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Abstract

Oxidative stress is a major component of most major retinal diseases. Many extrinsic anti-

oxidative strategies have been insufficient at counteracting one of the predominant intrinsic 

sources of reactive oxygen species (ROS), mitochondria. The proton gradient across the inner 

mitochondrial membrane is a key driving force for mitochondrial ROS production, and this 

gradient can be modulated by members of the mitochondrial uncoupling protein (UCP) family. Of 

the UCPs, UCP2 shows a widespread distribution and has been shown to uncouple oxidative 

phosphorylation, with concomitant decreases in ROS production. Genetic studies using transgenic 

and knockout mice have documented the ability of increased UCP2 activity to provide 

neuroprotection in models of a number of diseases, including retinal diseases, indicating that it is a 

strong candidate for a therapeutic target. Molecular studies have identified the structural 

mechanism of action of UCP2 and have detailed the ways in which its expression and activity can 

be controlled at the transcriptional, translational and posttranslational levels. These studies suggest 

a number of ways in control of UCP2 expression and activity can be used therapeutically for both 

acute and chronic conditions. The development of such therapeutic approaches will greatly 

increase the tools available to combat a broad range of serious retinal diseases.
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1. Introduction

The socioeconomic cost of retinal degenerative diseases is large, and growing. Blindness, 

low vision, age-related macular degeneration, glaucoma, and diabetic retinopathy affect over 
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15.4 million people in the USA, a number that is expected to be 24.3 million by 2050 

(Varma et al., 2016; Wittenborn & Rein, 2014). As of 2013, the economic burden of eye 

disease was estimated to be $139 billion (Wittenborn et al., 2013). The impact of these 

diseases will only increase, with no solution in sight. While many of them have unique 

genetic or environmental origins, they also share significant pathophysiological 

abnormalities, including an imbalance in the production of reactive oxygen species (ROS) 

and their detoxification, which is referred to as oxidative stress (Altomare et al., 1997; 

Kimura et al., 2017; Lefevere et al., 2017; Totan et al., 2009; Wang et al., 2008). In the eye 

and in other systems, oxidative stress can damage a wide variety of molecules, and may be a 

shared principal cause of degeneration.

This review discusses oxidative stress in a broad context, and then focuses on a group of 

proteins that we propose hold great promise for therapeutic intervention to ameliorate the 

effects of oxidative stress in multiple eye diseases. Mitochondrial uncoupling proteins 

(UCPs) are endogenous proteins that exhibit anti-oxidative activity in a variety of conditions 

(Diano et al., 2003; Hass & Barnstable, 2019a; Mailloux & Harper, 2011; Mehta & Li, 2009; 

Nègre-Salvayre et al., 1997; Qin et al., 2019). These proteins partially dissipate the 

electrochemical gradient in mitochondria, leading to a partial ‘uncoupling’ of electron 

transport from proton translocation, a critical metabolic process. By doing so, UCPs can also 

decrease the driving force by which mitochondria generate ROS.

In this review we will discuss sources of energy in the retina, how these relate to the 

generation of ROS, and a more specific mechanism by which UCPs are thought to decrease 

ROS. This function is invariably tied to structure, and we will further describe what is 

known of the gene and protein structure of a particular member of the UCP, UCP2. Of all 

UCPs, UCP2 is expressed in the greatest diversity of tissues, and appears to be under the 

tightest regulation, making it a prime candidate as a therapeutic target, the effect of which 

could be applied to a number of tissues. We will further discuss factors that regulate UCP2 

abundance and function, as well as the roles of this protein in normal physiology and 

disease.

2. Retinal energetics and mitochondria

2.1 Anatomical and Metabolic Compartments of the Eye

The eye is divided into two main compartments along its anterior-posterior axis, each having 

distinct anatomical and metabolic properties that contribute to differing energetic 

requirements and burdens of oxidative stress. The anterior chamber is bounded by the cornea 

and lens. At the anterior aspect of the eye, the avascular cornea is directly exposed to 

atmospheric molecular oxygen (O2) diffusing through the tear film. Despite high levels of 

O2, oxygen consumption is surprisingly low in multiple parts of the anterior chamber, 

including both the cornea and lens (Freeman, 1972; Trayhurn & Van Heyningen, 1971). 

Instead of utilizing mitochondrial metabolism, most glucose is converted to lactate in these 

tissues during the process of anaerobic glycolysis (Freeman, 1972). This process likely 

limits generation of mitochondria-derived ROS in the cornea. However, a high concentration 

of atmospheric O2 itself can be a source of ROS through non-mitochondrial pathways, and 

unsurprisingly human corneal endothelial cells express high levels of the anti-oxidant 
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protein peroxiredoxin, encoded by the PRDX6 gene, on their cell surface (Lovatt et al., 

2018).

In the posterior chamber of the eye, the neural retina, retinal pigment epithelium (RPE), the 

choroicapillaris, and sclera are more distant from the cornea and have more restricted access 

to O2. Alongside O2, glucose, lactate, and other circulating nutrients collectively power the 

generation of adenosine triphosphate (ATP). While anaerobic glycolysis appears to be the 

principal form of metabolism in the anterior chamber, cells in the posterior chamber exhibit 

a more varied mixture of glucose utilization in aerobic glycolysis and anaerobic glycolysis.

The retina is the most complex functional unit of the posterior pole, and the distinct layers of 

the retina are served by blood from both the central retinal artery and choroidal vasculature. 

Astrocytes, müller glia, microglia, bipolar cells, amacrine cells, and ganglion cells of the 

inner retina are supplied with metabolic fuel through the central retinal artery, whereas 

photoreceptors, horizontal cells, and the RPE are supplied by the choriocapillaris. Müller 

glia and retinal astrocytes in combination with capillary endothelial cells comprise a ‘blood-

retina barrier’ that regulates the diffusion of serum macro-molecules to the retina. RPE cells 

form a similar barrier between the retina and fenestrated capillaries of the choroidal blood 

supply. There are substantial physiological differences between the retinal and choroidal 

vasculature. Retinal arterial circulation is characterized by low blood flow and high oxygen 

extraction, whereas blood flow in choroidal vessels is higher, but oxygen extraction is low 

(Campochiaro, 2000). In retinal vessels, efficient autoregulation is mainly influenced by 

local factors, whereas choroidal circulation is controlled by sympathetic innervation 

(Boussery et al., 2002; Delaey & Van De Voorde, 2000; Steinle et al., 2000). The difference 

in blood flow regulation is also reflected in the differences between the expression of 

angiogenic regulators and cytokines in the endothelial cells of these barriers (Brylla et al., 

2003).

2.2. The Retina Has a Particularly High Energy Demand

Blood flow disproportionately serves neural tissues, including the retina. A sampling of 

blood flow to a several neural and non-neural tissues in the Antarctic seal found that the 

energy supply to the visual system is uniquely high (Niven & Laughlin, 2008), as it is in the 

brains of many species (Niven & Laughlin, 2008). The high energy demand in the retina 

arises in part from the electrophysiological properties of photoreceptors. In darkness the 

photoreceptor plasma membrane is continuously depolarized due to tonic activity of cyclic 

nucleotide-gated cation channels. These channels allow entry of Na+ and Ca2+ ions along 

their concentration gradient (Fesenko et al., 1985; Hagins et al., 1970). These ions are 

pumped out of cells by Na+/K+- and Ca2+-ATPases (Krizaj & Copenhagen, 1998; Okawa et 

al., 2008; Stahl & Baskin, 1984). Based on the contribution these ATPases make to 

electrophysiological responses of photoreceptors and the stoichiometry of ion currents to 

ATP hydrolysis, the metabolic costs of maintaining a depolarized plasma membrane 

potential in darkness are estimated to outweigh any of the other events in photoreceptor 

signal transduction, particularly in darkness (Okawa et al., 2008). The energy requirements 

of cone photoreceptors may be even higher than that of rods, given that rod 

phototransduction can be saturated at higher intensities of light but cone phototransduction 
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does not saturate (Burkhardt, 1994; Fain, 1976). These atypical cone energy requirements 

may explain their extremely dense cluster of mitochondria that outstrips even that of rods 

(Hoang et al., 2002).

RPE phagocytizes and recycles photoreceptor outer segments and is critical for 

photoreceptor biology. Being located close to choroidal blood supply, the RPE has more 

immediate access to nutrients than photoreceptors. While a it has become clear that RPE is 

able to utilize a broad spectrum of metabolic substrates (Bisbach et al., 2020b; Chao et al., 

2017; Kanow et al., 2017), it is not yet clear whether the energetic demands of RPE are 

comparable to those of photoreceptors, or whether RPE metabolic flexibility exists primarily 

to spare glucose for utilization by photoreceptors (Kanow et al., 2017).

Retinal ganglion cells (RGCs) in the inner retina are another critical consumer of ATP. These 

projection neurons integrate outer retinal signals and transmit them along the optic nerve, 

which in humans can be ~45 mm long (Bernstein et al., 2016). It is likely that the length of 

the axons of these cells proportionally increases their mass and according to Kleiber’s 

allometric scaling law, their demand for ATP (West et al., 2002; Yu et al., 2013). A 

significant portion of these axons are unmylinated, which may increase the energetic cost of 

signal transduction roughly five-fold per axon (Neishabouri & Faisal). To supply the energy 

that can meet this high demand RGCs are outfitted with dense clusters of mitochondria, 

much like photoreceptors in the outer retina (Rueda et al., 2016; Yu et al., 2013).

2.3. Mitochondrial Energy Generation

Cells generate ATP primarily by two metabolic pathways, anaerobically by converting 

glucose to lactate in glycolysis, or aerobically through the mitochondrial electron transport 

chain (ETC). Of the two, the ETC is more efficient and can generate 30-32 mol ATP per mol 

glucose, whereas glycolysis can only generate 2-3 mol ATP per mol glucose (Alberts et al., 

2008).

