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Abstract

Major depressive disorder (MDD) is a leading cause of disability, affecting more than 300 million 

people worldwide. We first review the well-known sex difference in incidence of MDD, with 

women being twice as likely to be diagnosed as men, and briefly summarize how the impact 

of MDD varies between men and women, with sex differences in symptoms, severity, and 

antidepressant drug response. We then attempt to deconstruct the biological bases for MDD 

and discuss implications for sex differences research. Next, we review findings from human 

postmortem studies, both from selected candidate gene studies and from well-powered, unbiased 

transcriptomics studies, which suggest distinct, and possibly opposite, molecular changes in 

the brains of depressed men and women. We then discuss inherent challenges of research on 

the human postmortem brain and suggest paths forward that rely on thoughtful cohort design. 

Although studies indicate that circulating gonadal hormones might underlie the observed sex 

differences in MDD, we discuss how additional sex-specific factors, such as genetic sex and 

developmental exposure to gonadal hormones, may also contribute to altered vulnerability, and 

we highlight various nuances that we believe should be considered when determining mechanisms 

underlying observed sex differences. Altogether, this review highlights not only how various 

sex-specific factors might influence susceptibility or resilience to depression, but also how those 

sex-specific factors might result in divergent pathology in men and women.

CLINICAL SEX DIFFERENCES IN DEPRESSION

Major depressive disorder (MDD) is a devastating mental illness affecting approximately 

350 million people globally (1). In the United States, the economic burden of MDD was 

estimated at $210.5 billion in 2010 (2). Moreover, patients with mood disorders account 

for approximately 60% of completed suicides (3). Core MDD symptoms include emotion 

dysregulation, low mood, flattened affect, and anhedonia. Additional MDD symptoms 

fall into various dimensions, including cognitive symptoms, physiological symptoms (i.e., 

altered weight, motor activity, sleep patterns), and comorbid anxiety (4).
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Females are twice as likely as males to have a single MDD episode and 4 times as likely 

to have recurrent MDD (5,6). This sex difference in MDD incidence may be driven by 

reporting biases [i.e., women are more likely to seek treatment (7,8)], although it is reported 

across cultures and in community-based epidemiological studies, suggesting underlying 

biological differences (9,10). Comparing males and females with MDD, females tend to 

have more symptoms, higher symptom severity, and more subjective distress (9,11,12). 

Further, females are more likely to have a comorbid anxiety disorder (13), and males 

are more likely to have a comorbid substance use disorder (14). Findings suggest that 

there are sex differences in antidepressant treatment response, but the evidence is not as 

striking as for the sex difference in MDD incidence. For instance, some studies report 

that monoamine oxidase inhibitors and selective serotonin reuptake inhibitors may be 

more effective in female patients (15–17), while male patients respond more favorably to 

tricyclic antidepressants (17,18) and ketamine (19) [but see (15,20–22)]. Psychotherapy 

appears similarly effective in men and women (23–26), though women may engage more in 

psychotherapy (27–30). While there are indeed sex differences in incidence, symptoms, and 

antidepressant response, evidence suggests that prognosis is similar in men and women once 

MDD is diagnosed (31).

DECONSTRUCTING THE BIOLOGICAL BASES OF MDD AND IMPLICATIONS 

FOR SEX DIFFERENCES

Few novel MDD treatments have been developed beyond the serendipitous discovery 

that agents increasing monoaminergic signaling can reduce mood symptoms, though 

some studies since then suggest that clinical efficacy of these drugs may include 

actions that reduce inflammation (32) or increase the formation of new hippocampal 

neurons (33). Despite wide-spread use, only a third of patients achieve remission 

with monoamine-targeting treatment (16,34,35). Even when effacious in treating mood 

symptoms, monoamine-targeting therapeutics do not appear to ameliorate the cognitive 

deficits associated with MDD (36), and the residual presence of those deficits during 

remission predicts relapse (37). In sum, although monoaminergic antidepressants provide 

symptomatic relief in some patients, they might not reverse certain MDD symptom domains.

