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Abstract: Given the severe side effects of the treatments and poor survival, prognostic and predictive biomarkers 
to guide management of pancreatic cancer are in critical need. We hypothesized that cell proliferation-related path-
ways are associated with drug response and survival in pancreatic cancer. Six Hallmark cell proliferation-related 
gene sets (G2M Checkpoint, E2F Targets, MYC Targets V1 and V2, Mitotic Spindle, p53 pathway) defined by MSigDB 
in gene set variant analysis were evaluated in 3 independent cohorts- TCGA-PAAD (n = 176), GSE57495 (n = 63), 
and GSE62452 (n = 69). G2M and E2F, as well as Mitotic and p53 pathway correlated highly with other gene sets. 
All pathways were significantly correlated with MKI67 expression and its proliferation score, but none with cytolytic 
activity and the rate of pathologically complete resection (R0). All pathways were significantly associated with high 
alteration and expression of KRAS gene except for MYC v1. G2M, E2F, and p53 pathway were significantly associ-
ated with high alteration of TP53 gene. Interestingly, different pathways correlated with the AUC of different cancer 
therapeutics, such as Gemcitabine (Mitotic: r = 0.706 [P = 0.01]), Paclitaxel (MYC v2: r = -0.636 [P < 0.05]), Apatinib 
(Mitotic: r = -0.556 [P = 0.03]), Palbociclib (E2F: r = 0.675 [P < 0.01]), and Sorafenib (G2M: r = -0.593 [P = 0.03]). 
Among all six pathways, only G2M was consistently associated with worse patient survival in all three cohorts. In 
conclusion, each cell proliferation-related pathway was predictive of a unique agent, and the G2M score alone pre-
dicts survival in pancreatic cancer.
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Introduction

Pancreatic cancer is one of the deadliest malig-
nancies known, with a poor five-year survival 
rate of less than 5% in the United States [1]. 
Despite advances in imaging technologies and 
surgical techniques, the majority of patients 
present with metastatic disease burden, with 
only 20% of patients presenting with resect-
able disease. Surgical resection remains the 
mainstay of curative treatment for pancreatic 

cancer. Advancements in patient selection for 
surgery has allowed for improved median sur-
vival in patients [3]. For example, the identifica-
tion of borderline resectability status has 
allowed surgeons to choose the appropriate 
candidates for an attempt at complete curative 
resection with microscopic tumor clearance 
(R0). In addition, pancreatic cancer resections 
that result in positive margins (R1 and R2 
[R1/2]) are thought to be influenced by aggres-
sive tumor biology and invasiveness of cancer. 
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These factors appear as influential, if not more, 
than surgical technique alone in the correlation 
to survival [2-4]. 

Understanding the aberrant cell proliferation of 
pancreas cancer has been heavily studied to 
identify targeted therapies to cease cancer  
progression and improve clinical outcomes. 
Gemcitabine, a cell cycle-specific inhibitor, has 
been the most common first-line chemothe- 
rapy regimen for patients with metastatic pan-
creatic cancer [5]. CDK inhibitors, such as 
Palbociclib and Dinaciclib, that target cell prolif-
eration pathways have also been studied as 
targeted therapies [6, 7]. Treatment with com-
bined CDK4/6 and MEK inhibitors has been 
used for their inhibitory effect on cell cycle pro-
gression while also modulating immune fea-
tures of pancreatic cancer cells [8].

Unfortunately, the proliferation pathway in pan-
creatic cancer is hard to define. Adding to its 
complexity, the high amount of genomic hetero-
geneity of pancreas cancer and its tumor micro-
environment have been associated with resis-
tance to therapy [9, 10]. Thus far, no reliable 
molecular targets have been identified that can 
predict or influence the success of treatment. 
To this end, there is an urgent need to identify 
diagnostic, prognostic, and predictive biomark-
ers, as well as to develop more effective and 
less toxic therapeutic interventions.

The gene set variation analysis (GSVA) is a com-
putational model that can be used to examine 
gene expression within a pathway rather than a 
single gene. Utilization of a pathway or gene-set 
approach more accurately considers gene coor-
dination, increases model simplicity, and can 
increase the applicability of prediction models. 
We had previously reported the utility of a path-
way score which was calculated by GSVA with 
Hallmark gene sets in several cancers [11-13], 
including pancreatic cancer. A high G2M path-
way score in pancreatic cancer showed a link  
to KRAS or TP53 alteration, which are known  
to be frequently altered, and are associated  
with poor prognosis [14]. Given this back-
ground, we hypothesized in this study that the 
other proliferation-related gene sets are also 
associated with worse survival and have unique 
characteristics in pancreatic cancer patients. 
We analyzed the pathways associated with 
characteristics in pancreatic cancer patients 
and determined which pathway score had the 

most prognostic value in patients with pancre-
atic cancer.

Materials and methods

Pancreatic cancer cohorts and their data

In the study, clinical and mRNA expression  
data of 176 patients who had a pathological 
diagnosis of pancreatic cancer were obtained 
from TCGA pancreatic adenocarcinoma (TCGA_
PAAD) cohort through Genomic Data Commons 
Data Portal (GDC) (https://portal.gdc.cancer.
gov) [15]. Mutation data were downloaded 
through cBioportal [16]. To survival analysis, 
other three cohorts, Chen et al. (GSE57495; n = 
63) [17], and Hussain et al. (GSE62452; n = 69) 
[18] were obtained from the Gene Expression 
Omnibus (GEO) repository of the US National 
Institutes of Health (http://www.ncbi.nlm.ih.
gov/geo/). In all analyses, the average gene 
value with multiple probes and gene expression 
data, which were transformed for log2 mRNA 
data for the effect of several drugs on the pan-
creatic cancer cell line was obtained from the 
publicly available dataset at CCLE.

Gene set expression analyses

Gene set variation analysis (GSVA) score [19]  
of the proliferation-related MSigDB Hallmark 
gene sets [5], including G2M target, E2F check-
point, MYC v1 and v2, Mitotic, and p53 path-
way, were defined as each pathway score using 
GSVA Bioconductor package (version 3.10), as 
we previously reported [20-23]. False discovery 
rate (FDR), as the adjusted p values, less than 
0.25 for statistical significance, which was rec-
ommended by gene set enrichment analysis 
(GSEA) software (Lava version 4.0) [24], as we 
previously reported [25-32].

Statistical analysis

R software (version 4.0.1, R Project for Sta- 
tistical Computing) and Microsoft Excel (ver-
sion 16 for Windows) were used in all data anal-
ysis and data plotting. To divide the low and 
high pathway score groups, the median value  
of each score within cohorts were used. Two-
tail Fisher’s exact tests were used to analysis of 
comparisons between groups, as we described 
in each figure legends. Cox proportional hazard 
analyses were used to estimate hazard ratio 
(HR), 95% CI, and p-value. A p-value of less 
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than 0.05 was taken statistically significant. 
Tukey type boxplots show median and inter-
quartile level values. 

