

Total phenolic compounds

The total phenolic content was determined using the 
Folin–Ciocalteau (FC) method (Manojlovic et al. 2012). 
Shortly, extracts were diluted to the concentration of 1 mg/
ml and aliquots of 0.5 ml were mixed with 2.5 ml of FC 
reagent (previously diluted ten-fold with distilled water) and 
2 ml of NaHCO3 (7.5%). After 15 min of staying at 45 °C, 
the absorbance was measured at 765 nm on a spectropho-
tometer versus a blank sample. Total phenols were deter-
mined as gallic acid equivalents (mg GA/g extract), and the 
values are presented as means of triplicate analyses.

Antimicrobial activity

Broth microdilution assay to measure minimal inhibitory 
concentration (MIC)

The Minimal Inhibitory Concentration (MIC) was deter-
mined for the extracts and fractions by a broth microdilu-
tion method previously described (Wiegand et al. 2008). 
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Shortly, bacteria grown overnight in 3% TSB were rinsed 
with Tris buffer and diluted in refined LB to obtain a con-
centration of approximately 106 CFU per ml as determined 
by OD600. The fractions were dissolved in 5% DMSO and 
a concentration range from 0.1 to 500 µg/ml was tested in a 
96 well microplate. Ninety (90) µl of the bacterial suspen-
sion was administered into each well. The microplate was 
incubated at 37 °C for 6 h with E. coli, 8 h with P. aerugi-
nosa, 9 h with S. aureus, 12 h with C. albicans. The incu-
bation times for the different strains were chosen according 
to growth rate rendering approximate similarity in total 
mass, i.e., pellets of 2 mm in diameter (Strömstedt et al. 
2017). The effects of all extracts were compared with the 
effect of usnic acid (the most studied antibiotic compound 
in lichens). Effects of the 5% DMSO solvent alone was 
also examined.

Experiments were performed at least in three separate 
replicates and were found to be consistent within each 
dilution factor. The MIC was taken as the concentration 
at which no visible pellet was observed.

Computing the activities of the compounds from E. 
prunastri

Similarity/activity Cliffs analysis

Compounds of the E. prunastri extract (Staples et  al. 
2020) were structurally compared with main drugs of dif-
ferent antibiotics classes. The comparative study and visu-
alization were performed using the DataWarrior software 
(5.2.1) (Sander et al. 2015). The Analyse Similarity/Activ-
ity Cliffs tool was applied to calculate and plot similarity 
(Guha and Van Drie 2008). Additionally, to visualize the 
chemical space of molecules, t-SNE (Stochastic Neighbour 
Embedding) visualization was performed (Van Der Maaten 
2014; Karlov et al. 2019). This was followed by a synchro-
nization of the similarity plot with t-SNE.

Similarity score of usnic acid and evernic acid in com-
parison to the antibiotics was calculated in DataWarrior 
software based on the comparison of descriptors—FragFp 
(Sander et al. 2015).

Prediction of toxicity risks

Prediction of four toxicity risks (Mutagenic, Tumorigenic, 
Reproductive Effective and Irritant) were estimated in the 
DataWarrior software (5.2.1) using the ‘Calculate proper-
ties’ tool (Sander et al. 2015). The analyses are based on 
fragment-based toxicity estimations compiled in the Registry 
of Toxic Effect of Chemical Substances database and the 
World Drug Index database (von Korff and Sander 2006).

Statistical analyses

Statistical analyses were performed using Excel and Ori-
gin software packages. To determine the statistical signifi-
cance of the antioxidant activity student’s t-test was utilized. 
All values are expressed as mean ± SD of three parallel 
measurements.

Results

Preparation of extracts and fractionation

The hexane, DCM and ACN macerations of the Evernia pru-
nastri lichen yielded 137 mg (2.73% of sample dry weight), 
190 mg (3.80% of sample dry weight) and 311 mg (6.22% 
of sample dry weight) of extracts, respectively.