The categorically defined MDD syndrome may be an imprecise umbrella grouping of 

multiple clinical symptoms, each of which may have unique and multifactorial etiologies. 

Indeed, evidence shows that various underlying pathologies occur in depression, including 

altered excitation-inhibition, reduced neurotrophic support, and inflammation. These 

pathologies are not systematically observed in MDD and extend to other categorically 

defined psychiatric disorders and in some cases to neurodegenerative disorders (38). Over-

whelming evidence supports a dimensional model, where specificities of symptoms arise 

from the combination of genetic, environmental, and development risk factors, which may 

lead to unique brain pathologies.

A dimensional perspective is amenable to biological investigation for pathophysiological 

mechanisms and the roles of sex. Indeed, pathological entities observed in the human 

postmortem brain point to specific biological pathways, which in turn can be investigated 
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in light of multiple factors, including genetic variability, environment, and sex. Here, we 

review the degree to which evidence stemming from human postmortem brain investigations 

support either shared or sex-specific pathologies. We then discuss biological factors 

mediating the role of sex and how their interaction with pathological entities may lead 

to clinical observations of sex differences in depression.

SEX DIFFERENCES IN MDD: CANDIDATE GENE STUDIES

Gene expression studies in human MDD employing a candidate gene approach have been 

fruitful in identifying potential drivers for sex differences in MDD. The serotonergic 

system has been a focus of candidate gene studies because most antidepressants target this 

system. Interestingly, evidence suggests sex specificity for some serotonin-related alterations 

in MDD. For instance, levels of the serotonin 1D autoreceptor and serotonin-related 

transcription factors, NUDR and REST, were higher in dorsal raphe serotonin neurons of 

female, but not male, subjects with MDD (39). As NUDR and REST act as transcriptional 

repressors of the serotonin 1A autoreceptor in the dorsal raphe, their increased expression 

might represent a compensatory attempt to reduce elevated autoreceptors and increase 

serotonergic transmission. There are also decreased levels of the serotonin 1A receptor and 

NUDR in the prefrontal cortex (PFC) of depressed women, but not men (40). It is interesting 

to note that there may be sex-specific MDD alterations to the serotonin system given 

evidence that selective serotonin reuptake inhibitors may be more efficacious in depressed 

women compared with other classes of antidepressants (17,41).

Based on evidence suggesting altered excitation and/or inhibition in MDD (42–60), studies 

have examined alterations in glutamate- and GABA (gamma-aminobutyric acid)-related 

genes. Some alterations in glutamate-related genes might be sex specific in the dorsolateral 

PFC (DLPFC). Specifically, depressed females exhibit increased expression of several 

glutamate receptor genes, including GRIN1, GRIN2A-D, GRIA2-4, GRIK1-2, GRM1, 

GRM4, GRM5, and GRM7; only GRM5 was altered in depressed males, but in the opposite 

direction compared with females (61). We reported sex-specific MDD alterations in GABA 

synthesizing enzymes in the basolateral amygdala (BLA) and anterior cingulate cortex 

(ACC). In the BLA, only depressed females exhibited reductions in GAD1 and GAD2, 

while in the ACC, only depressed males had reduced expression of GAD1 and GAD2 
(60,62).

Studies examining expression of GABA subtype–specific markers provide insight into 

how excitatory pyramidal neurons and inhibitory GABA interneurons are altered 

in depression, suggesting sex-specific mechanisms of altered excitatory information 

processing. Somatostatin (SST)-expressing interneurons mainly innervate the distal 

dendrites of excitatory pyramidal cells, regulating excitatory input and providing feedback 

inhibition (63–65). Parvalbumin-positive interneurons typically innervate the perisomatic 

region of pyramidal cells, thereby regulating excitatory output and providing feedforward 

inhibition (64,65). As SST and PVALB are activity-dependent regulated genes, alterations 

in transcript levels in MDD suggest dysfunctions in cellular activity. Furthermore, their 

pattern of altered expression suggests brain region- and sex-specific changes in information 