Results

G2M checkpoint and E2F targets scores dem-
onstrated strong correlation and consistency 
among the 6 cell proliferation-related Hallmark 
gene sets in pancreatic cancer

Molecular Signatures Database (MSigDB) Ha- 
llmark defines 6 gene sets as cell proliferation-
related in Gene Set Validation Analysis (GSVA): 
G2M checkpoint, E2F target, MYC targets v1, 
MYC targets v2, Mitotic spindle, and p53 path-
way [33]. We utilized these cell proliferation-
related gene sets as pathway scores and ana-
lyzed them in The Cancer Genome Atlas (TC- 
GA) pancreatic adenocarcinoma cohort (TCGA-
PAAD, n = 176). The genes included in each 
score are listed in Table S1. First, we studied 
how close these 6 scores relate to each other 
in pancreatic cancer. We found that the correla-
tion of G2M checkpoint pathway score with  
E2F targets score was the strongest (Figure 
1A; r = 0.976). On the other hand, the correla-
tion of Mitotic spindle score with MYC targets 
v2 score was the weakest (r = 0.564). Next, we 
studied the pathways that constitute these 
scores in pancreatic cancer. We investigated 
the correlation by hallmark gene sets, and we 
used the categories defined by MSigDB Ha- 
llmark gene sets: Cell proliferation, Signaling, 
Pathway, Metabolic, DNA damage, Develop- 
ment, and Cellular component [33]. The gene 
sets that showed Spearman’s rank correlation 
> 0.600 in each analysis were recognized as 
highly enriched. As expected, G2M checkpoint, 
E2F targets, and MYC targets v2 pathway 
scores were strongly correlated with cell prolif-
eration-related gene sets (Figure 1B). On the 
other hand, Mitotic spindle and p53 pathway 
scores were highly correlated with signaling 
gene sets. Immune-related gene sets were not 
involved in any of the proliferation-related path-
way scores. These results suggest that each of 
the cell proliferation-related pathway scores 
has unique characteristics.

All six scores were significantly correlated with 
cell proliferation, but not with immune activity 
or rate of pathological complete resection (R0)

In clinical practice, cell proliferation is common-
ly assessed with Ki67 expression, which is 
encoded by the MKI67 gene. As expected, all 

six cell proliferation-related pathways were 
strongly correlated with MKI67 expression 
(Figure 2A; all spearman rank correlation (r) > 
0.500 and all P < 0.001). The proliferation 
score, calculated by Thorsson et al. [34], was 
also correlated with all six cell proliferation-
related pathways score (Figure 2A). Based 
upon our previous observation that aggressive 
breast cancer is counterbalanced with the 
human immune response [12, 13, 35], it was of 
interest to investigate whether highly prolifera-
tive pancreatic cancer related with immune 
activity as estimated by cytolytic activity score 
(CYT) as established by Rooney et al. [36]. None 
of the cell proliferation scores were correlated 
with CYT (Figure 2A). Since pancreatic cancer 
with aggressive biology is unlikely to result in 
pathological complete resection (R0) [2, 4], we 
investigated whether any of the six scores cor-
related with less likelihood of achievement of 
an R0 resection. Surprisingly, none of the six 
scores were associated with a decreased R0 
resection rate (Figure 2B).

High scores in G2M checkpoint, E2F targets 
and p53 pathways are associated with KRAS 
and TP53 alteration, and the high score of any 
cell proliferation-related pathways is correlated 
with gene expression of KRAS and TP53 in 
pancreatic cancer

As KRAS and TP53 gene mutations are known 
to contribute to poor prognosis in pancreatic 
cancer [37], we hypothesized that the cell pro-
liferation-related pathway scores are associat-
ed with alteration and expression of these 
genes. Indeed, all of the high cell proliferation 
pathway scores in pancreatic cancer, except for 
the MYC targets v1 score, were significantly 
associated with a higher percentage of altera-
tion in the KRAS gene (Figure 3). A high score of 
the G2M checkpoint, E2F targets, and p53 pa- 
thway was significantly associated with a high-
er percentage of alteration in the TP53 gene 
(Figure 3; P = 0.026, 0.011, and 0.007, respec-
tively). Furthermore, all six scores were moder-
ately correlated with KRAS gene expression but 
not with TP53 gene expression (Figure 3).

G2M checkpoint pathway score was consis-
tently and strongly associated with worse sur-
vival across all three independent cohorts

As we previously reported that enhanced cell 
proliferation was associated with worse surviv-
al in breast [12, 13] and pancreatic cancer [14], 
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it was of interest to identify which cell prolifera-
tion-related score strongly related with survival 
in pancreatic cancer patients. We analyzed the 
hazard ratios (HR) of the six scores related to 

Overall survival (OS), Disease-free survival 
(DFS), and Disease-specific survival (DSS) in 
the TCGA (n = 176), as well as OS in GSE62452 
(n = 69) and GSE57495 (n = 63) cohorts.  

Figure 1. Characteristics of six cell proliferation-related pathway scores in the TCGA pancreatic adenocarcinoma 
cohort. A. Correlation matrix of six cell proliferation-related pathway scores. The correlation value was indicated by 
color (blue for positive correlation and red for negative correlation), while the magnitude of correlation was shown 
with circles. Spearman’s rank correlation was used to the analysis. B. Network plot for highly correlations of hall-
mark gene sets. Spearman’s rank correlation > 0.600 was defined as highly significantly correlated gene sets.
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Figure 2. Association of six cell proliferation-related pathway scores with cell proliferation parameters, immune 
cytolytic activity, and pathological complete resection in the TCGA cohort. A. Correlation plots of cell proliferation-
related pathway scores with MKI67 expression, Proliferation score, and Cytolytic Activity score (CYT). Spearman’s 
rank correlation was used for the analysis. B. Bar plots of the comparison of the low and high score group with R0 
resection ratio. Fisher’s test was use for the analysis. The median value was used as a cut-off to divide low and high 
groups for each pathway. G2M, G2M Checkpoint; E2F, E2F Targets; MYC1, MYC Targets V1; MYC2, MYC Targets V2; 
Mitotic, Mitotic Spindle; p53, p53 pathway.
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The high score of the G2M checkpoint and 
Mitotic spindle pathways were associated with 
poor OS, DFS, and DSS in all cohorts of TCGA 
and GSE62452; whereas E2F targets and p53 
pathway scores were associated with only OS 
and DSS of TCGA cohort (Figure 4). The MYC 
targets v1 score was associated with OS in 
GSE62452 alone. The G2M checkpoint score 
consistently demonstrated the highest HR in all 
the survival analyses across all the cohorts 
(HR; 1.80, 2.84, 1.87, 1.92, 2.75, respectively). 
None of the other gene sets within the Hallmark 
gene sets showed significant differences 

across all cohorts (Tables S2 and S3). These 
results suggest that the G2M checkpoint path-
way score has the highest potential to be used 
as a prognostic biomarker in pancreatic cancer 
among the six cell proliferation-related pathway 
scores.