The 60% ACN fraction was further fractionated to inves-
tigate subfractions and isolate and elucidate single active 
compounds. In total 91 fractions of the ACN extract of E. 
prunastri were collected. Based on the TLC analyses, frac-
tions containing identical compounds were combined which 
resulted in 15 different solutions that were further used for 
the MIC assays.

Table 1   Antimicrobial activity 
of different extracts of the lichen 
E. prunastri and usnic acid

‡ Data expressed as a mean ± SD (n = 3 for each experiment)
*p < 0.01 vs. usnic acid

Samples Minimum inhibitory concentration (MIC), µg/ml‡

Staphylococcus 
aureus

Pseudomonas 
aeruginosa

Escherichia coli Candida albicans

E. prunastri (Hexane) 21 ± 9(0.9) 150 ± 41(0.8)  > 500 150 ± 50(0.2)

E. prunastri
(DCM)

4 ± 1* 167 ± 33(0.5) 500 ± 1* 150 ± 50(0.2)

E. prunastri
(60% ACN)

14 ± 3(0.1) 133 ± 33(1.0) 250 ± 1(0.3) 38 ± 13*

Usnic acid 21 ± 9 133 ± 33 225 ± 25 100 ± 1
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Antimicrobial activity

The inhibitory activity of different extracts of E. prunastri 
as well as of the fractions of the ACN extract was evaluated 
against clinical strains of four human pathogens, i.e., Gram-
positive bacterium Staphylococcus aureus, Gram-negative 
bacteria Pseudomonas aeruginosa and Escherichia coli, and 
the fungus Candida albicans. Usnic acid, the lichen metabo-
lite known for its antimicrobial properties, was used as a ref-
erence. The obtained results are presented in Tables 1 and 2. 

Usnic acid was active against S. aureus, with a minimum 
inhibitory concentration (MIC) of 21 µg/ml. A high and sig-
nificant effect was found for the E. prunastri DCM extract 
with a MIC of 4 µg/ml. For the E. prunastri Hexane extract, 
the ability to inhibit S. aureus was similar to the one of usnic 
acid. The E. prunastri ACN extract showed a MIC of 14 μg/
ml, a slightly higher potency than usnic acid.

Against P. aeruginosa, the effect of usnic acid was com-
parable to the E. prunastri extracts and the measured MIC 
value of 133 µg/ml. Our estimated MIC values for the E. 
prunastri ACN, Hexane and DCM extracts (MIC values of 
133, 150 and 167 µg/ml, respectively) were in the range with 
the one of usnic acid.

Against the Gram-negative bacteria E. coli, usnic acid 
was not effective (MIC value of 225 µg/ml). The MIC values 
of the E. prunastri ACN extract (250 µg/ml) was comparable 
to the one of usnic acid. The other two E. prunastri extracts 
showed even higher MIC values (Table 1).

Against C. albicans, the highest activity was seen with 
the E. prunastri ACN extract with a MIC value of 38 µg/

ml. The effect of the extract is significantly higher than the 
effect of usnic acid with a MIC of 100 µg/ml. The E. pru-
nastri Hexane and DCM extracts showed a low activity with 
a MIC of 150 µg/ml.

The E. prunastri ACN extract showed antimicrobial 
activity against all tested microorganisms and was there-
fore fractionated using column chromatography and HPLC 
into 15 fractions (Supplementary Figure S1) as described 
in the method section. The individual fractions were sub-
sequently tested for their antimicrobial activity and the 
resulting MIC values are shown in Table 2.

Fractions V and VI showed high activities against all 
tested microorganisms. Comparably high activities were 
also seen for the fractions VII and VIII, but only against 
S. aureus and C. albicans. A reason for such similarity 
in antimicrobial activity may be explained by the cross-
presence of one or more compound(s) in the neighbouring 
fractions.

Fraction VIII showed the highest activity against S. 
aureus with a MIC value of 2 μg/ml. Fraction VI had a 
slightly lower effect with a MIC of 4 μg/ml. This MIC is, 
however, still lower than the one of usnic acid (21 μg/ml) 
measured by the same method.