processing by cortical microcircuits in MDD (hypothetical excitation/inhibition balance 
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in Figure 1A). In the DLPFC, evidence suggests reduced SST, but not parvalbumin, cell 

activity and thus reduced inhibitory input onto excitatory pyramidal cells in both males 

and females with MDD (Figure 1B) (62,66). In the ACC, evidence suggests reductions in 

both SST and parvalbumin cell activities, suggesting reduced inhibitory input and output 

regulation of excitatory pyramidal neurons (Figure 1C, D). In the ACC, SST reductions 

were more pronounced in depressed females, and SST expression was negatively correlated 

with depressive symptoms only in females with MDD (67). This suggests more profound 

reduction in inhibitory input onto pyramidal neurons in the ACC of females with MDD 

(60,67,68). In the BLA, males with MDD do not show alterations in either SST or PVALB, 

while females with MDD have reduced SST (Figure 1F), suggesting reduced inhibitory 

input onto excitatory pyramidal cells in the BLA of females, but not males, with MDD 

(Figure 1E) (62,69). Differences in input and output of inhibitory regulation of excitatory 

signal will affect information coding and propagation, respectively. Region and sex 

specificities in altered information processing may affect cognition and emotion, providing 

a potential pathophysiological substrate for sex differences in symptoms. While evidence 

from animal studies suggests that alterations in GABA neurons affect relevant behaviors 

(70), it is unclear whether sex differences observed in humans have clinical consequences. 

For instance, it is possible that these brain region–specific molecular alterations converge on 

similar clinical outcomes in males and females.

SEX DIFFERENCES IN MDD: EVIDENCE FROM TRANSCRIPTOMICS 

STUDIES

Early transcriptomics investigations of MDD included both sexes but were often skewed 

toward males and not powered to investigate sex differences. Conclusions from these studies 

could be biased toward results driven by male-specific alterations; indicate alterations that 

are consistent between males and females if the cohort is relatively sex balanced but is 

not powered to detect sex differences; or show no differences if biological disturbances are 

in opposite directions between men and women. We summarize results of transcriptomics 

investigations in Table 1, providing information on whether both sexes were represented. 

Very few studies were fully powered to detect sex differences. These studies have used 

similar approaches, and results were validated across cohorts.

In 2017, Labonte et al. (71) published the first well-powered, large-scale transcriptomics 

study to directly assess sex differences in the brains of subjects with MDD, focusing on 

the DLPFC, orbitofrontal cortex, ACC, anterior insula, nucleus accumbens, and ventral 

subiculum. The authors found very little overlap of genes differentially expressed in 

both men and women with MDD and used network-based approaches to zero in on 

potentially relevant gene targets. Weighted gene coexpression network analysis identified 

gene modules exhibiting sex-specific patterns of gain and loss of connectivity in MDD. 

This analysis suggests that some molecular pathways implicated in MDD might be affected 

in a sex-specific manner. Examination of gene modules identified relevant sex-specific 

hub genes, which, when manipulated in mice, produced sex-specific stress vulnerability. 

Downregulation of the female MDD–specific gene, DUSP6, promoted stress vulnerability 

in females only, potentially by increasing pyramidal neuron excitability via activation of 
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ERK signaling. Additionally, overexpression of the male MDD–specific gene, EMX1, 

promoted stress vulnerability in males only. Using differential expression analysis combined 

with network-based methods, this study narrowed down their gene hits and zeroed in on 

potentially relevant sex-specific hub genes that might drive sex differences in depression 

(71).