Cell proliferation-related pathway scores pre-
dict response for different therapeutic agents 
used in pancreatic cancer treatment 

As the cell proliferation-related pathway scor- 
es are associated with survival, we hypothe-

Figure 3. The association of six cell proliferation-related pathway scores with alteration and expression of KRAS and 
TP53 genes in the TCGA cohort. Bar plots of the percentage of patients with alteration of KRAS and TP53 genes 
between low and high gene sets. The median value was used to divide low and high score groups as a cut-off. The 
Fisher’s test was used for the analysis. Correlation plots of cell proliferation-related pathway scores with gene ex-
pression of KRAS and TP53. Spearman’s rank correlation was used for the analysis. G2M, G2M Checkpoint; E2F, 
E2F Targets; MYC1, MYC Targets V1; MYC2, MYC Targets V2; Mitotic, Mitotic Spindle; p53, p53 pathway.

Figure 4. Association of six cell proliferation-related scores and patient survival in pancreatic cancer. Forest plots 
of hazard ratio (HR) for high cell proliferation-related pathway score in the TCGA (n = 176), GSE57495 (n = 63), and 
GSE62452 (n = 69). The median value was used as a cut-off to divide low and high groups within the cohort. The 
blue line indicates non-significance and the red line indicated significance. G2M, G2M Checkpoint; E2F, E2F Tar-
gets; MYC1, MYC Targets V1; MYC2, MYC Targets V2; Mitotic, Mitotic Spindle; p53, p53 pathway.
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sized that the score also correlates with 
response to treatment. Since we do not have 
access to pancreatic cancer patient cohorts 
with transcriptome and drug response data,  
we examined the drug sensitivity of pancreatic 
cancer cell lines, including Gemcitabine, Pa- 
clitaxel, Apatinib, Palbociclib, Sorafenib, and 
Sunitinib, utilizing the Cancer Cell Line Encyc- 
lopedia [38]. We found that the G2M check-
point score correlated moderately with the area 
under the curve (AUC) of Sorafenib sensitivity 
(Figure 5; r = 0.593, P = 0.03). The E2F tar- 
gets score correlated strongly with AUC for 
Palbociclib (Figure 5; r = 0.675, P < 0.01). The 
MYC targets v2 score negatively correlated with 
AUC for Paclitaxel (Figure 5; r = -0.636, P < 
0.05). The Mitotic spindle score correlated 
strongly with AUC for Gemcitabine (Figure 5; r = 
0.706, P = 0.01), and negatively with AUC for 
Apatinib (Figure 5; r = -0.556, P = 0.03). These 
results suggest that the cell proliferation-relat-
ed pathway scores may have the potential to 
predict drug treatment response for pancreatic 
cancer.

Discussion

In this study, we evaluated six cell proliferation-
related pathways (G2M checkpoints, E2F tar-
gets, MYC target v1, MYC target v2, Mitotic 
spindle, and p53 pathway) in pancreatic cancer 
using the GSVA scoring method with the 
MSigDB Hallmark gene sets collection. The 
pathways strongly correlated with each other, 
especially the G2M checkpoint with E2F target 
scores. The pathways also highly correlated 
with gene sets classified into other categories, 
such as metabolic, DNA damage, cellular com-
ponent, but the distributions of these compo-
nents were different in six cell proliferation-
related gene sets. All six cell proliferation-relat-
ed gene sets was strongly correlated with 
MKI67 gene expression, and the high score of 
all six cell proliferation-related gene sets was 
significantly associated with a high proliferation 
score. Among them, high mitotic spindle score 
alone was associated with high cytolytic activi-
ty. None were associated with the R0 resection 
rate. A high score of all cell proliferation-related 
gene sets was significantly associated with a 
high rate of KRAS gene alteration except for 
MYC targets v1 score. A high score of G2M 
checkpoint, E2F targets, and p53 pathway  
was significantly associated with high rate of 
TP53 gene alteration. All six gene sets were  

correlated with KRAS gene expression but not 
with TP53 gene expression. Interestingly, cell 
proliferation-related pathway scores predicted 
response to different therapeutic agents used 
in pancreatic cancer treatment, such as Ge- 
mcitabine, Paclitaxel, Apatinib, Palbociclib, and 
Sorafenib. A high score of all six gene sets was 
associated with worse prognosis except for 
MYC target v2. Finally, only the G2M checkpoint 
score showed significant association with 
worse patient survival across all cohorts. 

To date, many studies have reported the expres-
sion of various genes and signal transduction 
pathways in cancer. These act in an intricate 
manner to promote cancer growth and/or treat-
ment resistance. Therefore, it can be difficult to 
define the complex signaling in cancer by iden-
tifying a single gene. GSVA is a useful tool to 
illustrate a wide perspective of the signaling 
pathways in cancer. We have previously report-
ed several gene set pathway scores were asso-
ciated with clinical outcomes in cancer using 
the GSVA method. KRAS signaling was signifi-
cantly associated with anti-cancer immune 
microenvironment as well as improved survival 
in breast cancer [11]. In pancreatic cancer, a 
high G2M checkpoint score was significantly 
associated with worse patient survival, particu-
larly after margin-positive resection [14]. In the 
majority of cases, pathological margin-negative 
R0 resection has better survival compared with 
margin-positive resection, thought to be reflec-
tive of the aggressive biology of the cancer in 
the subset of margin positive patients [2-4]. 
However, none of the 6 cell proliferation-related 
scores predicted the R0 resection rate in this 
study. Proliferation-related gene sets score 
showed association with tumor aggressive-
ness, such as pathological grade, AJCC stage, 
and MKI67 expression. The score of MYC tar-
gets v1 and v2 in breast cancer [39] and the 
G2M checkpoint score in pancreatic cancer 
strongly correlated with MKI67 gene expres-
sion and with worse patient survival [14].