The ETC generates ATP using a combination of four distinct multiprotein complexes 

(Complex I-IV) and two electron carriers (coenzyme Q and cytochrome C) to extract 

electrons from NADH or succinate and use those electrons to reduce molecular oxygen (O2) 

to water (Figure 1) (Alberts et al., 2002). The affinity of mitochondrial components for 

electrons increases in each sequential reaction of the electron transport chain, and the 

terminal reaction at cytochrome C oxidase (½ O2 + 2H+ + 2e− → H2O) is associated with an 

energetically favorable redox potential (E°≈820 mV). The favorability of ETC redox 

reactions drives translocation of protons (H+) from the mitochondrial matrix to the 

intermembrane space at complexes I, III, and IV. H+ translocation ‘charges’ mitochondria 

with a H+-derived electrochemical gradient, known as the proton-motive force (PMF) 

(Mitchell, 1961). The PMF favors the flow of H+ from the intermembrane space back to the 

matrix, and this flow powers rotary movement of the F1F0-ATP synthase, forming ATP from 

adenosine diphosphate (ADP) and inorganic phosphate (Abrahams et al., 1994). The PMF 

can be dissected into two distinct but interacting gradients – an electrical gradient known as 

the mitochondrial membrane potential (ΨM), and a concentration gradient, which for H+ is 

the pH.
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Measures of enzyme activity show that inner retinal layers are enriched for mitochondrial 

cytochrome C oxidase (COX) activity (Hevner & Wong-Riley, 1990; Kageyama & Wong-

Riley, 1984). This enzyme is a key component of the ETC, and COX enrichment suggests an 

enhanced capacity for generating ATP that supports high metabolic requirements associated 

with the continuous transmission of visual signals by inner retinal neurons such as RGCs. In 

a mouse model of glaucoma, we have found significant impairment of retinal COX activity 

and a decrease in mitochondrial DNA – both are likely the result of mitochondrial damage 

related to elevated intra-ocular pressure (Figure 2). Additionally, retinas from mice lacking 

the complex I component gene Ndufs4 exhibit less light-stimulated electrical activity in the 

retina, and possess fewer retinal ganglion cells (Yu et al., 2015). Similarly, dysfunction in 

the mitochondrial electron transfer chain proteins ND1, ND4 and ND6 give rise to Leber’s 

hereditary optic neuropathy, a disease that only affects retinal ganglion cells (Yen et al., 

2006). This further emphasizes the high dependence of these cells on mitochondrial 

function. These data also support the hypothesis that in neurodegenerative disorders like 

glaucoma, oxidative damage impairs mitochondrial energy generation, and in turn an 

impaired ability of the retina to generate ATP alone is sufficient for further degeneration 

(Kong et al., 2009). It will be interesting to see whether mitochondrial defects can be 

compensated by modulating the activity of UCPs, a potentially more effective and more 

general approach than individualized gene therapy.

2.4. ROS, and Their Sources in Mitochondria

A high density of mitochondria enables retinal neurons to generate significant amounts of 

ATP, but these mitochondria are among the most prevalent cellular sources reactive oxygen 

species (ROS) (Kudin et al., 2008; Wong et al., 2019). ROS are reactive oxygen-containing 

molecules generated from a progenitor superoxide (O2
• − ), which itself is formed through the 

direct interaction of O2 and an electron in or outside of the ETC (Murphy, 1989; St-Pierre et 

al., 2002). ROS themselves are often free radicals (for example HO•, HO2
•) or their 

derivatives (for example H2O2). Each of these molecules has unique properties that governs 

which molecules they are more likely to react with and which cellular barriers they are more 

likely to cross, reviewed more extensively in (Collin, 2019). ROS can react with and damage 

nuclear or mitochondria DNA (Abu-Amero et al., 2006; Izzotti et al., 2003), carbohydrates, 

lipids (Esterbauer et al., 1991), or proteins (Tezel et al., 2005; Yang et al., 2016; Zhao et al., 

2014) to form semi-permanent adducts that impair cell and tissue function (Hashizume et al., 

2008; Sela et al., 1993), or may alternatively participate in cell signaling (D'Autréaux & 

Toledano, 2007). As much as 0.15% of ETC flux can form superoxide radicals, though 

production of this and other ROS are dependent on the type of ETC substrate used by 

mitochondria (ex. NADH vs. succinate) (St-Pierre et al., 2002), polarity of the PMF 

(Korshunov et al., 1997; Murphy, 2009), and the amount of mitochondrial material (Brand, 

2016; Murphy, 1989, 2009) (Figure 1B,C).

Substrates can determine the extent of ROS generation because different electron donors 

interact with distinct mitochondrial complexes, with each complex possessing a different 

capability to generate ROS. There are at least five different small molecule mitochondrial 

electron donors that feed electrons to the ETC (NADH, succinate, glycerol-3-phosphate, 
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fattyacyl-CoA and dihydroorotate) through a combination of conventional ETC complexes 

and other proteins which reduce coenzyme Q10 (Brand, 2016). Among the mitochondrial 

components which handle these electrons, complex I (NADH-Ubiquinone Oxidoreductase) 

appears to ‘leak’ electrons that form ROS to the greatest extent, though it is clear that 

complex III (the Ubiquinone-Cytochrome C Oxidoreductase) is another important source 

and that ROS are not exclusively produced from a single site in mitochondria (Hirst et al., 

2008; Kudin et al., 2008; St-Pierre et al., 2002; Wong et al., 2019). The production rate of 

ROS from a given site or substrate is modulated by the balance between the delivery and 

utilization of that substrate to mitochondria. For example, a high [NADH] reduces the flavin 

site of complex I, and electrons from this site interact with O2 to form O2
• −  molecules 

(Figure 1B) (Hirst et al., 2008; Pryde & Hirst, 2011). The polarity of the PMF is another 

important factor in the generation of ROS. At complex I, the PMF is an electrochemical 

gradient against which H+ are pumped. Without that thermodynamic barrier, NADH may be 

oxidized more quickly so that [NADH] does not build up or interact with O2 through the 

complex I flavin site.

ROS may also be formed through a combination of supraphysiological levels of the complex 

II substrate succinate and a high PMF. Together, these conditions can ‘reverse’ the direction 

of mitochondrial electron transport, and causing electrons to flow ‘backwards’ towards 

complex I (Murphy, 2009). This happens because the flow of electrons from succinate to 

coenzyme Q10 can push reduced coenzyme Q10 to not only participate in the electron 

transport at complex III, but also to drive complex I in reverse (Figure 1C) (Murphy, 2009). 

Reverse electron transport at complex I can result in up to 2% of electron flux forming ROS 

- provided that these circumstances are set using the complex III inhibitor antimycin A 

(Chance et al., 1979). Such inhibitors, as well as hypoxia or anoxia, can assist in causing 

ETC reversal by blocking the exit of electrons from the ETC and ‘backing up’ their flow 

(Chouchani et al., 2014). Just as a hyperpolarized PMF may contribute to reversing electron 

transport, dissipation of the PMF can decrease the generation of ROS by reverse electron 

transport (Pryde & Hirst, 2011; Robb et al., 2018). Chemical uncouplers and uncoupling 

proteins are able to dissipate PMF, ‘uncoupling’ mitochondrial respiration from PMF-

powered ATP synthesis, and this hypothesized mechanism of action has propelled studies in 

their possible use to decrease the generation of mitochondrial ROS.

One limitation on studies of how mitochondria can generate ROS is the question of whether 

a high PMF or reverse electron transport-stimulated H2O2 are generated in vivo. Recent 

advances in high-resolution imaging approaches have revealed substantial variance in ΨM 

between cristae of the same mitochondrion, which could suggest that in a subset of cristae, 

ΨM may be sufficiently polarized to drive ROS formation (Wolf et al., 2019). Increasing 

evidence also suggests that mitochondrial reverse electron transport at complex I drives 

macrophage polarization (Mills et al., 2016), the formation of ROS during ischemia-

reperfusion injury (Chouchani et al., 2014), and may even increase fruit fly lifespan (Scialò 

et al., 2016). These all suggest that increases in PMF and thus ROS are possible under 

physiological and/or pathological circumstances.
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Whether this unique form of ‘reversed’ mitochondrial metabolism occurs physiologically or 

pathologically in the retina is less clear, though a recent study of metabolic flux in the mouse 

retina has shown that a metabolic pathway unique to hypoxic tissues (Chouchani et al., 

2014; Hochachka & Dressendorfer, 1976; Hochachka et al., 1975) likely operates in the 

retina – instead of complex II activity forming fumarate from succinate, it ‘reverses‘ and 

forms succinate from fumarate (Bisbach et al., 2020a). Unlike the reverse mode of complex I 

activity, it is unclear what impact this unique process has on the generation of ROS within 

the retina, though low levels of O2 in the photoreceptor layers in general may mitigate ROS 

formation from complex II reversal (Linsenmeier & Zhang, 2017; Yu & Cringle, 2006).

The final causal factor that regulates mitochondrial ROS production is simply the 

mitochondrial content of a cell or tissue type. Each mitochondrion has a non-zero chance to 

produce ROS from any given mode of ETC function, so the abundance of mitochondria in a 

cell will amplify whichever of these modes of ROS generation is most dominant (Boveris & 

Chance, 1973). Mitochondria are particularly dense in photoreceptors and retinal ganglion 

cells, and this fact alone may suggest a high burden of ROS generation in the retina. 

However, due to high levels of oxygen consumption by a combination of photoreceptor and 

RPE mitochondria, O2 tension is low close to photoreceptor nuclei and inner segments (Lau 

& Linsenmeier, 2012; Linsenmeier & Zhang, 2017; Yu & Cringle, 2001, 2006), suggesting 

that effects of high mitochondrial density on ROS production may be moderated by lower 

concentrations of oxygen available to form those ROS (Maddalena et al., 2017). Alternately 

the influence of mitochondrial density on ROS may be more prevalent in the inner retina, 

where oxygen tension appears higher closer to where retinal ganglion cell mitochondria are 

localized, at least in vascularized mammalian retinas (Yu & Cringle, 2001).

Most of the discussion above is applicable to all tissues. The retina, however, has additional 

factors influencing ROS production. Retinal cells are affected in a continuous manner by 

light-induced oxidative stress. This is particularly true for photoreceptors transforming light 

in the phototransduction process and the presence of many visual pigment derivatives 

generating ROS. There is also growing evidence that light can influence ROS generation in 

retinal ganglion cells and this may be a contributing factor in glaucoma (Zhao & Shen, 

2020).