Recently, we used large-scale transcriptomics, combined with meta-analysis across mood-

related brain regions (DLPFC, ACC, BLA), to investigate sex-specific alterations in MDD 

(72). We replicated the findings of Labonte et al. (71), showing little overlap in differentially 

expressed genes between men and women with MDD. Brains from our study were from 

a different brain bank than Labonte et al. (71), suggesting the sex-specific transcriptional 

signature of depression may be a generalizable biological phenomenon. We found more 

than 1000 transcripts with significant interactions of sex and disease, and these transcripts 

were affected in opposite directions in men and women with MDD (i.e., upregulated in one 

sex, downregulated in the other sex). While this was initially quite surprising, we replicated 

this result using the data of Labonte et al. (71), hence confirming the presence of opposite 

patterns of gene changes across cohorts obtained from different brain banks. We found that 

men with MDD have decreases in markers of synapses and increases in markers of microglia 

and inflammation (72), suggesting that men with MDD have decreased dendritic spines and 

more reactive microglia. This result in men with MDD is consistent with previous reports of 

reduced dendritic complexity in the ACC, reduced dendritic processes and spine synapses in 

the DLPFC (73), and increased reactive microglia in the ACC in MDD (74). Chronic stress 

in male rodents recapitulates the dendritic pathology observed in MDD (75,76), and it is 

hypothesized that dendritic spine alterations contribute to MDD symptoms (77,78). These 

changes in MDD are consistent with a model in which reactive microglia may participate in 

excessive pathological removal of synapses (79–81).

However, as more than 70% of subjects in previous studies of dendritic morphology and 

microglia reactivity in MDD were male, it is unclear if females with MDD exhibit a 

similar pathology. Surprisingly, we found opposite gene expression changes in women 

with MDD, with increased synapse-related genes and decreased expression of microglia-

specific genes (72). Our results in men and women with MDD are consistent with rodent 

studies demonstrating that stressed male mice have decreased dendritic spine complexity 

and increased reactive microglia, but the opposite pattern occurs in stressed females 

(75,82). Together, these cross-species studies of putative interactions between microglia and 

dendrites suggest sex-specific pathways for divergent pathologies relevant to information 

processing mediated by spines on excitatory pyramidal neurons (Figure 2).

Another exciting contribution was added in 2020 by Issler et al. (83). Using the Labonte 

et al. (71) dataset, the authors focused on long noncoding RNAs (lncRNAs), as these 

represented approximately 30% of the differentially expressed transcripts. Through various 

roles, including as signals, scaffolds, enhancers, and decoys, lncRNAs play key roles in 

regulating transcription of other genes. Identified lncRNAs might be key drivers of the 

sex-specific transcriptional profile of MDD. Similar to the pattern of results for protein-

coding genes reported by Labonte et al. (71) and Seney et al. (72), there was little overlap 

in differentially expressed lncRNAs between men and women with MDD. The authors 
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then zeroed in on LINC00473, as this transcript is of high abundance, exhibits lower 

expression only in depressed women, and is expressed in neurons and neural progenitor 

cells. Interestingly, LINC00473 is associated with several genes previously implicated in 

MDD, including the female MDD–specific gene, DUSP6, identified by Labonte et al. 
(71). When expression of LINC00473 is induced in mice, it promotes female, but not 

male, resilience to stress, potentially via its effect on electro-physiological properties of 

pyramidal neurons in females. When LINC00473 expression is induced in human-derived 

neuroblastoma cells, it binds to relevant depression and anxiety-related genes, including 

CREBBP, MAP2, and ERBB4. Thus, LINC00473 may be an upstream regulatory driver of 

female-specific MDD mechanisms. Exactly why changes in levels of this same lncRNA do 

not produce effects in males is currently unknown.

Altogether, recent large-scale transcriptomics studies have provided strong evidence for sex-

specific molecular signatures of MDD. These studies also delve deeper into mechanisms, 

point toward potential key drivers influencing sex-specific MDD vulnerability (e.g., DUSP6, 

EMX1, LINC00473), and suggest opposing brain pathological changes in depressed men 

and women.

HUMAN POSTMORTEM BRAIN RESEARCH CHALLENGES AND 

RECOMMENDATIONS FOR PATHS FORWARD

Studies of postmortem human brain are essential to identify disease- and sex-specific 

molecular, cellular, and circuitry alterations characteristic of MDD. Completion of such 

studies and interpretation of results require consideration of factors largely unique to 

human postmortem brain research, and these have been comprehensively reviewed [e.g., 

(84)]. Here, we discuss 5 aspects of postmortem human brain study design of particular 

consideration for investigations of the MDD disease process and suggest paths forward for 

thoughtful design of future studies.