The KRAS and TP53 genes are associated with 
high rates of alteration in pancreatic cancer 
[37] and are linked to progression of disease. 
Among the six cells proliferation-related path-
way scores, the E2F checkpoint, G2M targets, 
and p53 pathway scores were correlated with 
expression of KRAS and TP53 gene mutations 
in pancreatic cancer.
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Figure 5. Correlation between the cell proliferation-related scores and drug response. Correlation plots of the association in human pancreatic cancer cell lines 
between six proliferation-related gene set score and sensitivity to pancreatic cancer drugs, including Gemcitabine, Paclitaxel, Apatinib, Palbociclib, Sorafenib, and 
Sunitinib. P-value and rho (r) were analyzed with spearman’s rank correlation coefficient. G2M, G2M Checkpoint; E2F, E2F Targets; MYC1, MYC Targets V1; MYC2, 
MYC Targets V2; Mitotic, Mitotic Spindle; p53, p53 pathway.
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Surgical resection remains the mainstay of 
curative treatment for pancreatic cancer [40]. 
However, the majority of patients present with 
metastatic disease at the time of diagnosis, 
and therefore systemic chemotherapy remains 
the primary treatment option for most patients. 
As rates of drug resistance have made chemo-
therapy less effective, a bigger problem arises. 
Regimens of FOLFIRINOX (FFX) and Gemcita- 
bine/Nab-paclitaxel (GNP) are used in meta-
static patients, and large centers have transi-
tioned these regimens as neoadjuvant treat-
ment for patients with locally advanced pancre-
atic cancer [41, 42]. With this, an increasing 
number of patients are treated with multiple 
chemotherapeutic regimens with the intent of 
downstaging the cancer and enabling complete 
microscopically negative resection [43], or 
sparing major surgery altogether. Despite the 
widespread use of neoadjuvant therapy, it is 
unclear which regimen is associated with the 
best possible survival. The recent notion that 
adjuvant FFX may improve survival in patients 
already treated with neoadjuvant therapy and 
tumor resection has been under investigation 
[44]. 

Several other pathway-targeted chemothera-
pies have been studied. Palbociclib, a CDK4 
inhibitor, leads to inhibitory effects at different 
stages of the tumor cell and within the tumor 
microenvironment, which collectively drives 
down cancer cell proliferation and invasion 
[45]. Sorafenib, on the other hand, inhibits sig-
naling pathways such as RAF/MEK/ERK cas-
cades resulting in decreased cell proliferation 
[46], and target receptors such as VEGFR 
PDGFR-β for anti-angiogenic effects. Sorafenib 
also inhibits DNA synthesis and induces tumor 
cell death in various cancers [47]. Combination 
therapies have shown potent anti-proliferative 
and pro-apoptotic efficacy in pancreatic cancer 
cells [48, 49]. Preclinical studies and on-going 
phase I clinical trials have demonstrated the 
safety and efficacy of combinatorial radio-che-
motherapy plus surgery in pancreatic cancer, 
including the combination of sorafenib and 
Vorinostat [50]. Additionally, Sunitinib inhibits 
endothelial cell proliferation angiogenic prolif-
eration as a broad-spectrum receptor tyrosine 
kinase (RTK) inhibitor [51]. Though Sunitinib 
treatment has impressive results in treating 
neuroendocrine pancreatic tumors, phase II 
clinical trials in advanced or metastatic pancre-

atic cancer have shown its consistent failure 
[52, 53].

In our study, proliferation-related gene sets  
did not show correlation to a sensitivity for 
Sunitinib or Apatinib, which is a multiple kinase 
inhibitor with bioactivity against VEGFR-2, 
PDGFR-β, c-Kit, and c-src [54]. These agents 
were proven to have a survival benefit in sever-
al cancers such as gastric, colon, and breast 
cancer [55]. Apatinib has demonstrated sub-
stantial potential as a new therapeutic option 
due to its ease of administration, compliance 
rate, low toxicity, and improved outcomes [56]. 
Cheng-Ming et al. reported the potential use  
of Apatinib in the treatment of pancreatic can-
cer [57]. The ability to target even a minority of 
pancreatic cancer patients is significant due  
to the current limitations in treatment options. 
A biomarker that can predict survival and 
response to chemotherapy, such as the prolif-
eration-related gene set score, may be able to 
improve treatment efficacy, reduce toxicity, and 
improve patients’ quality of life. Based on our 
study, we speculate that proliferation-related 
scores can have utility as a predictive biomark-
er of response to chemotherapies in pancreatic 
cancer patients.

Our study has its limitations. This study is a ret-
rospective study. In order to establish the utility 
of cell proliferation-related gene sets as a  
biomarker in predicting the effectiveness of 
chemotherapies, a prospective study will be 
required.

In conclusion, we have demonstrated that the 
G2M pathway score can serve as a tool for 
identifying patients who are likely to have poor 
survival in pancreatic cancer. Our findings sup-
port the need for clinical trials to evaluate these 
gene set scores as a predictive biomarker for 
response to chemotherapy.
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Table S1. Member genes of the Hallmark proliferation-related pathway gene sets
G2M checkpoint: ABL1, AC027237.1, AC091021.1, AMD1, ARID4A, ATF5, ATRX, AURKA, AURKB, BARD1, BCL3, BIRC5, BRCA2, BUB1, BUB3, CASP8AP2, CBX1, CCNA2, CCNB2, CCND1, CCNF, CCNT1, CDC20, 
CDC25A, CDC25B, CDC27, CDC45, CDC6, CDC7, CDK1, CDK4, CDKN1B, CDKN2C, CDKN3, CENPA, CENPE, CENPF, CHAF1A, CHEK1, CHMP1A, CKS1B, CKS2, CTCF, CUL1, CUL3, CUL4A, CUL5, DBF4, 
DDX39A, DKC1, DMD, DR1, DTYMK, E2F1, E2F2, E2F3, E2F4, EFNA5, EGF, ESPL1, EWSR1, EXO1, EZH2, FANCC, FBXO5, FOXN3, G3BP1, GINS2, GSPT1, H2AFV, H2AFX, H2AFZ, HIF1A, HIRA, HIST1H2BK, 
HMGA1, HMGB3, HMGN2, HMMR, HNRNPD, HNRNPU, HOXC10, HSPA8, HUS1, ILF3, INCENP, JPT1, KATNA1, KIF11, KIF15, KIF20B, KIF22, KIF2C, KIF4A, KIF5B, KMT5A, KNL1, KPNA2, KPNB1, LBR, LIG3, 
LMNB1, MAD2L1, MAP3K20, MAPK14, MARCKS, MCM2, MCM3, MCM5, MCM6, MEIS1, MEIS2, MKI67, MNAT1, MT2A, MTF2, MYBL2, MYC, NASP, NCL, NDC80, NEK2, NOLC1, NOTCH2, NSD2, NUMA1, 
NUP50, NUP98, NUSAP1, ODC1, ODF2, ORC5, ORC6, PAFAH1B1, PBK, PDS5B, PLK1, PLK4, PML, POLA2, POLE, POLQ, PRC1, PRIM2, PRMT5, PRPF4B, PTTG1, PTTG3P, PURA, RACGAP1, RAD21, RAD23B, 
RAD54L, RASAL2, RBL1, RBM14, RPA2, RPS6KA5, SAP30, SFPQ, SLC12A2, SLC38A1, SLC7A1, SLC7A5, SMAD3, SMARCC1, SMC1A, SMC2, SMC4, SNRPD1, SQLE, SRSF1, SRSF10, SRSF2, STAG1, STIL, 
STMN1, SUV39H1, SYNCRIP, TACC3, TENT4A, TFDP1, TGFB1, TLE3, TMPO, TNPO2, TOP1, TOP2A, TPX2, TRA2B, TRAIP, TROAP, TTK, UBE2C, UBE2S, UCK2, UPF1, WRN, XPO1, YTHDC1