2.5. What are the consequences of mitochondrial ROS, and how are they circumvented?

ROS are important contributors to disease in many tissues and organs. Within the CNS, ROS 

thought to be central components of Alzheimer’s Disease (Baldeiras et al., 2010; Massaad, 

2011; Polidori et al., 2007), Parkinson’s Disease (Alam et al., 1997; Floor & Wetzel, 1998; 

Yoritaka et al., 1996), Huntington’s disease (Chen et al., 2007; Rotblat et al., 2014; Sorolla 

et al., 2008), glaucoma (Carter-Dawson et al., 2004; Izzotti et al., 2003; Tezel et al., 2005), 

age-related macular degeneration (Frank et al., 1999; Totan et al., 2009; Venza et al., 2012), 

diabetic retinopathy (Altomare et al., 1997; Paget et al., 1998), and Leber’s hereditary optic 

neuropathy (Wang et al., 2008; Wang et al., 2005; Yen et al., 2004), amongst others. In all of 

these conditions, excessive generation of ROS that is not counterbalanced by antioxidant 

systems appears to be a mechanism leading to cellular dysfunction and death. This is 

exemplified by genetic deletion of antioxidant proteins, which can disrupt the balance 
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between ROS generation and detoxification in the retina. More specifically, deletion of 

either cytosolic Sod1 or mitochondrial Sod2 genes coding for the anti-oxidative superoxide 

dismutase enzyme results in degeneration of both the inner and outer retina, demonstrating 

that constant cytosolic and mitochondrial detoxification of ROS is necessary for 

maintenance of retina health (Hashizume et al., 2008; Sandbach et al., 2001).

Exogenous antioxidants are thought to prevent the accumulation of ROS-mediated damage. 

Cell culture and animal studies have shown that different small molecule antioxidants or 

transcription factors which code for anti-oxidative proteins can limit cell death and 

degeneration (Noh et al., 2013; Xiong et al., 2015; Yang et al., 2016). The factor RDCVF, a 

trophic factor of the thioredoxin family, can protect rod photoreceptors against a number of 

oxidative stresses including light damage (Elachouri et al., 2015). RDCVF also enhances 

glucose consumption in cone photoreceptors as well as preventing oxidative stress 

(Léveillard & Sahel, 2010). This provides an interesting illustration that cell survival at a 

high metabolic rate requires antioxidant strategies. Despite successful studies in animals, 

studies of anti-oxidants have not yet yielded a therapeutic that consistently prevents 

neurodegeneration in humans (Garcia-Medina et al., 2015). One reason for this may be 

insufficient penetration to target tissues, particularly to the subcellular compartment that act 

as a source of ROS (i.e. mitochondria). Research is underway to mitigate this issue by 

developing compounds that better penetration to mitochondria, such as 

triphenylphosphonium derivatives of preexisting antioxidants (Anders et al., 2006; Murphy 

& Smith, 2007; Zielonka et al., 2017). Other reasons for insufficient antioxidant efficacy in 

the clinic may include modest ROS buffering due to poor antioxidative capacity, duel 

antioxidant/pro-oxidant activities that are dependent on the cellular microenvironment, or an 

inability for antioxidants to localize to critical cellular compartments (Carr & Frei, 1999). As 

drugs with antioxidant activity continue to be discovered, we expect that it is only a matter 

of time until these latter issues are also addressed.

However, while neutralizing ROS is an important component of the body’s defenses, 
the central thesis of this review is that it is more effective to block their production, 
particularly using endogenous factors that have already been optimized by evolution. 

Because mitochondria with a high PMF produce more ROS, depolarization of the 

mitochondrial membrane can attenuate the production of ROS, a concept that is well 

established in isolated mitochondria and submitochondrial particles (Korshunov et al., 1997; 

Pryde & Hirst, 2011; Robb et al., 2018). By providing an alternative route for hydrogen ions 

to pass through the inner mitochondrial membrane, depolarization of ΨM also ‘uncouples’ 

ATP synthesis from electron transport. Uncoupling, and consequent reductions in the 

generation of ROS may be accomplished in several ways.

The first of these is through the use of exogenous compounds such as 2,4-dinitrophenol 

(DNP), carbonyl cyanide m-chlorophenyl hydrazone (CCCP), carbonyl cyanide-p-

trifluoromethoxyphenyl hydrazone (FCCP). These are chemical uncouplers, and their 

activity induces uncontrolled depolarization of the mitochondrial membrane. These 

compounds have been used (sometimes illegally) to decrease the efficiency of ATP synthesis 

to promote weight loss, though at higher doses they are lethal (Grundlingh et al., 2011). 
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Such unregulated compounds are too toxic to be a likely means of decreasing the production 

of ROS.

A more physiological form of uncoupling results from activity of proteins or complexes such 

as the F1F0-ATP synthase, adenine nucleotide translocase, aspartate-glutamate carrier, and 

phosphate carrier (Kunji & Robinson, 2010). These transport reactions cause a ‘leak’ of 

protons across the inner mitochondrial membrane that powers solute transport. Because 

these processes are intertwined, manipulation of transporter levels or activity that may 

decrease ROS could also affect the distribution of metabolites inside mitochondria and thus 

have unforeseen consequences on the generation of ROS.

A third mechanism of uncoupling in mitochondria, and one that offers strong therapeutic 

potential, is catalyzed by mitochondrial uncoupling proteins, or UCPs (Parker et al., 2009; 

Sluse, 2012; Vozza et al., 2014). UCPs mediate an inducible H+ leak that is more tightly 

regulated than that of DNP, FCCP, or CCCP (Parker et al., 2009). By regulating the PMF, 

UCPs are thought to regulate production of ROS. The next sections are dedicated to broadly 

introducing UCPs by describing important aspects of UCP genetics, physiology, regulation, 

as well as how these govern the generation of ROS in the retina.

3. Mitochondrial Uncoupling Proteins

3.1. Phylogeny of Uncoupling Protein

Uncoupling proteins (UCPs) belong to the SLC25 superfamily of mitochondrial solute 

carrier genes. In humans, this superfamily has 53 members, all of which are encoded in 

nuclear DNA. Within this superfamily, the 5 membered UCP family exists in the mouse and 

human genomes (UCP1-UCP5), with each UCP numbered in the order of their discovery.

Different forms of UCPs can be found at many branches of the phylogenetic tree, with UCP 

paralogs in vertebrates, invertebrates, and even plants (Figure 3) (Gaudry & Jastroch, 2019; 

Nogueira et al., 2005). This phylogeny largely agrees with other studies where initial 

sequence comparisons between the human UCP family and putative UCPs from Drosophila 
and C. elegans suggested that UCP4 may be the ancestral form of uncoupling protein from 

which the others are derived (Hanák & Jezek, 2001). Later studies have revised this model 

and found an early divergence of the ancestral UCP into three branches that preceded the 

divergence of protostomes and deuterostomes (Figure 4) (Sokolova & Sokolov, 2005). Two 

of these branches evolved into UCP4s and UCP5s found in both vertebrates and 

invertebrates (Hughes & Criscuolo, 2008). The third gave rise to an invertebrate UCP 

(UCP6) and the precursor of vertebrate UCP1, UCP2 and UCP3 (Hughes & Criscuolo, 

2008; Sokolova & Sokolov, 2005). Comparison of nucleotide sequences and gene locations 

suggest that UCP2 and UCP3 are closely related to each other. They are adjacent to each 

other on human chromosome 11 (mouse chromosome 7), and are generally thought to be the 

result of an evolutionarily recent gene duplication event (Pecqueur et al., 1999). As the 

members of this third branch were the first to be identified and characterized, they are also 

foundational to our understanding of UCP structure and function.
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As we have mentioned, the primary function of UCPs is to uncouple ATP synthesis from 

electron transport in mitochondria – this function was derived from the first uncoupling 

protein to be characterized in detail, UCP1. UCP1 is strongly expressed in brown adipose 

tissue, where it generates heat by dissipating the PMF, to such a high extent as to induce 

thermogenesis (Nicholls et al., 1978). UCP2 and UCP3 similarly dissipate the PMF, but as 

we will discuss, this may not be the only function of these molecules (Bouillaud et al., 2016; 

Esteves & Brand, 2005). Compared to these other uncoupling proteins however, the 

functions of UCP4 and UCP5 are less well-understood. While they are able to transport H+ 

when reconstituted in liposomes (Hoang et al., 2012), mixed evidence suggests that they 

may (Perreten Lambert et al., 2014) or may not (Chu et al., 2009; Ho et al., 2006) do the 

same in cells. Once a larger cohort of studies support a unified function for UCP4 and 

UCP5, it will likely become clear whether the ancestral function of every member of this 

family is to uncouple, or whether evolutionary changes allow some to act more specifically 

as H+-coupled metabolite transporters.

3.2. Uncoupling Protein Structure and Mechanism of Uncoupling

Protein function is constrained by structure, and these features often provide hints about 

each other. Alignment of the protein sequences of the five human uncoupling proteins 

clearly indicates their homology and identifies key residues that are invariant (Figure 5). The 

core UCP structure has three repeating units, each with a loop of amino acids passing 

through the membrane twice, resulting in six transmembrane helices (H1 to H6 – blue bars 

in Figure 5), In the odd-numbered helices a conserved proline residue introduces a kink in 

the helix (highlighted in red), and a conserved glycine allows movement of the polypeptide 

chain (highlighted in yellow). Conserved prolines are also found in helices 4 and 6, further 

altering the helical structures. There is no crystal structure of any uncoupling protein. 

However, by fitting the amino acid sequences of uncoupling proteins to the known crystal 

structure of other SLC25 members it has been possible to obtain high-resolution models of 

UCP1 and UCP2. These studies used crystal structures of the bovine and Saccharomyces 
cerevisiae adenine nucleotide translocator proteins (ANT1; Figure 6A) (Pebay-Peyroula et 

al., 2003). These macromolecules have only a <20% sequence identity but a very similar 

domain structure and high conservation of certain key amino acid residues (Berardi et al., 

2011). The structures have been refined by more recent NMR analyses that also identified 

the binding sites of several regulatory ligands (Berardi et al., 2011). The six transmembrane 

helices line a cavity through the membrane (Figure 6B), the motifs after proline-induced 

kinks (PX[D/E]XX[R/K]X[K/R] generate a salt-bridge network that can close the cavity on 

the matrix side (Cytosolic gate area or C-state)(Palmieri & Pierri, 2010). A second salt-

bridge network is formed by the motif [F/Y][D/E]XX[R/K] at the C-termini of the even 

numbered helices and this can close the cavity on the intermembrane space, or cytoplasmic, 

side of the molecule (Matrix gate area or M-state) (Berardi et al., 2011; Palmieri & Pierri, 

2010). For most of the carriers of the SLC25 family it is thought that a substrate enters this 

cavity from the intermembrane space with the protein in the C-state and binding of this 

substrate induces a conformation changes such that the salt bridges switch to the M-state and 

the substrate can then exit to the matrix side. These movements are illustrated in Figure 7A, 

with the actual transitions of one loop repeat shown in Figure 7B and 7C. Relative to ANT1, 

UCP2 has a reduction in the characteristic 3-fold symmetry of SLC25 members, and has a 
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wider opening to the mitochondrial matrix – though the biophysical implications of 

structural divergence from other SLC25 family members are unclear, aside from implying a 

distinct substrate binding preference, with the likely substrate being H+-bound fatty acids 

(Berardi et al., 2011).