One consideration is the potential effect of comorbid diagnoses to influence, or be 

influenced by, the MDD disease process on the measures of interest. MDD is often 

comorbid with anxiety disorders, and this is especially pronounced in women (13). Whether 

MDD disease processes include molecular, cellular, or circuitry alterations that trigger 

anxiety disorder pathogenic processes or whether each disorder has an independent and 

additive effect on a dependent measure can be informed by postmortem human brain studies. 

For example, a finding that the magnitude of the MDD female-specific effect on GABA 

synthesizing enzyme levels in the BLA (69) is even greater in female subjects with MDD 

and a comorbid anxiety disorder would suggest a shared and additive effect of both disorders 

on this measure. In contrast, the presence of this effect in female subjects with MDD and 

a comorbid anxiety disorder, but not in subjects with only an MDD or an anxiety disorder 

diagnosis, suggests that a sex-specific aspect of the MDD disease process contributes to the 

development of an anxiety disorder.

A second consideration is the potential effect of symptom heterogeneity on the measures 

of interest within subjects with MDD. Indeed, although many psychiatric illnesses have 

heterogeneous diagnostic symptoms, MDD is particularly diverse (85). For example, 
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individuals with symptoms including weight gain or loss, insomnia or hypersomnia, 

psychomotor agitation, or retardation all may meet criteria for an MDD diagnosis (85). 

Depending on the disease-related experimental question, this heterogeneity may be critical 

to consider during study design to produce results that can inform how brain alterations 

may map onto MDD symptoms. For instance, a study of the MDD disease effects in a 

sleep-relevant brain region (e.g., lateral hypothalamus) is strengthened by inclusion of MDD 

subjects with one type of sleep disturbance (e.g., insomnia) or equal numbers of MDD 

subjects with insomnia or hypersomnia. This consideration may be especially relevant in the 

study of sex differences in MDD, as there is evidence for different symptom profiles in men 

and women (11).

A third consideration is the potential effect of death by suicide. On average, approximately 

60% of individuals who died by suicide had a prior mood disorder (86). Notably, women 

report a greater frequency of suicidal thoughts and attempts than men, but men die by 

suicide more commonly than women (87,88). Neural alterations associated with death by 

suicide in individuals with MDD may index disease severity, reflect the influence of certain 

suicide and MDD risk factors such as early childhood adversity, and/or represent a suicide-

specific and diagnosis-independent finding (89–94).

A fourth consideration is the potential effect of treatment by antidepressant medications on 

the measures of interest. The efficacy of these medications may include mechanisms that 

alter neural functioning in a manner that obscures or eliminates the MDD disease effect on 

molecular-, cellular-, or circuitry-dependent measures. For instance, subjects with MDD not 

taking antidepressants have lower striatal levels of dihydroxyphenylacetic acid and higher 

PFC binding levels of β1 adrenoreceptors (95), suggesting that these alterations are related 

to MDD disease processes rather than effects of antidepressants. The triangulation method, 

which uses 3 different approaches to disentangle medication and disease effects, is one 

effective strategy previously used in postmortem human brain studies [e.g., (96–99)]. In the 

first approach, the dependent measure is compared between subjects with MDD on and off 

antidepressant medications at the time of death. A finding of no difference suggests that the 

medications do not affect the measure of interest. In the second approach, the dependent 

measure is compared between subjects with MDD and subjects with a different psychiatric 

illness also treated with antidepressant medications. A finding in antidepressant-treated 

subjects with MDD, but not antidepressant-treated subjects with a different psychiatric 

illness, suggests that the medications do not affect the measure of interest. In the third 

approach, the dependent measure is quantified in animal models that mimic treatment in 

humans. A finding of no effect suggests that the medications do not affect the measure 

of interest. Consistency of results across each of the 3 approaches strongly supports that 

the finding in subjects with MDD reflects a factor related to the disease process and not 

antidepressant medications.