E2F Targets: AK2, ANP32E, ASF1A, ASF1B, ATAD2, AURKA, AURKB, BARD1, BIRC5, BRCA1, BRCA2, BRMS1L, BUB1B, CBX5, CCNB2, CCNE1, CCP110, CDC20, CDC25A, CDC25B, CDCA3, CDCA8, CDK1, 
CDK4, CDKN1A, CDKN1B, CDKN2A, CDKN2C, CDKN3, CENPE, CENPM, CHEK1, CHEK2, CIT, CKS1B, CKS2, CNOT9, CSE1L, CTCF, CTPS1, DCK, DCLRE1B, DCTPP1, DDX39A, DEK, DEPDC1, DIAPH3, DLGAP5, 
DNMT1, DONSON, DSCC1, DUT, E2F8, EED, EIF2S1, ESPL1, EXOSC8, EZH2, GINS1, GINS3, GINS4, GSPT1, H2AFX, H2AFZ, HELLS, HMGA1, HMGB2, HMGB3, HMMR, HNRNPD, HUS1, ILF3, ING3, IPO7, JPT1, 
KIF18B, KIF22, KIF2C, KIF4A, KPNA2, LBR, LIG1, LMNB1, LUC7L3, LYAR, MAD2L1, MCM2, MCM3, MCM4, MCM5, MCM6, MCM7, MELK, MKI67, MLH1, MMS22L, MRE11, MSH2, MTHFD2, MXD3, MYBL2, 
MYC, NAA38, NAP1L1, NASP, NBN, NCAPD2, NME1, NOLC1, NOP56, NUDT21, NUP107, NUP153, NUP205, ORC2, ORC6, PA2G4, PAICS, PAN2, PCNA, PDS5B, PHF5A, PLK1, PLK4, PMS2, PNN, POLA2, 
POLD1, POLD2, POLD3, POLE, POLE4, POP7, PPM1D, PPP1R8, PRDX4, PRIM2, PRKDC, PRPS1, PSIP1, PSMC3IP, PTTG1, RACGAP1, RAD1, RAD21, RAD50, RAD51AP1, RAD51C, RAN, RANBP1, RBBP7, RFC1, 
RFC2, RFC3, RNASEH2A, RPA1, RPA2, RPA3, RRM2, SHMT1, SLBP, SMC1A, SMC3, SMC4, SMC6, SNRPB, SPAG5, SPC24, SPC25, SRSF1, SRSF2, SSRP1, STAG1, STMN1, SUV39H1, SYNCRIP, TACC3, TBRG4, 
TCF19, TFRC, TIMELESS, TIPIN, TK1, TMPO, TOP2A, TP53, TRA2B, TRIP13, TUBB, TUBG1, UBE2S, UBE2T, UBR7, UNG, USP1, WDR90, WEE1, XPO1, XRCC6, ZW10

MYC Targets V1: ABCE1, AC004086.1, ACP1, AIMP2, AP3S1, APEX1, BUB3, C1QBP, CAD, CANX, CBX3, CCNA2, CCT2, CCT3, CCT4, CCT5, CCT7, CDC20, CDC45, CDK2, CDK4, CLNS1A, CNBP, COPS5, COX5A, 
CSTF2, CTPS1, CUL1, CYC1, DDX18, DDX21, DEK, DHX15, DUT, EEF1B2, EIF1AX, EIF2S1, EIF2S2, EIF3B, EIF3D, EIF3J, EIF4A1, EIF4E, EIF4G2, EIF4H, EPRS, ERH, ETF1, EXOSC7, FAM120A, FBL, G3BP1, 
GLO1, GNL3, GOT2, GSPT1, H2AFZ, HDAC2, HDDC2, HDGF, HNRNPA1, HNRNPA2B1, HNRNPA3, HNRNPC, HNRNPD, HNRNPR, HNRNPU, HPRT1, HSP90AB1, HSPD1, HSPE1, IARS, IFRD1, ILF2, IMPDH2, 
KARS, KPNA2, KPNB1, LDHA, LSM2, LSM7, MAD2L1, MCM2, MCM4, MCM5, MCM6, MCM7, MRPL23, MRPL9, MRPS18B, MYC, NAP1L1, NCBP1, NCBP2, NDUFAB1, NHP2, NME1, NOLC1, NOP16, NOP56, 
NPM1, ODC1, ORC2, PA2G4, PABPC1, PABPC4, PCBP1, PCNA, PGK1, PHB, PHB2, POLD2, POLE3, PPIA, PPM1G, PRDX3, PRDX4, PRPF31, PRPS2, PSMA1, PSMA2, PSMA4, PSMA6, PSMA7, PSMB2, PSMB3, 
PSMC4, PSMC6, PSMD1, PSMD14, PSMD3, PSMD7, PSMD8, PTGES3, PWP1, RACK1, RAD23B, RAN, RANBP1, RFC4, RNPS1, RPL14, RPL18, RPL22, RPL34, RPLP0, RPS10, RPS2, RPS3, RPS5, RPS6, 
RRM1, RRP9, RSL1D1, RUVBL2, SERBP1, SET, SF3A1, SF3B3, SLC25A3, SMARCC1, SNRPA, SNRPA1, SNRPB2, SNRPD1, SNRPD2, SNRPD3, SNRPG, SRM, SRPK1, SRSF1, SRSF2, SRSF3, SRSF7, SSB, 
SSBP1, STARD7, SYNCRIP, TARDBP, TCP1, TFDP1, TOMM70, TRA2B, TRIM28, TUFM, TXNL4A, TYMS, U2AF1, UBA2, UBE2E1, UBE2L3, USP1, VBP1, VDAC1, VDAC3, XPO1, XPOT, XRCC6, YWHAE, YWHAQ