The activities of these fractions against Gram-negative 
bacteria are quite similar. The MIC values of fractions V 
and VI against P. aeruginosa were similar and significantly 
lower than the MIC value of usnic acid (p-value = 0.02). The 
activity of fraction V against E. coli is similar to the activity 
of this fraction against P. aeruginosa. In contrast, fraction 
VI is less effective against E. coli.

Table 2   Minimum inhibitory 
concentration (MIC) of 
fractions (see Supplementary 
Figure S1) obtained from 
acetonitrile: water (3:2) extract 
of Evernia prunastri 

*Fraction after #IX (with mass 13 mg) was further separated using RP-HPLC into 4 more fractions
Numbers in bold indicate susceptibility or intermediate antibacterial activity

Fraction Yield (mg) MIC, µg/ml

Staphylococcus 
aureus

Pseudomonas 
aeruginosa

Escherichia coli Candida albicans

I 5 > 500 > 500 250 500
II 3.4 > 500 > 500 > 500 > 500
III 12.4 62.5 > 500 > 500 > 500
IV 10.7 > 500 > 500 500 > 500
V 10.6 1.95 31.25 31.25 62.5
VI 31.8 0.98 31.25 125 62.5
VII 31.1 1.95 > 500 > 500 31.25
VIII 44.9 0.49 > 500 > 500 62.5
IX 12.6 3.91 > 500 > 500 125
X 13.0* > 500 125 500 > 500
XI 500 125 500 > 500
XII 500 500 > 500 > 500
XIII 125 500 > 500 > 500
XIV 11.8 15.63 > 500 > 500 500
XV 224.6 125 125 500 500
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The effects of the fractions V, VI and VIII against C. albi-
cans are the same and the effect of fraction VII is insignifi-
cantly higher (p-value = 0.34). All these fractions are more 
effective than usnic acid (p-value < 0.05).

In general, the antimicrobial activity of the fractions is 
higher than the one of the ACN extract itself.

Since the fractions V and VI inhibited the growth of all 
tested microorganisms, and, besides that, fraction VI showed 
a higher effect against S. aureus, it was chosen for further 
characterisation and NMR analysis.

Identification of chemical compounds

Based on 1H and 13C NMR data, the primary compound of 
fraction VI was identified as evernic acid. Chemical shifts 
(δ, ppm) and coupling constants (J, Hz) for the extract and 
evernic acid standard are as follow:

Extract

1H NMR (CDCl3), δ, ppm (J, Hz): 2.59 s (3H, 8CH3), 2.76 s 
(3H, 8´CH3), 3.89 s (3H, OCH3), 6.42 m (2H, 3CH, 5CH), 
6.57 d (1H, 5′CH3, J 2.0), 6.69 d (1H, 3′CH3, J 2.0), 11.08 s 
(3H, 2COH, 2′COH, 7′COH).

13C NMR (CDCl3), δ, ppm: 24.43, (8C), 24.73 (8′C), 
55.57 (OCH3), 99.04 (3C), 104.38 (1C), 109.09 (1′C), 
109.18 (3′C), 112.11 (5C), 117.09 (5′C), 143.59 (6C), 
144.96 (6′C), 155.08 (4′C), 160.09 (2′C), 165.04 (2C), 
165.47 (4C), 166.67 (7C), 169.70 (7´C).

Evernic acid

1H NMR (CDCl3), δ, ppm (J, Hz): 2.58 s (3H, 8CH3), 2.70 s 
(3H, 8′CH3), 3.88 s (3H, OCH3), 6.41 m (2H, 3CH, 5CH), 
6.56 d (1H, 5′CH3, J 2.0), 6.68 d (1H, 3′CH3, J 2.0), 11.04 s 
(2H, 2COH, 2´COH), 11.41 s (1H, 7′COH).

13C NMR (CDCl3), δ, ppm: 24.24 (8C), 25.83 (8′C), 
57.42 (OCH3), 98.78 (3C), 105.69 (1C), 109.06 (1′C), 
109.13 (3′C), 114.58 (5C), 119.05 (5′C), 143.22 (6C), 
144.75 (6′C), 155.08 (4′C), 160.24 (2′C), 164.00 (2C), 
165.44 (4C), 166.66 (7C), 169.71 (7′C).