Uncoupling involves a net movement of hydrogen ions from the intermembrane space into 

the mitochondrial matrix. The consensus mechanism of transport is that H+ are bound to and 

carried across the mitochondrial membrane by fatty acids, which are ‘flipped’ by the 

conformational change between the C- and M-states. UCP2 (Berardi & Chou, 2014). Both 

mutation studies and NMR experiments have suggested that fatty acid from the 

intermembrane space binds to a hydrophobic groove between transmembrane helices H1 and 

H6, and the charged head group interacts with a group of positively charged amino acids. 

Binding induces a conformational change in the uncoupling protein and the fatty acid is then 

exposed to the matrix environment where it is deprotonated. Unless the fatty acid flips back, 

this process will lead to the accumulation of charged fatty acids in the mitochondrial matrix, 

and the extent to which this may influence mitochondrial physiology is unclear, though it 

seems likely that a greater concentration of fatty acids at the matrix side of the inner 

mitochondrial membrane would support an increase in β-oxidation (Pecqueur et al., 2008).

There is still considerable debate about whether fatty acid and H+ transport are the full range 

of functions for UCP2. Plenty of evidence suggests a capability to transport fatty-acid bound 

protons, and this transport partially decreases the PMF/ΨM. However, when reconstituted in 

liposomes, UCP2 will also catalyze transport of phosphate, malate, and aspartate (Vozza et 

al., 2014). Just as we do not yet understand the complete roles of UCP4 and UCP5 due to the 

artificial nature of their activities after reconstitution in liposomes, we also cannot yet fully 

support the concept that UCP2 is a solute carrier of more than H+ and fatty acids. Our 

skepticism is supported by the evidence that in the brain, UCP2-deficiency does not 

substantially increase flux of 13C-labeled aspartate (Contreras et al., 2017), which is more 

likely occur if it acted as an aspartate transporter in vivo. This study does not rule out the 

possibility of a variety of UCP2-mediated transport mechanisms, but we anticipate that the 

full function of UCP2 will be addressed in future studies using UCP2-knockout cells or 

animals.

3.3. Tissue Distribution of Uncoupling Proteins

Each of the five UCPs has a distinct pattern of expression among tissues. UCP1 is 

predominantly found in brown fat, although it has also been found in T lymphocytes and 

may be present at lower levels in other tissues (Rupprecht et al., 2012). Of the UCP family, 

UCP2 appears to have the most ubiquitous tissue distribution of UCP transcripts, though 

protein expression under normal circumstances is highest in thymus and T-cells (Pecqueur et 

al., 2001; Rupprecht et al., 2012). UCP3 expression is largely restricted to skeletal, smooth, 

and cardiac muscle. UCP4 and UCP5 protein has been detected in neurons and glia – with 

much broader expression of their corresponding transcripts. Transcripts for UCP2, UCP3, 

UCP4 and UCP5 can also be detected in the mouse retina, though the corresponding 

amounts of protein are unknown (Barnstable et al., 2003). It is also important to be cautious 

in interpretation of quantitation of uncoupling protein content in tissues; aside from UCP1, 
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commercially available antibodies are notoriously non-specific and difficult to validate. This 

may be due to some combination of low expression or poor antibody specificity, but these 

difficulties with conventional methods of detection can be potentially overcome through the 

use of home-made (Rupprecht et al., 2012) antibodies or by profiling polyribosome-bound 

RNA to accurately profile actively translating RNA molecules, which can reveal drastically 

different patterns of expression relative to total transcript levels (Nie et al., 2015).

These RNA and protein expression patterns determine the extent to which UCPs affect 

mitochondrial physiology. The highest levels of expression are seen for UCP1 in brown 

adipose tissue, where it may account for 4-10% of total mitochondrial protein (Heaton et al., 

1978; Rousset et al., 2007). Estimates of UCP1 activity suggest that can depolarize the ΨM 

by as much as 55 mV, which is a drastic amount considering the approximately −120 to 

−140 mV resting ΨM (Gerencser et al., 2012; Gerencser et al., 2016). In many tissues, 

UCP2 is approximately two orders of magnitude less abundant than UCP1 is in brown 

adipose tissue, and its maximal ability to uncouple is approximately 10-15 mV (Ježek et al., 

2018). The effect of this uncoupling on generation of ROS is dependent on ΨM. At the 

resting ΨM or lower potentials, uncoupling has little effect on ROS. However, ROS 

generation increases exponentially as a function of ΨM past conventional physiological 

levels (Korshunov et al., 1997), and at a supraphysiological ΨM, changes in the range of 10 

mV are sufficient to decrease production of ROS by 30-40% (Korshunov et al., 1997; 

Lambert & Brand, 2004). Therefore, UCP-mediated mitochondrial uncoupling may decrease 

ROS under circumstances when ΨM is polarized past the physiological norm. Unfortunately, 

this theory is difficult to test, as ΨM is not easily quantified in vivo, so whether it is 

hyperpolarized during certain stages of disease and requires mitochondrial uncoupling is 

unknown. Thankfully, there have been attempts to develop in vivo probes of ΨM (Logan et 

al., 2016), though they are not yet in common use.

From here onward we will focus more specifically on one member of the UCP family, 

UCP2. This UCP has not only the broadest tissue distribution, but is subject to extensive 

regulation, and regulates of oxidative stress and cell survival, making it a promising target 

for therapeutic intervention to alleviate numerous diseases across many tissues, including the 

eye. In particular, how UCP2 expression is regulated will be essential knowledge if it is to be 

targeted to particular tissues and utilized for a therapeutic purpose.

3.4. Structure and transcriptional regulation of the UCP2 gene

The Ucp2 gene spans over 8.4 kb and contains 8 exons and 7 introns. The exon/intron 

boundaries are highly conserved with those of other UCPs, although variable intron sizes 

suggest differences in the capacity for these genes to contain transcriptional activators and 

repressors. The Ucp2 gene contains two small 5’ untranslated exons separated from the 

remaining sequence by introns of 1.4 kb and 3.0 kb respectively. Exons 3/4, 5/6 and 7/8 

encode the three structural repeats of each molecule respectively. After the coding sequence 

there is a 339 bp 3’ untranslated region. Ucp2 is expressed in most tissues, where 

transcription can be regulated through numerous mechanisms (Figure 8A). The Ucp2 
promoter contains a serum response element (SRE) and this may mediate the observed 

enhancement of Ucp2 transcription by growth factors such as LIF and PEDF, both of which 
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appear to activate a signal pathway that involves STAT3 (He et al., 2014; Lapp et al., 2014). 

The promoter also contains an SP1 site and two E-boxes, and though the factors binding to 

these have not yet been identified, the E-box motifs appear to be necessary for the binding of 

other transcriptional regulators, such as PPAR-family transcription factors (Medvedev et al., 

2001). These factors broadly regulate expression of genes critical for metabolism and 

mitochondrial activity in different tissues and species (33-36). This family consists of three 

members; PPARγ, PPARα and δ/β, all of which heterodimerize with the retinoid X receptor 

(RXR) to transactivate target genes through binding to regulatory elements in the promoter 

regions. Members of the PPAR family are expressed throughout different regions of the eye 

and retina (Braissant et al., 1996; Castelli et al., 2018; Zhang et al., 2015), and their activity 

is particularly triggered by omega-3-fatty acids as well as during oxidative stress. This 

explains why these proteins are often upregulated during different forms of disease (Castelli 

et al., 2018). One component of their disease response may be to enhance expression of 

UCP2.

Treatment of rodent hepatocytes with the PPAR activators WY14,643 and fenofibrate led to 

a 5–10 fold increase in UCP2 mRNA (37,38). In hypertensive rats, both PPARα and PPARγ 
were upregulated in the nodose ganglion and treatment with fenofibrate led to upregulation 

of UCP2 and a decrease in blood pressure. Deletion mapping of the mouse UCP2 promoter 

indicated that PPAR binding sites could be responsible for both basal and stimulated UCP2 

expression (35). In humans, PPAR-stimulated transcription depends on the pair of E-boxes 

in the proximal promoter although PPAR itself does not bind to these motifs. In mouse, an 

equivalent pair of E-boxes is found closer to the transcription start site. In the mouse, an 

additional PPAR binding site has been found in an intron of UCP3, a gene that is 

immediately adjacent to UCP2 gene (39). This site loops out to interact with the UCP2 

promoter and thus provides an additional mechanism for direct stimulation of UCP2 

transcription. A cofactor of PPAR, PGC-1α, also regulates UCP2 transcription through 

several pathways. PGC-1α contains an N-terminal activation domain that interacts with both 

a large group of transcription factors and with chromatin remodeling complexes. In addition 

to acting as a cofactor for PPAR family transcription factors, it may also potentiate binding 

of other transcription factors such as thyroid hormone and stimulate the production of other 

factors that interact with the UCP2 promoter such as sterol regulatory element binding 

protein (34).

In addition to these positive regulatory elements, there are several mechanisms by which 

UCP2 transcription may be repressed. The transcription factor Foxa1 binds to the UCP2 

promoter and, when the repressor sirtuin1 is bound at an adjacent site, can decrease UCP2 

transcription (Vatamaniuk et al., 2006). The growth factor TGF-β can also decrease UCP2 

transcription by inducing binding of SMAD4 to repressive SMAD elements in the proximal 

promoter (Sayeed et al., 2010).

This multiplicity of transcriptional control mechanisms integrate UCP2 transcription with 

many other pathways controlling growth and metabolism and emphasize the key role that 

this protein plays in cell physiology. Changes in UCP2 transcription, induced through 

disease, altered metabolism, or direct immune stimulation generally occurs on a time scale 

of days (Pecqueur et al., 2001; Rupprecht et al., 2012), however post-transcriptional 
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regulation of UCP2 appears to act on a much faster time scale, which likely reflects a large 

pool of untranslated UCP2 message that may exist to respond more immediately to 

mitochondria-derived oxidative damage.