MYC Targets V2: AIMP2, BYSL, CBX3, CDK4, DCTPP1, DDX18, DUSP2, EXOSC5, FARSA, GNL3, GRWD1, HK2, HSPD1, HSPE1, IMP4, IPO4, LAS1L, MAP3K6, MCM4, MCM5, MPHOSPH10, MRTO4, MYBBP1A, 
MYC, NDUFAF4, NIP7, NOC4L, NOLC1, NOP16, NOP2, NOP56, NPM1, PA2G4, PES1, PHB, PLK1, PLK4, PPAN, PPRC1, PRMT3, PUS1, RABEPK, RCL1, RRP12, RRP9, SLC19A1, SLC29A2, SORD, SRM, 
SUPV3L1, TBRG4, TCOF1, TFB2M, TMEM97, UNG, UTP20, WDR43, WDR74

Mitotic spindle: ABI1, ABL1, ABR, AC027237.1, ACTN4, AKAP13, ALMS1, ALS2, ANLN, APC, ARAP3, ARF6, ARFGEF1, ARFIP2, ARHGAP10, ARHGAP27, ARHGAP29, ARHGAP4, ARHGAP5, ARHGDIA, ARH-
GEF11, ARHGEF12, ARHGEF2, ARHGEF3, ARHGEF7, ARL8A, ATG4B, AURKA, BCAR1, BCL2L11, BCR, BIN1, BIRC5, BRCA2, BUB1, CAPZB, CCDC88A, CCNB2, CD2AP, CDC27, CDC42, CDC42BPA, CDC42EP1, 
CDC42EP2, CDC42EP4, CDK1, CDK5RAP2, CENPE, CENPF, CENPJ, CEP131, CEP192, CEP250, CEP57, CEP72, CKAP5, CLASP1, CLIP1, CLIP2, CNTRL, CNTROB, CSNK1D, CTTN, CYTH2, DLG1, DLGAP5, 
DOCK2, DOCK4, DST, DYNC1H1, DYNLL2, ECT2, EPB41, EPB41L2, ESPL1, EZR, FARP1, FBXO5, FGD4, FGD6, FLNA, FLNB, FSCN1, GEMIN4, GSN, HDAC6, HOOK3, INCENP, ITSN1, KATNA1, KATNB1, KIF11, 
KIF15, KIF1B, KIF20B, KIF22, KIF2C, KIF3B, KIF3C, KIF4A, KIF5B, KIFAP3, KLC1, KNTC1, KPTN, LATS1, LLGL1, LMNB1, LRPPRC, MAP1S, MAP3K11, MAPRE1, MARCKS, MARK4, MID1, MID1IP1, MYH10, 
MYH9, MYO1E, MYO9B, NCK1, NCK2, NDC80, NEDD9, NEK2, NET1, NF1, NIN, NOTCH2, NUMA1, NUSAP1, OPHN1, PAFAH1B1, PALLD, PCGF5, PCM1, PCNT, PDLIM5, PIF1, PKD2, PLEKHG2, PLK1, PPP4R2, 
PRC1, PREX1, PXN, RAB3GAP1, RABGAP1, RACGAP1, RALBP1, RANBP9, RAPGEF5, RAPGEF6, RASA1, RASA2, RASAL2, RFC1, RHOF, RHOT2, RICTOR, ROCK1, SAC3D1, SASS6, SEPT9, SHROOM1, SHROOM2, 
SMC1A, SMC3, SMC4, SORBS2, SOS1, SPTAN1, SPTBN1, SSH2, STAU1, STK38L, SUN2, SYNPO, TAOK2, TBCD, TIAM1, TLK1, TOP2A, TPX2, TRIO, TSC1, TTK, TUBA4A, TUBD1, TUBGCP2, TUBGCP3, TUBGCP5, 
TUBGCP6, UXT, VCL, WASF1, WASF2, WASL, YWHAE

p53 pathway: ABAT, ABCC5, ABHD4, ACVR1B, ADA, AEN, AK1, ALOX15B, ANKRA2, APAF1, APP, ATF3, BAIAP2, BAK1, BAX, BLCAP, BMP2, BTG1, BTG2, CASP1, CCND2, CCND3, CCNG1, CCNK, CCP110, CD81, 
CD82, CDH13, CDK5R1, CDKN1A, CDKN2A, CDKN2AIP, CDKN2B, CEBPA, CGRRF1, CLCA2, COQ8A, CSRNP2, CTSD, CTSF, CYFIP2, DCXR, DDB2, DDIT3, DDIT4, DEF6, DGKA, DNTTIP2, DRAM1, EI24, ELP1, 
EPHA2, EPHX1, EPS8L2, ERCC5, F2R, FAM162A, FAS, FBXW7, FDXR, FGF13, FOS, FOXO3, FUCA1, GADD45A, GLS2, GM2A, GPX2, H2AFJ, HBEGF, HDAC3, HEXIM1, HINT1, HIST1H1C, HIST3H2A, HMOX1, 
HRAS, HSPA4L, IER3, IER5, IFI30, IL1A, INHBB, IP6K2, IRAK1, ISCU, ITGB4, JAG2, JUN, KIF13B, KLF4, KLK8, KRT17, LDHB, LIF, LRMP, MAPKAPK3, MDM2, MKNK2, MXD1, MXD4, NDRG1, NHLH2, NINJ1, 
NOL8, NOTCH1, NUDT15, NUPR1, OSGIN1, PCNA, PDGFA, PERP, PHLDA3, PIDD1, PITPNC1, PLK2, PLK3, PLXNB2, PMM1, POLH, POM121, PPM1D, PPP1R15A, PRKAB1, PRMT2, PROCR, PTPN14, PTPRE, 
PVT1, RAB40C, RACK1, RAD51C, RAD9A, RALGDS, RAP2B, RB1, RCHY1, RETSAT, RGS16, RHBDF2, RNF19B, RPL18, RPL36, RPS12, RPS27L, RRAD, RRP8, RXRA, S100A10, S100A4, SAT1, SDC1, SEC61A1, 
SERPINB5, SERTAD3, SESN1, SFN, SLC19A2, SLC35D1, SLC3A2, SLC7A11, SOCS1, SP1, SPHK1, ST14, STEAP3, STOM, TAP1, TAX1BP3, TCHH, TCN2, TGFA, TGFB1, TM4SF1, TM7SF3, TNFSF9, TNNI1, TOB1, 
TP53, TP63, TPD52L1, TPRKB, TRAF4, TRAFD1, TRIAP1, TRIB3, TSC22D1, TSPYL2, TXNIP, UPP1, VAMP8, VDR, VWA5A, WRAP73, WWP1, XPC, ZBTB16, ZFP36L1, ZMAT3, ZNF365
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Table S2. Association of other hallmark gene sets scores and patient survival in pancreatic cancer in 
the TCGA cohort. Cox proportional hazard analyses were used to estimate hazard ratio (HR), 95% CI, 
and p-value. The median value was used as a cut-off to divide low and high groups within cohorts

Category Pathway
TCGA (OS) TCGA (DFS) TCGA (DSS)