The numbering of carbons is standard for depsides and 
depsidones, C-7 and C-8 refer to the carbons of the carbox-
ylic acid and the methyl group, respectively (Narui et al. 
1998). 1H–13C HMBC and 1H–1H COSY correlations were 
reasonable for the structure (Fig. 2).

The determined molecular formula and the NMR data 
analysis were compared to published literature data which 
confirms that the investigated compound is evernic acid 
((2-hydroxy-4-[(2-hydroxy-4-methoxy-6-methylbenzoyl)
oxy]-6-methylbenzoate) (Huneck and Yoshimura 1996; 
Narui et al. 1998). To further verify this, the NMR analysis 

of pure evernic acid was performed and its NMR spectra 
were compared with the NMR spectra of the ACN extract 
fraction VI. The spectra were similar enough to identify the 
primary active compound in the extract as evernic acid.

Hypothetical mechanism of antimicrobial action

To elucidate further the potential mode of action of ever-
nic acid, we analysed the structural similarity to the known 
antibiotic classes and its similarity to other lichen com-
pounds. Interestingly evernic acid is structurally different 
from almost all main classes of antibiotics, with a slight 
similarity to folic acid synthesis inhibitors (mostly due to 
the ring system) (Fig. 3). However, evernic acid has a simi-
larity with other lichen compounds as shown in Fig. 3. It is 
highly similar to lecanoric acid, atranorin and chloratronin, 
moderately similar to physodic acid and salacinic acid and 
less similar to usnic acid.

Usnic acid has more similarity to known antibiotics than 
evernic acid. The highest similarity is with a cell wall syn-
thesis inhibitor — vancomycin (FragFp = 0.54) and RNA 
synthesis inhibitor — rifampin (FragFp = 0.52) (Supplemen-
tary Figure S2).

Evernic acid is moderately similar to folic acid synthesis 
inhibitors as sulfamethoxazole (FragFp = 0.38) and trimetho-
prim (FragFp = 0.34) (Supplementary Figure S2).

Both evernic acid and usnic acid showed quite identical 
similarity score to fluoroquinolones. Nalidixic acid and nor-
floxacin are the most similar compounds to evernic acid with 
FragFps of 0.34 and 0.33, respectively. Usnic acid possesses 
the highest similarity with moxifloxacin (FragFp = 0.51) and 
gatifloxacin (FragFp = 0.50).

Possible toxicity of the E. prunastri extracts

The toxicity risks of the described compounds from E. 
prunastri were predicted using the DataWarrior software 
(von Korff and Sander 2006; Sander et al. 2015). Results 
are shown in Table 3. According to the prediction, none 

Fig. 2   Structure and key 1H–13C HMBC (A) and 1H–1H COSY (B) 
correlations of the major compound from the fraction VI
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of the depsides associated with a toxicity risk. However, 
depsidones and usnic acid present toxicity risks, either 
as an irritant — physodic acid or through reproductive 
effects — salacinic acid and usnic acid (Table 3). None of 
the compounds was predicted to carry mutagenic or tumo-
rigenic risks.

Antioxidative properties of the E. prunastri extracts

In this study, three lichen E. prunastri extracts (Hex-
ane, DCM, ACN) were investigated for their antioxidant 
potential.

The antioxidant activity and the total phenol content of 
the different E. prunastri extracts in comparison to usnic 
acid are presented in Fig. 4. Usnic acid was used as a refer-
ence as it is a well-known lichen compound and is present 
in E. prunastri.