A fifth consideration is the potential confounding effect of inadequate tissue preservation. 

Key measures reflecting tissue quality include 1) postmortem interval, the amount of time 

between death and brain preservation; 2) RNA integrity number, a measure of RNA quality 

and concentration; and 3) brain pH, which is correlated with RNA yield and quality. 

Matching subjects across diagnostic groups as closely as possible on these factors minimizes 
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sources for technical variability and helps to ensure that findings are not confounded by 

inferior tissue quality in one subject group. Further, rigorous experimental design to identify 

sex-specific MDD disease effects ensures that these factors are similarly represented in male 

and female subjects both within and across diagnostic groups.

In conclusion, accurate mapping of the neural alterations that contribute to sex-specific 

brain dysfunction in MDD requires postmortem human brain studies that take into 

consideration these clinical and technical aspects. Although tissue quality measures are 

routinely determined for postmortem human brain samples, the clinical considerations 

require a systematic and comprehensive characterization that identifies each individual’s 

comorbid diagnoses, MDD symptom profile, and treatment at time of death (100). Studies 

of clinically well-characterized subjects can provide key insights into how brain pathological 

alterations map onto MDD symptoms. These studies can also provide results meaningful 

for the development of novel, personalized, and evidence-based therapeutics. Indeed, studies 

investigating whether distinct molecular phenotypes are present in subjects with distinct 

symptom phenotypes hold promise for the development of personalized therapeutics (101–

103).

BIOLOGICAL FACTORS UNDERLYING THE ROLE OF SEX

Alterations observed in the human brain do not necessarily drive sex differences in 

MDD. For instance, sex differences may reflect compensatory mechanisms, may be due to 

unknown confounds, or may be downstream of primary pathology. Studies in model systems 

are therefore key to determining causation. While many previous studies used rodent stress 

paradigms designed for males, recent studies have established paradigms that also work 

in females (104–107), thus providing a preclinical venue to compare the transcriptional 

alterations observed in MDD. While beyond the scope of this review, Rainville and Hodes 

provide a thorough review of rodent literature related to sex differences in stress response 

and discuss peripheral mechanisms that might drive sex differences in MDD (108). We 

highlight various nuances to consider when determining mechanisms underlying observed 

sex differences.

As genetic sex (XX or XY) is inextricably linked to gonadal sex (ovaries or testes) in 

humans, it is challenging to determine the underlying causes of sex differences (hormones 

vs. sex chromosomes). Except for rare genetic conditions, XY individuals have testes, 

and XX individuals have ovaries. XY individuals have male-like circulating hormones in 

adulthood that may influence the sex difference (i.e., acute, activational effect of hormone) 

and also are exposed to male-like circulating hormones during sensitive developmental 

periods (109). While many sex differences are caused by acute hormone effects, there are 

instances where hormone exposure during sensitive periods cause permanent sex differences 

(i.e., organizational hormone effect) (110,111). The sensitive developmental window varies 

based on the trait examined (112) and can extend from the prenatal period through puberty 

(113–115). In support of a role of gonadal hormones, many sex differences in the human 

brain and behavior appear at puberty and are correlated with gonadal hormone levels 

(116–118). Permanent sex differences are challenging to investigate in humans, as it is 

not possible to determine gonadal hormone levels during sensitive periods, as some occur 
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prenatally. Evidence also suggests that genetic sex, independent of gonadal hormones, 

influences social behavior (119,120), alcohol abuse (121), habit formation (122), aggressive 

and parenting behavior (123), and gene expression (124–129). Given complications in 

disentangling effects of genetic sex, developmental gonadal hormone exposure, and adult 

hormone exposure, it is often necessary to move to animal models. There are comprehensive 

reviews on this topic (130–133).