HR 95% CI P HR 95% CI p HR 95% CI P
Cellular Component APJ 1.28 0.85 1.94 0.24 1.86 0.79 4.35 0.15 1.68 1.04 2.71 0.03 *

APS 1.70 1.11 2.61 0.01 * 2.04 0.85 4.88 0.11 2.04 1.26 3.31 0.00 *

PER 1.12 0.74 1.69 0.61 0.94 0.41 2.18 0.89 1.21 0.76 1.93 0.43

Development ADI 1.37 0.90 2.08 0.14 1.18 0.51 2.73 0.70 1.48 0.92 2.38 0.10

ANG 1.44 0.95 2.18 0.09 2.67 1.11 6.46 0.03 * 1.76 1.10 2.83 0.02 *

EMT 1.51 0.99 2.29 0.06 4.34 1.65 11.39 0.00 * 1.73 1.08 2.78 0.02 *

MYO 0.88 0.58 1.34 0.56 1.07 0.47 2.46 0.87 1.13 0.71 1.79 0.62

PAN 0.83 0.55 1.26 0.38 0.40 0.17 0.95 0.04 * 0.98 0.62 1.56 0.94

SPE 0.93 0.62 1.41 0.74 0.67 0.29 1.52 0.34 1.01 0.64 1.62 0.95

DNA damage DNA 1.37 0.90 2.08 0.14 0.60 0.26 1.38 0.23 1.37 0.86 2.19 0.19

UVD 1.43 0.94 2.16 0.09 2.46 1.03 5.91 0.04 1.49 0.94 2.39 0.09

UVU 1.53 1.00 2.32 0.05 * 1.13 0.49 2.62 0.77 1.69 1.05 2.73 0.03 *

 Immune ALL 1.21 0.80 1.83 0.37 1.16 0.49 2.76 0.73 1.27 0.80 2.02 0.31

COA 1.47 0.97 2.24 0.07 1.27 0.55 2.90 0.58 1.87 1.15 3.02 0.01 *

COM 1.82 1.20 2.77 0.01 * 1.40 0.59 3.34 0.45 1.97 1.22 3.17 0.01 *

IFA 1.68 1.11 2.55 0.01 * 1.34 0.58 3.09 0.49 1.60 1.00 2.56 0.05 *

IFG 1.31 0.86 1.98 0.21 0.95 0.41 2.22 0.91 1.26 0.79 2.01 0.32

IL6 1.40 0.92 2.12 0.12 1.35 0.56 3.23 0.51 1.57 0.98 2.52 0.06

INF 1.44 0.95 2.19 0.09 1.12 0.47 2.67 0.79 1.74 1.08 2.80 0.02 *

 Metabolic BIL 0.86 0.57 1.30 0.46 0.82 0.36 1.91 0.65 0.87 0.54 1.38 0.55

CHO 1.68 1.10 2.56 0.02 * 1.17 0.52 2.66 0.71 1.62 1.01 2.60 0.04 *

FAT 1.39 0.92 2.12 0.12 0.89 0.39 2.03 0.78 1.37 0.86 2.19 0.19

GLY 1.76 1.15 2.69 0.01 * 1.90 0.82 4.40 0.13 2.08 1.27 3.39 0.00 *

HEM 1.29 0.85 1.95 0.23 0.72 0.32 1.64 0.43 1.40 0.88 2.25 0.16

OXI 0.95 0.63 1.44 0.81 0.73 0.31 1.72 0.47 0.87 0.54 1.38 0.54

XEN 1.67 1.10 2.54 0.02 * 1.35 0.59 3.08 0.48 1.72 1.07 2.75 0.02 *

 Pathway APO 1.88 1.22 2.88 0.00 * 2.18 0.92 5.19 0.08 2.17 1.33 3.53 0.00 *

HYP 1.93 1.26 2.97 0.00 * 2.23 0.97 5.10 0.06 2.22 1.36 3.63 0.00 *

PRO 1.49 0.98 2.27 0.06 1.15 0.50 2.66 0.75 1.56 0.97 2.51 0.07

REA 1.10 0.73 1.66 0.66 0.78 0.34 1.77 0.55 1.05 0.66 1.67 0.83

UNF 1.14 0.75 1.74 0.53 0.74 0.32 1.70 0.48 1.17 0.73 1.88 0.52

Signaling AND 1.86 1.22 2.84 0.00 * 2.43 1.02 5.83 0.05 * 1.97 1.22 3.18 0.01 *

ERE 1.95 1.28 2.99 0.00 * 2.15 0.93 4.94 0.07 2.18 1.34 3.55 0.00 *

ERL 2.22 1.45 3.41 0.00 * 1.09 0.48 2.49 0.84 2.43 1.49 3.96 0.00 *

HED 0.79 0.52 1.20 0.27 1.25 0.54 2.91 0.60 1.00 0.63 1.60 0.99

IL2 1.35 0.89 2.04 0.16 1.49 0.62 3.55 0.37 1.44 0.90 2.30 0.12

KRD 0.98 0.65 1.49 0.94 1.51 0.65 3.50 0.34 1.07 0.67 1.70 0.78

KRU 1.47 0.97 2.23 0.07 1.85 0.76 4.49 0.17 1.70 1.06 2.73 0.03 *

MTO 1.56 1.02 2.38 0.04 * 1.79 0.76 4.23 0.18 1.70 1.05 2.76 0.03 *

NOT 1.51 1.00 2.29 0.05 2.25 0.97 5.23 0.06 1.79 1.11 2.89 0.02 *

PI3 1.56 1.02 2.37 0.04 * 1.16 0.51 2.64 0.73 1.68 1.04 2.70 0.03 *

TGF 1.67 1.10 2.54 0.02 * 3.21 1.32 7.85 0.01 * 2.15 1.31 3.51 0.00 *

TNF 1.56 1.03 2.37 0.04 * 2.01 0.86 4.69 0.11 1.85 1.15 2.97 0.01 *

WNT 1.29 0.85 1.95 0.23 1.87 0.80 4.34 0.15 1.43 0.90 2.29 0.13
ADI, Adipogenesis; ALL, Allograft rejection; AND, Androgen response; ANG, Angiogenesis; APO, Apoptosis; APS, Apical surface; APJ, Apical junction; BIL, Bile acid metabo-
lism; CHO, Cholesterol homeostasis; COA, Coagulation; COM, Complement; DNA, DNA repair; EMT, Epithelial mesenchymal transition; ERE, Estrogen response early; ERL, 
Estrogen response late; FAT, Fatty acid metabolism; GLY, Glycolysis; HED, Hedgehog signaling; HEM, Heme metabolism; HYP, Hypoxia; IFA, Interferon alpha response; IFG, 
Interferon gamma response; IL2, IL2/JAK/STAT5 signaling; IL6, IL6/JAK/STAT3 signaling; ; INF, Inflammatory response; KRD, KRAS signaling down; KRU, KRAS signaling 
UP; MTO, Mtorc1 signaling; MYO, Myogenesis; NOT, Notch signaling; OXI, Oxidative phosphorylation; PAN, Pancreas beta cell; PER, Peroxisome; PI3, PI3K/AKT/MTOR 