Usnic acid had shown the highest antioxidant activ-
ity (Fig. 4). Among the E. prunastri extracts, the hexane 
extract showed the highest antioxidant activity equivalent 

Fig. 3   Similarity Chart of evernic acid vs. known classes of antibiot-
ics with application t-SNE visualization approach. The colours from 
red to green indicate the range from no structural similarity to 100% 
similarity, respectively (Van Der Maaten 2014). The sample disposi-

tion depends on the similarity and is distributed according to sam-
pling (Karlov et al. 2019). Structurally similar to evernic acid are the 
lichen compounds lecanoric acid, atranorin, and chloroatranorin (in 
green) as well as physodic acid, and salacinic acid (light green)

Table 3   Predicted toxicity risks for E. prunastri constituents based 
on fragment-based toxicity estimation compilated from Registry of 
Toxic Effect of Chemical Substances database and World Drug Index 
database (von Korff and Sander 2006)

Name Mutagenic Tumorigenic Reproduc-
tive effective

Irritant

Physodic acid None None None High
Chloratranorin None None None None
Salacinic acid None None High None
Atranorin None None None None
Usnic acid None None High None
Evernic acid None None None None
Lecanoric acid None None None None

Fig. 4   Antioxidant activity and total phenolic content of the E. pru-
nastri extracts and usnic acid: total phenols, equivalents of gallic 
acid/g extract; antioxidant activity, mg ascorbic acid/g extract. Data 
are expressed as a mean ± SD (n = 3 for each experiment)
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to 87 mg ascorbic acid per 1 g of extract (p < 0.01 and 
p = 0.03 vs. DCM and ACN extracts). The ACN and DCM 
extracts showed significantly lower activity equivalent to 67 
and 59 mg ascorbic acid per 1 g of extract, respectively. 
These effects largely correspond with the total phenolic con-
tent: 74, 34 and 23 mg equivalent of gallic acid per 1 g of 
extract for Hexane, DCM and ACN extracts, respectively 
(p = 0.04 and p < 0.01 Hexane vs. DCM and ACN extracts). 
The difference between the DCM extract and the ACN 
extract is not significant (p = 0.09 for antioxidant activity 
and p = 0.21 for total phenols content). The ability of the 
extracts to deoxidize correlates directly to their total content 
of phenols (r = 0.82).

Discussion

Usnic acid has been reported to be effective against anti-
biotic-resistant Gram-positive bacteria, e.g. vancomycin-
resistant enterococci and methicillin-resistant S. aureus 
(MRSA) (Araújo et al. 2015). Interestingly, the inhibitory 
activity of usnic acid was lower against antibiotic suscep-
tible strains of S. aureus and higher against MRSA strains 
(Tozatti et al. 2016; Victor et al. 2018; Sinha et al. 2019). 
The MIC values of usnic acid against different clinical iso-
lates of S. aureus vary between 8 and 50 µg/ml (Gupta et al. 
2012; Pompilio et al. 2013, 2016; Maciąg-Dorszyńska et al. 
2014; Tozatti et al. 2016). In general, our results are cor-
responding to published ones.

There is less information about the antimicrobial activity 
of E. prunastri. An acetone extract from E. prunastri has 
been published to be active against S. aureus at the con-
centration range of 0.078–0.5 mg/ml and a MRSA clinical 
isolate at the concentration of 0.039 mg/ml (Tapalsky et al. 
2017; Aoussar et al. 2020). A methanol extract was active 
at the concentration of 0.156 mg/ml (Mitrović et al. 2011). 
Results obtained in this research demonstrated much higher 
activity. In the case of E. prunastri Hexane extract, the effect 
on S. aureus was similar to the one of usnic acid. This broad 
MIC range could be due to different experiment setups, such 
as the number of bacteria used since the higher MIC was 
observed when a higher number of colony-forming units 
(CFU) was utilizing than for the lower MIC. The quantity 
of seeded microorganisms has been argued to thus effect 
microdilution MIC outcome (Strömstedt et al. 2017).