3.5. Post-transcriptional regulation of UCP2 expression

Although transcriptional regulation of UCP2 is important, particularly in chronic disease, 

post-transcriptional regulation may be both more important and more immediate in 

controlling the levels of UCP2 in mitochondria (Figure 8B) (Pecqueur et al., 2001). One of 

the first mechanisms found to regulate UCP2 at the post-transcriptional level was identified 

in a yeast three-hybrid screen (Ostrowski et al., 2004). A widely expressed RNA binding 

protein, hnRNP-K, binds to sites in the 3’ UTR of UCP2 RNA, and binding increases 

translation (Hurtaud et al., 2006; Ostrowski et al., 2004). This process can be enhanced by 

several hormones including insulin, angiopoietin, and adiponectin (Ostrowski et al., 2004; 

Tahir et al., 2014; Zhou et al., 2012) that can cross the blood-brain or blood-retina barrier 

(Greco et al., 1970; Lin et al., 2012) and thus may participate in the regulation of retinal 

UCP2 levels. These findings also emphasize a link between signals that regulate systemic 

glucose and fatty acid metabolism and more direct regulation of mitochondrial function 

through UCP2.

A second regulatory mechanism has been proposed following the identification of a 36 

amino acid open reading frame in the 5’ untranslated region of Ucp2 RNA (Hurtaud et al., 

2006). Mutations of this upstream open reading frame sequence lead to increased UCP2 

protein expression, indicating an inhibitory role for this sequence (Hurtaud et al., 2006). 

Activity of this uORF and thus Ucp2 translation are regulated by the metabolite glutamine, 

an amino acid and neurotransmitter precursor (Hurtaud et al., 2007; Rupprecht et al., 2019). 

It has been proposed that glutamine-stimulated dynamic changes in UCP2 translation 

enhance the metabolic ‘flexibility’ of fast-growing neuroblastoma cells (Rupprecht et al., 

2019). Neural tissue is constantly importing glutamine in the glutamine/glutamate cycle and 

the relationship between glutamine, UCP2, and metabolic flexibility in the context of 

postmitotic or quiescent tissue in the retina or CNS has not to our knowledge been explored 

(Rupprecht et al., 2019).

A third element that regulates UCP2 translation are small noncoding RNAs that regulate 

mRNA levels and translation. These micro RNAs (miRNAs) are ubiquitous in tissues and 

biofluids, but as they bind loosely to target transcript, miRNA specificity is low (as is our 

ability to predict interactions between RNAs from sequence alone). Numerous publications 

link changes in UCP2 expression to specific miRNAs (Donadelli et al., 2014). These 

publications cover studies in a variety of tissues and few distinguish direct effects on the 

UCP2 RNA from indirect effects on another regulatory molecule. Most studies have shown 

that disease or stress lead to a decrease in one or more miRNAs and an increase in UCP2 

protein that, in turn, decreases oxidative stress (Rubattu et al., 2017). In a few cases a 

miRNA has been shown to bind to the 3’ UTR of Ucp2 RNA and inhibit its translation (Sun 

et al., 2011). Some of the same miRNAs are also expressed in the eye, including mir214, 

133a, and 503 (Karali et al., 2010), though to date there are no studies of the impact these 

regulators have on retinal physiology. Notably, there is growing evidence that miRNAs act 
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over long distances, and tissue-intrinsic expression of a miRNA is not a prerequisite for it to 

have activity in that tissue. While manipulating systemic miRNAs for tissue specific effects 

may present an attractive approach to controlling UCP2 levels, their broad specificity 

indicate a high likelihood for additionally controlling expression of off-target transcripts.

3.6. UCP2 turnover

The complex transcriptional and translational regulation of UCP2 expression has rapid 

functional consequences because it (and UCP3) have unusually short half-lives. In a range of 

tissues, the half-life of UCP2 has been measured as 1 hour, considerably shorter than that of 

other inner mitochondrial membrane proteins which have reported half-lives of between 4 

and 17 days (Giardina et al., 2008; Rousset et al., 2007). Import into the mitochondria 

involves a series of specific chaperones and a recognition sequence within the uncoupling 

protein itself (Hansen & Herrmann, 2019; Schleiff & McBride, 2000). Since the levels of 

UCP2 in isolated mitochondria are stable, it is thought that degradation of UCP2 is due to a 

cytoplasmic factors rather than a mitochondrial protease (Azzu et al., 2008). The abundance 

of factors governing Ucp2 transcription, translation, and protein stability suggest that UCP2 

levels are sensitive to a wide range of local and systemic influences. This argues for a central 

role in regulating a variety of mitochondrial functions beyond simple control of ROS 

production.

4. Regulation and function of UCP2 in Normal Tissue

4.1. Uncoupling and ATP production

In addition to the effects that uncoupling has on ROS in a number of disease models, the 

influence of uncoupling is not exclusive to a single cellular phenotype. By uncoupling 

mitochondria, the efficiency of ATP production is decreased. When this uncoupling is 

mediated by high concentrations of a chemical protonophore, uncoupling will permeabilized 

the mitochondrial membrane to H+ and abolish the drive for ATP synthesis. At lower 

concentrations of such drugs, the H+ ‘leak’ across the mitochondrial membrane is lower, and 

there still exists a lower-magnitude PMF that can drive ATP production at a lower rate 

(Brennan, Southworth, et al., 2006). However, the chemiosmotic gradient also negatively 

regulates activity of electron transport chain complexes I and IV. If uncoupling relieves this 

negative regulation, complexes I and IV consume NADH and consume O2 at a greater rate. 

This pumps more H+ to the mitochondrial intermembrane space, and thus opposes 

uncoupling dependent mitochondrial depolarization. Therefore depending on the degree of 

uncoupling, the cellular ATP demand, and the maximal rate of substrate oxidation, a 

mitochondrion exposed to a protonophore or an uncoupling protein may or may not become 

depolarized.

This partially explains why genetic manipulation of UCP2 yields disparate effects on 

mitochondria of different cells. In some, UCP2 overexpression decreases [ATP] (Chan et al., 

2001), while in others it or may not affect [ATP]/[ADP] (Perreten Lambert et al., 2014). 

These differences could be accounted for by measuring mitochondrial substrate oxidation. 

Alternately, UCP2 knockdown or knockout may increase (Vozza et al., 2014) or decrease 

(Ho et al., 2010) [ATP]/[ADP]. In some cases, these differences may be due to changes in 
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the number or quality of mitochondria. UCP2 overexpression alters the number and size of 

mitochondria, and in some cases this effect may buffer total cellular [ATP] by increasing the 

number of mitochondria (Diano et al., 2003). Simply put, UCP2 may affect ATP production, 

though this effect likely occurs to different magnitudes in distinct cell-types depending on 

other critical metabolic parameters.

4.2. Regulation of UCP2 activity

Although a correlation exists between UCP2 expression and activity (overexpression of 

UCP2 in mice leads to increased uncoupling activity), the activity of UCP2 is controlled by 

several factors acting as allosteric modulators (Figure 8C). These UCP2 regulators include 

posttranslational modification of cysteine residues by glutathione, mitochondrial matrix 

superoxide, fatty acids, peroxidized fatty acids such as 4-hydroxynonenal (4-HNE), and the 

nucleotide GDP. The allosteric interactions of UCP2 with GDP or glutathione are inhibitory, 

whereas superoxides, fatty acids, and 4-HNE enhance uncoupling activity – though it is not 

yet clear whether superoxides and fatty acids act independently of peroxidized lipids or 

whether these molecules increase the supply of peroxidized lipids that in turn activate UCP2 

and possibly other UCPs. There is also debate about whether fatty acids act as allosteric 

modulators or more directly as substrates. Since fatty acids carry the protons across the inner 

mitochondrial membrane, increasing their concentration may help drive this process 

(Berardi et al., 2011). It has also been suggested that facilitated fatty acid transport may 

enhance fatty acid utilization by mitochondrial metabolism, shifting the balance of glucose 

and fatty acid oxidation (Pecqueur et al., 2008).

How does UCP2 function in normal conditions?

Since our central thesis is that UCP2 activity can reduce ROS production, it follows that 

increasing UCP2 activity should provide protection against oxidative damage. In one of our 

first experiments we carried out a simple in vitro test. A neuronal cell line was transfected 

with a UCP2 gene and the resulting cells subjected to either hydrogen peroxide or nitric 

oxide. In each case the transfected cells showed greatly reduced cell death when compared 

with the transfection controls (Figure 9). In a second set of experiments we compared the 

phenotype and responses of UCP2 overexpressing and knockout mice. The transgenic 

overexpressing mice were produced by inserting an 80kb human BAC clone containing both 

UCP2 and UCP3 genes and promoters (Horvath et al., 2003). Transgenic animals showed 

overexpression of UCP2 by RNA, protein and functional (coupling) measurements. No 

expression of UCP3 was detected in retina or other CNS regions. The UCP2 knockout line 

was generated by Dr. Bradford Lowell by insertional mutagenesis (Zhang et al., 2001). 

Counts of cells in the ganglion cell layer detected 48% more cells in the overexpressors and 

20% fewer cells in the knockout animals compared to wild-type (Reddy et al., 2002). 

Electroretinogram measurements of both transgenic and knockout mice show no difference 

from wildtype in either b-wave or oscillatory potentials when compared with wild type, but 

both showed a decrease in the a-wave (18.5% and 19.0% respectively). Further studies are 

needed to show whether this effect on the a-wave was due to altered properties of 

photoreceptors or of the overlying RPE cells. We also tested whether UCP2 to protect 

against excitotoxic stress in the intact eye. We injected NMDA kainic acid or vehicle into the 

eyes of wild type or UCP2 transgenic mice and then counted the number of surviving cells 
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in the ganglion cell layer (Barnstable et al., 2016). The UCP2 transgenic mice showed much 

greater cell survival against both excitotoxic agents, further supporting the protective role of 

this uncoupling protein (Table 1).