signaling; PRO, Protein secretion; REA, Reactive oxygen species pathway; SPE, Spermatogenesis; TGF, TGF beta signaling; TNF, TNFa signaling via NFkB; UNF, Unfolded 
protein response; UVD, UV response down; UVU, UV response up; XEN, Xenobiotic metabolism; WNT, WNT beta catenin signaling. 
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Table S3. Association of other hallmark gene sets scores and patient survival in pancreatic cancer 
in the GSE57495 and GSE62452 cohorts. Cox proportional hazard analyses were used to estimate 
hazard ratio (HR), 95% CI, and p-value. The median value was used as a cut-off to divide low and high 
groups within cohorts

Category Pathway
GSE57495 (OS) GSE62452 (OS)

HR 95% CI P HR 95% CI P
Cellular Component APJ 2.44 1.29 4.61 0.01 * 1.14 0.65 2.00 0.64

APS 1.39 0.75 2.58 0.29 1.61 0.91 2.84 0.10

PER 1.12 0.61 2.05 0.72 0.98 0.55 1.74 0.94

Development ADI 0.99 0.54 1.82 0.98 1.03 0.58 1.81 0.92

ANG 0.90 0.49 1.65 0.74 0.86 0.49 1.51 0.60

EMT 1.25 0.68 2.29 0.48 1.04 0.59 1.83 0.89

MYO 0.59 0.32 1.10 0.10 0.96 0.54 1.70 0.88

PAN 0.76 0.41 1.39 0.37 0.61 0.35 1.08 0.09

SPE 1.14 0.62 2.10 0.66 1.06 0.60 1.86 0.85

DNA damage DNA 0.72 0.39 1.32 0.29 1.49 0.84 2.64 0.17

UVD 1.44 0.78 2.66 0.24 1.07 0.61 1.90 0.81

UVU 0.96 0.52 1.76 0.89 1.05 0.60 1.84 0.87

Immune ALL 0.94 0.52 1.73 0.85 1.16 0.65 2.04 0.62

COA 1.06 0.58 1.94 0.85 0.77 0.44 1.37 0.37

COM 0.98 0.53 1.79 0.94 1.07 0.61 1.88 0.82

IFA 1.39 0.75 2.56 0.30 1.94 1.05 3.58 0.03 *

IFG 0.82 0.45 1.51 0.53 1.23 0.69 2.18 0.48

IL6 0.87 0.47 1.59 0.64 1.21 0.68 2.14 0.52

INF 0.98 0.54 1.80 0.95 1.15 0.65 2.04 0.62

Metabolic BIL 0.77 0.42 1.42 0.40 0.45 0.25 0.80 0.01 *

CHO 1.53 0.83 2.84 0.18 0.99 0.56 1.73 0.96

FAT 1.39 0.76 2.55 0.29 0.83 0.47 1.46 0.53

GLY 1.72 0.93 3.20 0.08 1.88 1.05 3.34 0.03 *

HEM 1.09 0.59 1.99 0.79 1.41 0.80 2.48 0.24

OXI 1.01 0.55 1.86 0.96 0.98 0.54 1.75 0.94

XEN 0.94 0.51 1.73 0.85 0.85 0.48 1.49 0.57

Pathway APO 2.41 1.29 4.50 0.01 * 1.03 0.59 1.82 0.92

HYP 1.43 0.77 2.62 0.26 1.42 0.81 2.49 0.22

PRO 1.87 1.00 3.48 0.05 1.28 0.72 2.25 0.40

REA 1.25 0.68 2.29 0.47 1.01 0.58 1.79 0.96

UNF 0.97 0.53 1.78 0.92 1.91 1.07 3.42 0.03 *

Signaling AND 1.54 0.83 2.85 0.17 1.28 0.72 2.28 0.40

ERE 1.01 0.55 1.85 0.98 1.05 0.59 1.84 0.88

ERL 1.13 0.62 2.08 0.69 0.95 0.54 1.68 0.87

HED 1.20 0.65 2.21 0.56 0.63 0.36 1.10 0.11

IL2 0.85 0.47 1.57 0.61 1.00 0.57 1.77 0.99

KRD 0.67 0.36 1.23 0.19 0.74 0.42 1.29 0.28

KRU 0.88 0.48 1.62 0.69 0.98 0.56 1.73 0.95

MTO 2.01 1.08 3.76 0.03 * 1.94 1.08 3.51 0.03 *

NOT 1.05 0.57 1.92 0.89 0.90 0.51 1.59 0.72

PI3 1.63 0.88 3.00 0.12 1.55 0.88 2.75 0.13

TGF 1.26 0.69 2.31 0.45 0.86 0.49 1.51 0.60

TNF 0.89 0.48 1.63 0.70 0.84 0.48 1.47 0.54

WNT 0.93 0.50 1.70 0.80 1.05 0.60 1.85 0.86
ADI, Adipogenesis; ALL, Allograft rejection; AND, Androgen response; ANG, Angiogenesis; APO, Apoptosis; APS, Apical surface; APJ, Apical junction; BIL, Bile acid metabo-
lism; CHO, Cholesterol homeostasis; COA, Coagulation; COM, Complement; DNA, DNA repair; EMT, Epithelial mesenchymal transition; ERE, Estrogen response early; ERL, 
Estrogen response late; FAT, Fatty acid metabolism; GLY, Glycolysis; HED, Hedgehog signaling; HEM, Heme metabolism; HYP, Hypoxia; IFA, Interferon alpha response; IFG, 
Interferon gamma response; IL2, IL2/JAK/STAT5 signaling; IL6, IL6/JAK/STAT3 signaling; ; INF, Inflammatory response; KRD, KRAS signaling down; KRU, KRAS signaling 
UP; MTO, Mtorc1 signaling; MYO, Myogenesis; NOT, Notch signaling; OXI, Oxidative phosphorylation; PAN, Pancreas beta cell; PER, Peroxisome; PI3, PI3K/AKT/MTOR 
signaling; PRO, Protein secretion; REA, Reactive oxygen species pathway; SPE, Spermatogenesis; TGF, TGF beta signaling; TNF, TNFa signaling via NFkB; UNF, Unfolded 
protein response; UVD, UV response down; UVU, UV response up; XEN, Xenobiotic metabolism; WNT, WNT beta catenin signaling.