While an identified sex difference may be caused by a single sex-related factor, it is possible 

that multiple mechanisms work in tandem to create the sex difference. The sum of these 

sex-biased effects on gene networks and cells is referred to as the sexome, which is reviewed 

by Arnold and Lusis (134). For instance, organizational effects of hormones often interact 

with adult circulating hormones for full expression of the sex difference. In other words, 

acute hormonal effects in adulthood may occur only if proper hormones were present during 

sensitive developmental periods.

Although one might predict that sex-related factors work together to promote a sex 

difference (i.e., two factors push the sex difference in the same direction), this is not always 

the case. In fact, two sex-related factors might work in opposite directions, sometimes 

even to eliminate a sex difference, a phenomenon termed compensation (135). Examples 

of compensation are that male-typical hormones (androgens) increase weight and adiposity, 

but male genetic sex (XY) decreases them; removing androgens amplifies the XY genetic 

sex effect, as the opposing factor is not present to balance it (136,137); or, conversely, XY 

genetic sex increases anxiety-like behaviors, which are compensated by adult circulating 

testosterone (127). Additionally, males and females might arrive at the same trait via 

different mechanisms (e.g., XX effect in females, testosterone effect in males).

Altogether, various strategies can be employed in animal models to disentangle mechanisms 

underlying sex differences observed in humans (131–133). However, it is often not as simple 

as one factor working independently to cause a sex difference. Rather, many factors may 

work together or in opposition.

SUMMARY

Recent advances in basic neuroscience knowledge and the development of novel 

investigational tools are now merging with a renewed interest in understanding the biological 

bases of the well-characterized clinical differences in depression between men and women. 

We have highlighted candidate gene and large-scale transcriptomics studies suggesting 

divergent pathologies in depressed men and women. We discussed challenges encountered 

when performing human postmortem brain studies in MDD and propose paths forward for 

future studies. Approaches in model systems are highlighting the complexity of examining 

mechanisms underlying sex differences. These novel perspectives are generating hypotheses 

and tools to investigate the putative roles and interactions of factors underlying the 

biological bases of sex differences in depression.
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Figure 1. 
Schematic of neocortical microcircuitry and associated dysfunction in major depressive 

disorder (MDD). (A) Canonical microcircuitry in healthy control subjects with excitation 

(E)/inhibition (I) balance. (B) In the dorsolateral prefrontal cortex (DLPFC) of male and 

female subjects with MDD, there is lower expression of somatostatin (SST) (indicated by 

lighter color), but no change in parvalbumin (PV), suggesting reduced inhibition of input 

of pyramidal cells (PYR). (C) In the anterior cingulate cortex (ACC) of male subjects 

with MDD, there is moderately lower expression of both SST and PV, suggesting reduced 

inhibition of input and output of pyramidal cells, i.e., lower E/I balance. (D) In the ACC 

of female subjects with MDD, there is a robust reduction in expression of SST and 

moderately lower PV, suggesting strong inhibition of input and reduced inhibition of output 
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of pyramidal cells, suggesting E/I imbalance. (E) In the basolateral amygdala (BLA) of 

male subjects with MDD, there are no differences in SST or PV, suggesting conserved E/I 

balance. (F) In the BLA of female subjects with MDD, there is reduced expression of SST, 

but not PV, suggesting reduced inhibition of input of pyramidal cells and altered E/I balance.
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Figure 2. 
Proposed model of sex-specific major depressive disorder (MDD) mechanism involving 

dendritic spines and microglia. Male control subjects have more dendritic spines and fewer 

activated microglia than male subjects with MDD, but female control subjects have fewer 

dendritic spines and more activated microglia than female subjects with MDD. MDD effects 

appear to be opposite in male and female subjects, converging on a similar MDD phenotype 

across sexes. Successful treatment would push male and female subjects back to their sex-

specific baselines, which would require opposite effects on microglia. Further, it is possible 

that a successful treatment in one sex might push the other sex further from their sex-specific 

baseline, which could be detrimental. Pyramidal cells are in pink. Ramified microglia are in 

yellow, reactive/ameboid microglia are in red, and intermediate microglia are in orange.
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