The various mechanisms of UCP2 activation show that the protein is sensitive to oxidative 

damage, and responds both by increasing its levels and activity. The burden of oxidative 

damage is theoretically low in most tissues possessing intact anti-oxidative enzymes (SODs, 

thioredoxins, peroxiredoxins, etc.), and with NAD-linked metabolic substrates, brain 

mitochondria can even deplete exogenous ROS rather than allow them to accumulate 

(Starkov et al., 2014). This implies that the utility of UCP2 is for the most part a 

countermeasure against damaging insults or disease. The ideal test for this hypothesis would 

be to determine whether mice lacking Ucp2 show an overt disease phenotype. In fact, 

mitochondria in mice lacking the Ucp2 gene do not behave identically to those in Ucp2-

sufficient mice. Our own work to catalogue a portion of the pleiotropic Ucp2 functions 

found that deletion of this gene in retinal glia increases the formation of ROS and ROS-

derived lipid peroxides (Hass & Barnstable, 2019b), which suggests that to some extent, the 

basal activity of UCP2 decreases the accumulation of ROS in the retina and other tissues. 

That mice lacking Ucp2 do not display an obvious disease phenotype does not necessarily 

speak to its ability as an antioxidative protein, and rather may indicate a high capacity of 

other antioxidant systems to compensate for Ucp2 deficiency.

ROS are not only damaging factors, but also important signals of mitochondrial stress. Part 

of the ROS-dependent response to mitochondrial stress is an increase in fission and 

subsequent disposal of stressed or damaged mitochondria, also known as mitophagy (Frank 

et al., 2012). By increasing ROS, Ucp2 deletion can increase mitochondrial fragmentation 

(fission) in lung endothelial cells following intermittent hypoxia (Haslip et al., 2015), 

ischemia/reperfusion injury in kidney tissue (Andrews et al., 2005; Qin et al., 2019), or in 

undamaged primary cortical astrocytes (Hass & Barnstable, 2019b). Fragmentation of the 

mitochondrial network in the absence of Ucp2 is likely a precursor to mitophagy, which has 

been observed in both lung endothelial cells and primary cortical astrocytes (Haslip et al., 

2015; Hass & Barnstable, 2019b). We’ve also found that UCP2-deletion induces a strong 

increase in LC3 puncta throughout the mouse retina following elevated intraocular pressure 

(Figure 10). Labeled LC3 takes a punctate form when it becomes aggregated membranes 

bound for autophagy (Kabeya et al., 2000), and that this autophagic marker is enhanced by 

deletion of a mitochondrial protein suggests that UCP2 is a regulator of mitochondrial 

autophagy.

Increased mitophagy can enhance mitochondrial quality and potentially protect against cell 

death, particularly in glaucoma and possibly in other forms of retinal degeneration (Dai et 

al., 2018; Hass & Barnstable, 2019b). Other groups have found alternate relationships 

between UCP2 and cellular or mitochondrial integrity. In one such study, UCP2 deletion was 

found to decrease mitochondrial number in tyrosine hydroxylase containing neurons of the 

substantia nigra (Andrews et al., 2005), yet Ucp2 sufficiency induces mitochondrial fission 

following exposure to glucose in the ventromedial nucleus of the hypothalamus (Toda et al., 

2016). The disparate effects of UCP2 presence and absence on mitochondrial dynamics 
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show that the interactions between UCP2, ROS, and fission are not consistent across 

different cell types.

While Ucp2-dependant changes in mitochondrial quality control encompass one class of 

means through which this protein can influence physiology, the roles of UCP2 in ATP and 

ROS generation also play critical roles in systemic metabolism. For example, due to effects 

of UCP2 on ATP production, Ucp2 knock-out mice have elevated pancreatic beta cell 

glucose sensitivity in response to diet (Joseph et al., 2002). Due to the effects of UCP2 in 

mitigating ROS production, Ucp2 knock-out mice produce more ROS within immune cells, 

and are thus invulnerable to parasitic infection by Toxoplasma gondii (Arsenijevic et al., 

2000). Alongside these positive effects of knockout come a variety of vulnerabilities, 

including enhanced damage in different models of neurodegenerative disease (Andrews et 

al., 2005; Haines et al., 2010).

Dissipation of the PMF by UCP2 action releases energy in the form of heat. Normally the 

magnitude of this is unlikely to perturb normal metabolism. It has, however, been noted that 

UCP2 is discretely expressed in axons of neurons involved in homeostatic regulation, such 

that this could allow local uncoupling activity and heat production (Horvath et al., 1999). It 

has been suggested that the heat produced by the axonal UCP2 might be sufficient to 

modulate synaptic transmission in these homeostatic centers.

5. Uncoupling proteins and disease.

The ROS and redox-dependent feedback loops that regulate UCP activity imply that 

although protein levels in the mitochondrial membrane are low relative to UCP1, UCP2 is 

still able to regulate ROS homeostasis. As we have discussed, the formation of 

mitochondrial ROS can be highly dependent on the PMF, so UCP-dependent dissipation of 

the PMF likely serves to decrease the generation of ROS (Korshunov et al., 1997; Miwa et 

al., 2003). From the examples below, it is clear that by decreasing levels of ROS, UCP-

dependent dissipation of the PMF regulates cellular health and homeostasis in the heart, 

pancreas, kidney, and central nervous system.

In cardiac disease ischemic heart cells are under oxidative stress and show elevated ROS 

levels. UCP2 and UCP3 can protect against ischemic injury and reduce ROS production 

(Cadenas, 2018). In animal models UCP2 and UCP3 were able to counteract the lipotoxic 

effects of obesity in the heart and reduce cell death and subsequent heart failure (Ruiz-

Ramírez et al., 2016). In a study of healthy young Japanese men Ucp2 and 

Ucp3polymorphisms were associated with heart rate variability, suggesting a link between 

autonomic cardiovascular regulation and uncoupling (Matsunaga et al., 2009). A similar 

protective effect of UCP2 has been found in cerebral ischemia (Contreras et al., 2017). For 

example, in mice overexpressing UCP2, damage was reduced following either experimental 

stroke or traumatic brain injury (Ruiz-Ramírez et al., 2016).

The link between UCP2 and diabetes or obesity is well characterized. In both animal and 

human studies links between UCP2 and body mass index have been described (Horvath et 

al., 2003; Schonfeld-Warden & Warden, 2001). It is not clear whether these effects are 
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directly on tissues or due to an observed regulatory role of UCP2 on insulin secretion by 

pancreatic beta cells, though whether this is due to a decrease in ROS production or possible 

lowered ATP levels is not clear (Chan et al., 2004; Fisler & Warden, 2006; Zhang et al., 

2001). Some of the beneficial effects of UCP2 in peripheral tissues damaged in diabetes are 

probably direct since mitochondrial uncoupling has been identified as a key defensive 

strategy in kidney. Diabetes led to increased UCP2 levels and increased uncoupling in 

kidney proximal tubule cells (Friederich et al., 2008; Friederich-Persson et al., 2012). 

Interestingly, after reduction of Ucp2 by siRNA, uncoupling of kidney mitochondria 

detected and was achieved through increased activity of the adenine nucleotide transporter 

(Friederich-Persson et al., 2012). In the absence of uncoupling, the efficiency of ATP 

synthesis will likely increase, and additional ANT-mediated ATP export may be sufficient to 

stimulate an ANT-mediated H+ current. The interplay between UCP2 and the ANTs 

indicates some of the complexity of the regulation of mitochondrial membrane potential and 

ROS production.

Within the CNS there is also abundant evidence for the protective role of UCP2 is a number 

of disease models. In mice, increased UCP2-mediated uncoupling led to significantly better 

cell survival of substantia nigra neurons from MPTP-induced Parkinsonism (Figure 11) 

(Andrews et al., 2005). Overexpression of Ucp2 in mice reduced cell loss in hippocampus 

following pilocarpine-induced seizures (Figure 11) (Diano et al., 2003; Dutra et al., 2018).

Oxidative stress is also a major pathological component of many of the other major 

degenerative retinal diseases. In the following sections we briefly survey the data known on 

the roles of oxidative stress and uncoupling proteins (primarily UCP2) in each disease.

5.1 Diabetic retinopathy.

Diabetic retinopathy (DR) is one of the most common complications of diabetes and is a 

leading cause of blindness among working age people as well as the elderly (Sabanayagam 

et al., 2019; Tombran-Tink et al., 2012). The more severe form of the disease, proliferative 

DR, is caused by abnormal growth of new retinal blood vessels and diabetic macular edema. 

Earlier, non-proliferative stages of the disease can be recognized and there is still debate as 

to whether DR is a vascular disease or the vascular complications are a result of earlier 

neuronal and inflammatory aspects of the disease (Antonetti et al., 2006; Barber et al., 

2011).

There is no comprehensive treatment to prevent the progression of the disease, and it is clear 

that there is an urgent need for new therapeutic approaches. Oxidative stress induced by 

hyperglycemia is a major cause of microvascular complications in diabetic retinopathy, and 

may be intimately involved in the neurodegenerative and inflammatory processes that may 

precede these vascular effects (Barber et al., 1998; Gardner et al., 2002; Kowluru & Abbas, 

2003; Madsen-Bouterse et al., 2010). Preventing increased ROS production by mitochondria 

blocks other pathways of hyperglycemic damage in this disease (Brownlee, 2001). 

Mitochondrial ROS production is increased in bovine retinal endothelial cells and pericytes 

cultured with elevated (23 or 30 mM) glucose (relative to 5 mM controls) (Cui et al., 2006). 

Ucp2 transcript increased with 23 mM glucose, but further increases led to a return of levels 
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to control values, suggesting that UCP2 can respond to hyperglycemia within a range of 

glucose concentrations (Cui et al., 2006).

To determine more directly whether UCP2 might be involved in diabetic retinopathy, several 

groups have carried out genetic screens of patients to look for an association of Ucp2 
variants with the disease. These studies have identified a small but significant linkage 

between several UCP2 polymorphisms and the DR phenotype (Crispim et al., 2010; Shen et 

al., 2014; Zhou et al., 2018). Because this linkage is small, Ucp2 is not a causative risk 

factor diabetic retinopathy. When segregated into proliferative and non-proliferative forms of 

the disease, the genetic association was stronger with proliferative diabetic retinopathy. 

Since at least one of the associated polymorphisms is in the UCP2 promoter, it is thought 

that these variations may change UCP2 expression in response to elevated glucose (Crispim 

et al., 2019).