Against P. aeruginosa, usnic acid demonstrated a low 
antibacterial activity but lay within the broad range of ear-
lier reported for usnic acid MIC values of 5.2 and 256 µg/
ml (Francolini et al. 2004; Victor et al. 2018). The 50-fold 
higher MIC was observed when a 50-times higher number of 
colony-forming units (CFU) was utilizing than for the lower 
MIC. Different extracts from E. prunastri have been pub-
lished to be active against P. aeruginosa at concentrations 

of 2.5–25 mg/ml (Mitrović et al. 2011; Aoussar et al. 2020). 
Another publication regarding to acetone extract from E. 
prunastri described no effect on P. aeruginosa at a concen-
tration below 500 µg/ml (Tapalsky et al. 2017). In our case 
activity of the extracts against P. aeruginosa was comparable 
to the one of usnic acid, but higher than the published one.

Against another Gram-negative bacteria E. coli, usnic 
acid is reported to be effective with MIC values ranging 
from 5.2 to 20 µg/ml (Maciąg-Dorszyńska et al. 2014; 
Victor et al. 2018) for the different sensitive strains and 
more than 100 µg/ml for resistant strains of E. coli (Vic-
tor et al. 2018). Again, the difference in results is likely 
due to the different concentrations of bacteria used. In the 
current study, 106 CFU/ml was used whereas Victor et al. 
used a concentration of 104 CFU/ml. Comparing to those, 
our investigations showed usnic acid as less effective. The 
activity of the extracts was comparable to one of usnic 
acid and corresponding to the published results (Tapalsky 
et al. 2017).

The activity of usnic acid against C. albicans was much 
lower than a reported one with the MIC of 75 µg/ml (Nithy-
anand et al. 2015). In contrast to this, the extracts showed 
higher activity than a published one (Tapalsky et al. 2017), 
but with MIC in the range of usnic acid. The only difference 
was found for the E. prunastri ACN, which was significantly 
more active than usnic acid.

Additionally, having a phenolic nature, usnic acid pos-
sesses also antioxidant capacities (Araújo et al. 2015). It is 
known, that phenols have a high antioxidant capacity, mostly 
due to their reduction ability (Garcia-Mateos 2017). They 
are able to capture and neutralize free radicals and reactive 
oxygen species (Wei et al. 2012). Extracts from E. prunastri, 
in the turn, showed moderate antioxidant activity compar-
ing to usnic acid and a lower number of phenols. Obtained 
results are corresponding to the published ones (Mitrović 
et al. 2011; Hawrył et al. 2020; Aoussar et al. 2020).

We demonstrated that E. prunastri extracts possess anti-
oxidant and antimicrobial activities. Difference in activi-
ties are based on different compound compositions of the 
extracts and it was identified for the first time in this study 
that the hexane extract yields the highest antioxidative activ-
ity whereas the ACN extract possesses the highest antimi-
crobial activity against all tested microorganisms. The MIC 
values of the ACN extract were comparable to usnic acid, 
i.e., 21, 133, 225 and 100 µg/ml against S. aureus, P. aerugi-
nosa, E. coli and C. albicans, respectively.

The bioassay-guided fractionation of E. prunastri ACN 
extract showed that some fractions obtained had higher 
activity. Especially, fractions V and VII showed activities 
comparable to published data on usnic acid (Gupta et al. 
2012; Pompilio et al. 2013, 2016; Maciąg-Dorszyńska et al. 
2014; Tozatti et al. 2016).
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To put obtained results into perspective, the Clinical and 
Laboratory Standards Institute (CLSI) recommends MIC 
values from 0.12 to 32 μg/ml as effective concentrations 
against S. aureus for conventional antibiotics depending on 
the class (CLSI 2018). The European Committee on Anti-
microbial Susceptibility Testing (EUCAST) describes the 
effective concentrations against S. aureus in the MIC range 
from 0.03 to 16 µg/ml for different classes of antibiotics 
(EUCAST 2019). Thus, in the case of our study S. aureus 
may be considered susceptible to fractions V to X and XIV.

The effect of those fractions on Gram-negative bacteria 
P. aeruginosa and E. coli was low. Both bacteria can be con-
sidered resistant to these fractions according to the CLSI and 
EUCAST recommendations (CLSI 2018; EUCAST 2019).

Against C. albicans, fractions V to VIII showed effect 
better than usnic acid, and, despite this, according to the 
EUCAST, C. albicans is non-susceptible to the tested frac-
tions (EUCAST 2020).