It is likely that DR affects UCP2 activity in the retina as well. When rats are exposed to the 

pancreatic beta cell-selective toxin streptozotocin, there is a loss in GDP-sensitive 

respiration in retinal mitochondria (Osorio-Paz et al., 2015). GDP is an inhibitor of UCP2, 

which suggests that an initial consequence of diabetes in the retina is to diminish UCP2 

activity, though this activity reappears 45 days following streptozotocin administration 

(Osorio-Paz et al., 2015). Diminished UCP2 expression or activity could therefore be an 

early response in diabetic retinopathy.

The db/db mouse has frequently been used as a model of diabetes and its complications. It 

has been shown that the level of retinal cell death and damage in the db/db mouse is 

mimicked by UCP2 deletion (He et al., 2016). A transcriptomic analysis of the db/db mouse 

found a significant increase in UCP2 expression as compared with heterozygous controls 

(Bogdanov et al., 2014). Interestingly, treatment of db/db mice with fenofibrate, an activator 

of PPAR and thus of UCP2 transcription, restored many aspects of a normal phenotype to 

the db/db (Bogdanov et al., 2015).

Ucp2 knockdown in human vascular endothelial (HUVEC) cells increased high glucose 

induced apoptosis and, conversely, virally-mediated overexpression of UCP2 inhibited high 

glucose induced caspase 3 activation and apoptosis (He et al., 2016; Koziel et al., 2015). A 

variety of other responses in endothelial cells, pericytes and Muller glial cells, and a number 

of studies of antioxidants in cell culture all indicate the broad effects of elevated glucose on 

retinal pathophysiology and suggest that reducing oxidative stress will be beneficial (Liu et 

al., 2017; Rani et al., 2016). Yet to date, studies of antioxidant therapy in diabetic 

retinopathy have only shown limited effects (Kowluru & Kennedy, 2001). As indicated 

earlier, part of the problem with these studies may be the access of the compounds to the 

mitochondria, the major site of ROS production. Given the clear role of UCP2 in regulating 

ROS production, a more targeted approach developing compounds that selectively activate 

this uncoupler may provide benefit for diabetic retinopathy patients.

5.2 Glaucoma

Glaucoma is a group of chronic progressive optic neuropathies that are associated with 

ganglion cell loss (Tombra-Tink et al., 2008; Sun et al., 2017). While there are juvenile 
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forms of glaucoma, the most common forms of the disease affect adults over the age of 40. 

There are four generally recognized categories of adult glaucoma: primary open-angle and 

angle-closure, and the secondary open and angle-closure glaucoma. The most common type 

found in the United States is primary, open-angle glaucoma (POAG). Patients with POAG 

often show no symptoms until the optic nerve damage and loss of ganglion cells is severe. 

Although many patients with POAG have increased intraocular pressure, some do not and 

the causes of such normal tension glaucoma are still under investigation (Tezel, 2020).

Reduced anti-oxidant defenses (Mousa et al., 2015), increases in DNA oxidation (Izzotti et 

al., 2003), protein carbonyl formation (Tezel et al., 2005), lipid peroxidation (Moreno et al., 

2004), and reduced mitochondrial function (Figure 2, (Abu-Amero et al., 2006; Hass & 

Barnstable, 2019b)) have been detected in tissue from glaucoma patients or in animal 

models of glaucoma. These phenotypes indicate that oxidative damage is a central 

phenotype in glaucoma. A wide variety of anti-oxidant compounds can provide some 

protection of ganglion cells in primary open angle glaucoma (Shen et al., 2015; Yang et al., 

2016), and uncoupling proteins may be an alternative therapeutic.

In addition to direct oxidative stress damage in retinal ganglion cells, there is evidence for 

oxidative injury to a set of specialized glia at the optic nerve head (Feilchenfeld et al., 2008; 

Govindarajan et al., 2009; Kuehn et al., 2005). One response of these cells results in local T-

cell activation that stimulates an adaptive immune response increasing neurodegeneration 

(Tezel & Group, 2009; Tezel et al., 2007). Ucp2 expression can alter the phenotype of 

inflammatory immune cells and mediate a switch to an anti-inflammatory state (De Simone 

et al., 2015). Enhanced Ucp2 expression in microglia and T-cells may, therefore, relieve 

inflammatory burdens associated with glaucoma. We initially hypothesized that we could 

induce similar perturbations in retinal and optic nerve head glia by overexpressing Ucp2 in 

GFAP+ cells to reduce a glial inflammatory phenotype (Hass & Barnstable, 2016).

To approach this and other hypotheses, we used multiple transgenic mouse lines that took 

advantage of Thy1 expression in RGCs (Young et al., 2008) and GFAP expression in 

astrocytes and müller glia (Ganat et al., 2006; Hass & Barnstable, 2019b). By combining 

promoters for these genes with a creERT2 construct, we could recombine LoxP sites either in 

introns of the endogenous mouse Ucp2 gene to delete it (Hass & Barnstable, 2019b), or 

surrounding a stop site which precedes an exogenous mouse Ucp2 sequence inserted in the 

Rosa26 locus (Hass & Barnstable, 2019a; Kim et al., 2015).

We determined the impact of RGC or glial Ucp2 overexpression or deletion on cell death in 

an experimental model of glaucoma (Hass & Barnstable, 2019a, 2019b), wherein we 

injected polystyrene microbeads injected through the cornea to impede the flow of aqueous 

humor through trabecular meshwork in the anterior chamber (Cone et al., 2012; Sappington 

et al., 2010). The impeded flow of aqueous humor increases intra-ocular pressure (IOP), an 

elevation in which is a risk factor in human glaucoma. Raising IOP in mice resulted in 

retinal ganglion cell death, though the degree to which IOP was raised does not necessarily 

predict retinal ganglion cell death as well as it does dysfunction (Calkins, 2012; Della 

Santina et al., 2013; Hass & Barnstable, 2019a, 2019b).
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Once we established a model of glaucoma in which we altered Ucp2 expression, we 

determined whether manipulation of RGC or glial Ucp2 altered cell death in glaucoma (Hass 

& Barnstable, 2019a, 2019b). Overexpression of Ucp2 in ganglion cells was able to 

significantly decrease the cell death induced by elevated intra-ocular pressure (Hass & 

Barnstable, 2019a). On the other hand, overexpression of Ucp2 in glial cells had no major 

effect on cell death (Figure 12) (Hass & Barnstable, 2019a). These results suggest that Ucp2 
activity in retinal glia is either insufficient to overcome the oxidative burden in glaucoma or 

possibly that the glial oxidative burden in glaucoma is not causal of RGC death. This is not 

meant to suggest that glia are not critical regulators of RGC and retina health or oxidative 

status, only that the oxidative state of a glial cell may not directly impact the oxidative state 

of a RGC. Additionally, these results account for the role of Ucp2 in müller cells and 

astrocytes of the retina, but not microglia of the retina. It has been suggested that cells from 

an immune lineage express higher levels of UCP2 (Rupprecht et al., 2012), and because 

microglia originate from this lineage, altering Ucp2 expression in these cells may yield a 

more drastic impact on RGC survival.

Deletion of Ucp2 was protective against oxidative damage and RGC death in the same 

model of glaucoma, regardless of whether the genetic deletion occurred in Thy1-positive 

retinal ganglion cells or in GFAP-positive astroglia and müller glia (Figure 13) (Hass & 

Barnstable, 2019b). This result was initially puzzling, because while Ucp2 deletion 

increased ROS generation in isolated glia, there was a lower ROS burden in the retina. We 

eventually found research showing that ROS can act as a signal capable of promoting 

mitophagy (Frank et al., 2012), and found an enhancement of mitophagy both in müller glia 

and RGCs lacking Ucp2 (Hass & Barnstable, 2019b). Interventions that enhance mitophagy 

also appear to preserve retinal ganglion cells following IOP elevation in rat eyes, suggesting 

that increased mitochondrial quality control is neuroprotective (Dai et al., 2018). We 

reasoned that because astroglia are capable of internalizing damaged mitochondria from 

retinal ganglion cells (Davis et al., 2014), Ucp2 knockout, which enhances glial mitophagy, 

may also enhance trans-cellular degradation of damaged RGC mitochondria or other 

components to protect against mitochondrial damage in glaucoma.

The other major locus at which oxidative stress appears to act is the trabecular meshwork 

where altered cell adhesion and extracellular matrix secretion may alter tissue permeability 

(Zhou et al., 1999). In all these cases there is a strong argument for the involvement of 

mitochondrial ROS and thus a case for directing therapies to reducing this at its source.

5.3 Age-Related Macular Degeneration

Age-Related Macular Degeneration (ARMD) is a major cause of blindness in the aging 

population and is causing growing societal and economic problems in many countries. The 

causes of macular degeneration are not understood but the sequence of pathological 

development has been well documented.

Changes in the RPE and the formation of drusen are early signs that are accompanied by 

death of cone photoreceptors (Algvere et al., 2016). While this dry form of ARMD can 

continue to geographic atrophy in many patients, a significant number of patients progress to 

the wet form of ARMD in which choroidal neovascularization invades the retina and causes 
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rapid loss of photoreceptors and vision. Genetic screens identified loci strongly associated 

with the dry and wet forms of ARMD respectively (Dewan et al., 2006; Klein et al., 2005). 

Subsequent studies have confirmed these findings and identified additional risk and 

protective factors associated with ARMD (Gehrs et al., 2010; Gorin & daSilva, 2020). Given 

the lack of understanding of ARMD causes, it is not surprising that there are no good 

therapies for the disease. While anti-VEGF therapies can prevent the effects of neovascular 

growth, they do not treat the underlying loss of cells, and vision continues to decline (Tao et 

al., 2010).

The role of oxidative stress and its importance to cone photoreceptors and RPE cells 

continues to be debated (Totan et al., 2009). Both cell types are constitutively assaulted by a 

range of harmful agents, including sunlight, smoking and some dietary components. These 

extrinsic factors can be ameliorated by an array of cytoplasmic anti-oxidant enzymes and 

compounds in the eye. Several features of photoreceptor-RPE interactions, however, provide 

additional oxidative stress and risk of damage. As discussed earlier, photoreceptors are 

extremely active metabolically and this may result in higher levels of ROS production by 

mitochondria (Rueda et al., 2016). RPE cells in particular must also handle a high burden of 

ROS, possibly due in part to their close proximity to O2-rich choroidal vessels(Jarrett & 

Boulton, 2012). There is also extensive evidence of ROS-mediated damage to mitochondrial 

DNA in RPE cells, together with alterations in mitochondrial structure and function (Fisher 

& Ferrington, 2018; Kaarniranta et al., 2020).