Fraction VI showed the highest inhibitory effects against 
all tested microorganisms in concentrations usually observed 
for intermediately potent antibiotics (4–25 µg/ml). In this 
fraction, the most abundant compound was identified as 
evernic acid.

The chemical characterization of the total extract of E. 
prunastri earlier (Staples et al. 2020) showed that usnic 
acid, lecanoric acid and chloroatranorin were among the 
compounds produced in addition to evernic acid at high 
concentrations, with evernic acid being the most abundant 
compound (Staples et al. 2020). Besides chloroatranorin 
also atranorin was present but in smaller amounts. It may be 
interesting to note that authors, when comparing E. prunas-
tri lichens from three different geographical regions, could 
detect two compounds — the depsidones salazinic acid and 
physodic acid — only in E. prunastri collected in Mari-El, 
Russian Federation that is used in the current study.

Data on mechanisms of the antimicrobial action of ever-
nic acid are not available. Only data on antibiofilm and anti-
biofilm maturation activity of an E. prunastri extract against 
C. albicans (Millot et al. 2017), as well as inhibiting quorum 
sensing activity against P. aeruginosa (Gökalsın and Sesal 
2016) has been identified. The mechanism of action against 
P. aeruginosa quorum sensing is based on the inhibition of 
lasB and rhlA genes expression (Gökalsın and Sesal 2016).

Staples et al. demonstrated earlier that evernic acid is the 
main constituent of E. prunastri (Staples et al. 2020). Con-
sidering our findings and the ones from the biofilm experi-
ments (Gökalsın and Sesal 2016) it can be hypothesized that 
evernic acid is one of the main constituents responsible for 
the inhibition of the biofilm formation (especially for P. aer-
uginosa and C. albicans).

However, some mechanisms of antimicrobial activity 
for usnic acid are described. Against Gram-positive bacte-
ria S. aureus, usnic acid can act as a membrane-damaging 

agent (Gupta et al. 2012). Moreover, investigations on 
Bacillus subtilis in models of artificial planar bilayer lipid 
membranes and rat liver mitochondria have demonstrated 
that a potential mechanism of the antimicrobial capacities 
of usnic acid can be related to its protonophoric activ-
ity (Antonenko et al. 2019). Being lipophilic, usnic acid 
permeates the bilayer membrane, causing proton leak-
age, and disrupts the bacterial membrane (Lauinger et al. 
2013; Antonenko et al. 2019). Evernic acid, also being 
lipophilic (ChEMBL, https://​www.​ebi.​ac.​uk/​chembl/) with 
a slight structural similarity to usnic acid, may — hypo-
thetically — also be able to compromise bacterial cell 
membranes and thereby exert antimicrobial activity.

The influence of usnic acid on a prooxidant-antioxi-
dant balance has been described as a mechanism of the 
anti-candida effect (Peralta et al. 2017). The antioxidant 
properties of the extract containing evernic acid are sig-
nificantly lower compared to usnic acid. Thus, the anti-
candida mechanism of evernic acid is not necessarily 
related to its antioxidant properties.

Another possible mechanism of usnic acid activity 
against Mycobacterium tuberculosis, E. coli, S. aureus is 
the binding to allosteric sites on the FabI (enoyl reduc-
tase enzyme) protein surface, which affects enzyme activ-
ity (Lauinger et al. 2013). Moreover, this mechanism is 
described for the activity of usnic acid against the blood-
stage Plasmodium falciparum as well as the liver stage P. 
berghei (Lauinger et al. 2013). At the same time, evernic 
acid inhibited FabI and FabZ of Plasmodium falciparum 
and FabI of E. coli and S. aureus (Lauinger et al. 2013). 
Additionally, usnic acid shows activity against other para-
sites of Leishmania spp. by inducing apoptosis (Derici 
et al. 2018).

Atranorin has been described to be active against Gram-
negative bacteria which is uncommon for other known lichen 
compounds (Studzinska-Sroka et al. 2017). The presence of 
atranorin or (and) structural similarity of evernic acid could 
thus explain the activity against Gram-negative bacteria 
observed in our experiments.

Also, evernic acid is described to downregulate the 
expression of the genes lasB (elastase) and rhlA (rham-
nolipid production) which are virulence factors in P. aer-
uginosa (Gökalsın and Sesal 2016).

The scaffold of evernic acid is phenyl salicylate (ZINC, 
http://​zinc.​docki​ng.​org/). Salicylates have been shown to 
possess antibiofilm and anti-metabolic effects on bacteria 
(Damman 2013).

Despite usnic acid has been shown to be hepatotoxic (Guo 
et al. 2008; Luzina and Salakhutdinov 2018) the toxicity of 
other lichen compounds have been barely investigated to 
date. With the support of in silico modelling, usnic acid and 
depsidones were predicted to have toxic risks, corresponding 

https://www.ebi.ac.uk/chembl/
http://zinc.docking.org/
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to the publications. On the other hand, depsides (a class of 
evernic acid) were not associated with the toxicity risks.

It is interesting to note, that a whole methanol E. pru-
nastri extract has been screened for its antigenotoxic capac-
ity against several mutagens such as N-methyl-N′-nitro-N-
nitrosoguanidine, acridin and aflatoxin using WP2, Ames 
and sister chromatid exchange test systems (Alpsoy et al. 
2015). The data obtained have clearly shown that the extract 
has significant antigenotoxic effects which are thought to 
be partly due to the antioxidant activities and antioxidant 
inducing capability (Alpsoy et al. 2015).

Numbers of research describe lichen compounds as 
potential antibiotics (especially against Gram-positive 
bacteria) (Shrestha and Clair 2013; Francolini et al. 2019; 
Sepahvand et al. 2021). To date, the lichen compounds 
were not ascribed to any antibiotic class. A structural simi-
larity comparison of evernic acid revealed no structural 
similarity with such antibiotic classes as Cell wall synthe-
sis inhibitors and Protein synthesis inhibitors. Evernic acid 
and other depsides have structures slightly similar to Folic 
acid synthesis inhibitors and DNA synthesis inhibitors.

Folate (folic acid) is a designation for cofactors that 
consist of three moieties: para-aminobenzoic acid 
(PABA), pterin and glutamates (Bertacine Dias et  al. 
2018). Tetrahydrofolate (a pterin ring) has an essential role 
in the biosynthesis of purines, thymidylate, pantothenate, 
RNA and amino acids (Bertacine Dias et al. 2018). Among 
folic acid synthesis inhibitors, sulfamethoxazole and tri-
methoprim were the most similar to evernic acid com-
pounds. Sulfamethoxazole being similar to PABA compete 
with the latter during synthesis of dihydrofolate (Kemnic 
and Coleman 2021). Trimethoprim is also a dihydrofolate 
inhibitor. Alternatively to sulfamethoxazole, it halts the 
production of tetrahydrofolate, which is necessary for the 
biosynthesis of bacterial nucleic acids and proteins (Kem-
nic and Coleman 2021).

DNA synthesis inhibitors (quinolones) block DNA rep-
lication apparatus via the binding to the complexes of DNA 
with DNA topoisomerase IV and DNA gyrase (Hooper 
and Jacoby 2016). The DNA topoisomerase IV and DNA 
gyrase catalyse double-strand break followed by duplication 
of the strands (Hooper and Jacoby 2016). Fluoroquinolo-
nes are quinolones substituted with fluorine. Nalidixic acid 
and norfloxacin are fluoroquinolones are the most similar to 
evernic acid. Moxifloxacin and gatifloxacin were found the 
most identical to usnic acid. All described antibiotics act as 
DNA gyrase inhibitors (Mohammed et al. 2019).

This was also the case for other metabolites of E. pru-
nastri as atranorin, chloratranorin, lecanoric acid and the 
two depsidones salazinic acid and physodic acid. These 
compounds are structurally similar to evernic acid and are 
therefore possible candidates for antibiotics representing a 
novel class of substances with antimicrobial activity.
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