Reduction of anti-oxidant capacity alone is sufficient to recapitulate the effects of aging and 

ARMD on mice, including altered cell morphology, a fragmented mitochondrial structure, 

and impaired bioenergetic function which led to altered gene expression and mitochondrial 

fragmentation in cone photoreceptors (Brown et al., 2019). Similar changes in RPE 

mitochondria are seen in primary cultures of RPE cells from aged donors (He & Tombran-

Tink, 2010). One of the changes that occurs with age in RPE cells is a decrease in the 

expression of Ucp2, a correlation that suggests a decreased ability to control ROS 

production (He et al., 2019). More direct evidence for a role of UCP2 comes from 

experiments in which expression of this uncoupling protein was enhanced by the 

neuroprotective factor PEDF and allowed the RPE cells to better resist oxidative stress (He 

et al., 2014; Wang et al., 2019). Similarly, the Ucp2 regulator PGC-1α can reduce oxidative 

stress and improve mitochondrial biogenesis (Kaarniranta et al., 2018).Animals hemizygous 

for PGC-1α show symptoms that mirror ARMD when fed a high fat diet (Zhang et al., 

2018).

It is clear that oxidative stress plays an important role in ARMD, that UCP2 is less able to 

modulate ROS formation in aging, and that many very different factors that all reduce 

oxidative damage in models of ARMD share a common feature of enhancing expression and 

activity of UCP2. We suggest that a concerted effort to experimentally modulate UCP2 in 

ARMD models will lead to novel therapeutic strategies to combat this disease.
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6. UCPs as therapeutic targets.

If we accept the premise that oxidative stress is a major factor in the pathophysiology of 

retinal disease, it follows that therapeutic approaches that reduce this stress will have 

positive effects on disease magnitude and progression. There is an overabundance of 

evidence linking oxidative stress and disease, so therapeutic interventions for 

neurodegeneration in the CNS or retina should target production or detoxification of ROS. 

As discussed earlier, the low bioavailability of the active compound at the source from 

which ROS are generated is one issue preventing anti-oxidant therapy being fully effective, 

but efforts are underway to solve this issue by designing anti-oxidant compounds targeted to 

ROS-forming sites in mitochondria (Smith & Murphy, 2010; Watson et al., 2019).

At the same time, evolution has optimized endogenous antioxidant molecules to function 

within the context of organelles such as mitochondria, and there is also sufficient motive to 

explore the full potential of modulating endogenous proteins as a source of protection. In 

this review we make the case that mitochondrial uncoupling can modulate the levels of 

oxidative stress and this can prevent cell death in a variety of disease models (Andrews et al., 

2005; Hass & Barnstable, 2019a; Mehta & Li, 2009). When considering ‘uncoupling’ as a 

therapeutic approach, we can either develop chemical uncouplers where the effect is 

determined by the dose used, genetic methods of enhancing the expression of uncoupling 

proteins, or develop compounds that can modulate the activity of uncoupling proteins.

There are already a number of compounds that can uncouple mitochondria by dissipating the 

proton gradient across the inner mitochondrial membrane. FCCP is one such agent, and low 

doses as low as 100 nM FCCP significantly improves post-ischemic functional recovery in 

isolated rat hearts (Brennan, Berry, et al., 2006). Similarly, 1 mg/L dinitrophenol added to 

the drinking water of mice led to increased mitochondrial biogenesis, animal lifespan and a 

number of biochemical changes associated with health (Cerqueira et al., 2011). More 

recently, a cyanotriazole derivative, OPC-163493, has been shown to provide mild 

uncoupling and to be relatively safe (Kanemoto et al., 2019). However, higher 

concentrations of these uncoupling agents can collapse of the proton gradient and halt ATP 

synthesis. Unfortunately, patients inevitably attempt to enhance the effect of a drug by taking 

a larger dose, and for exogenous uncouplers such a decision would be fatal (Grundlingh et 

al., 2011). This class of compounds therefore represents a useful proof of principle for the 

benefits of mild uncoupling on oxidative stress, but with limited translatability to the clinic. 

Alternately, the effects of these compounds serve as a warning for studies in which 

overexpression of uncoupling proteins is desired – a substantial increase in mitochondrial 

uncoupling could be dangerous if not controlled, and while there are substantial control 

mechanisms in place to regulate UCP activity, the dose of this protein in mitochondria is 

nonetheless an critical consideration for studies aimed at translation.

The other approach is to alter the activity of endogenous uncoupling mechanisms and the 

most potent of these are the uncoupling proteins. We have described numerous disease 

models in which increased activity of UCP2 provides protection against cell death, and in 

most of these examples UCP2 expression was set through genetic manipulation. The same 

concept can be carried forward to a human population by using viral vectors to deliver Ucp2. 
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AAV serotypes are able to preferentially infect specific types of ocular cells, and the use of 

cell type-specific promoters can restrict expression to particular cell types within the eye. 

Ideally, viral gene expression will be inducible and tunable to account for disease-specific, 

disease stage-specific, or patient-specific differences in ROS metabolism. For example, in 

one theoretical scenario where a glaucoma patient with high IOP was treated with an AAV 

containing a Ucp2 gene, it might be necessary to induce high levels of expression in the 

early phases of treatment. If the IOP was reduced, perhaps by the use of appropriate drugs, 

then the stress on optic nerve head and ganglion cells would be less and the levels of UCP2 

could be reduced. There are a number of inducible AAV systems being tested (Le Guiner et 

al., 2014; Stieger et al., 2006; Strobel et al., 2020). Tetracycline, doxycycline and cumate 

have all been shown to be effective in model systems but to date none have been fully tested 

in clinical trials. As we learn more about the role of microRNAs in regulating Ucp2 
expression, gene therapies supplying these molecules may also be possible.

While sophisticated gene therapy approaches my become reality in the future, there is 

currently a need for drugs that can modulate the levels or activity of uncoupling proteins. 

The optimal therapeutic agents might vary according to whether the insult is chronic or 

acute. Most retinal diseases are chronic and slowly progressing. For these, a low but stable 

increase in UCP2 activity achieved by any mechanism may be adequate to counteract an 

ongoing oxidative insult. Alternatively, acute injury such as trauma or ischemia needs a 

rapid response and may only be served by compounds that change UCP2 activity.

As described above, PPAR activators lead to enhance Ucp2 transcription. These drugs have 

historically demonstrated a range of other beneficial effects, particularly for diabetes and 

diabetic complications. In some countries, the PPARα agonist fenofibrate is an approved 

drug for diabetic retinopathy. PPARα activation reduces oxidative stress and apoptosis 

(Pearsall et al., 2019), and fenofibrate has been shown to reduce retinal inflammation and 

reduce nerve fiber layer loss (Abcouwer, 2013; Hu et al., 2013). Another approach is to 

increase the expression or activity of the transcriptional co-activator PGC-1α. 

Pharmacological upregulation of PGC-1α enhances respiration and decreases H2O2 levels in 

retinal pigment epithelial cells (Satish et al., 2018). Neither PPARs, PGC-1α, or any other 

transcriptional regulator is specific for Ucp2, and whether the protective effects of these 

compounds requires UCP2 activity will only be determined through the use of these drugs in 

Ucp2 -deficient animal models.

The same lack of specificity for UCP2 is also true for post-transcriptional regulators of 

Ucp2. As we have discussed, miRNAs bind promiscuously to transcripts and thus like 

PPARs and PGC-1α, miRNAs used for a therapeutic effect are likely to have pleiotropic 

effect. The same is true for other regulators of translation, such as hnRNP-K. However, each 

of these molecules were discovered more recently, and don’t benefit from same the history 

of characterization as PPARs and PGC-1α. To date there has yet to be a detailed exploration 

into whether manipulating the mechanisms that regulate Ucp2 translation (or degradation) is 

protective against oxidative damage, and we feel that this field is ripe for further study.

Perhaps the best hope for therapeutic agents to regulate UCP2 can be found in the natural 

regulators of its activity. For example, 4-hydroxy-2-nonenal (4-HNE) is produced from 
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lipids by the actions of ROS and can activate UCP2. A number of natural products that can 

reduce ROS production have structural features in common with 4-HNE and may have as 

part of their action an activation of UCP2. One example of this is curcumin, a natural 

product derived from the rhizome of Curcuma longa L. This polyphenol has been used in 

traditional Chinese medicine for thousands of years. Recent studies have shown that it is 

beneficial in a number of retinal diseases (reviewed in (Radomska-Leśniewska et al., 2019)).

A major problem with curcumin and related compounds is their poor solubility and hence 

poor bioavailability. Efforts to encapsulate curcumin in liposomes have met with some 

success in peripheral tissues, though the blood retina barrier may prevent systemic delivery 

of lipophilic molecules related to 4-HNE. However, several methods of drug delivery avoid 

the complication of the blood-retina barrier, such as direct injections into the vitreous, or 

drug delivery through eyedrops. The latter technique has been used to deliver peptides that 

prevent the retinal effects in an animal model of diabetes (Liu et al., 2012; Sheibani et al., 

2019). Whether the permeability of a given molecule to the blood-retina barrier is identical 

for mice and humans remains unknown.

In a complex disease like diabetic retinopathy it probably does not matter if any effective 

drug has multiple effects including effects on UCP2. In other cases, such as ischemic injury, 

it would probably be advantageous to have a drug that only activated the UCP2 pathway. 

While there are tantalizing clues about such drugs, urgently needed systematic studies of 

actions on and specificity for UCP2 have yet to be carried out, and are anticipated.

7. Future Directions and Conclusions

While the initial triggers for a variety of retinal degenerative diseases show wide variation, 

there is increasing evidence that oxidative stress and the perturbations in tissue function 

caused by oxidative damage are common sequelae and critical therapeutic targets. Though 

there are multiple sources of oxidative stress, mitochondria are one of the most prominent 

sources, particularly when the proton motive force is high. Uncoupling can reduce this force 

and thus reduce the formation of ROS. Mitochondrial uncoupling proteins, or UCPs, provide 

modest uncoupling, which consistently decreases ROS production. Of the UCPs, UCP2 

appears to play an important role many tissues, including the retina. The multiple 

mechanisms that control UCP2 suggest that it is an important player in cell metabolism and 

highlight its potential utility as a drug target.

It remains to be seen whether alteration of UCP2 protein levels by some form of gene 

regulation or alteration of UCP2 activity by small molecule compounds will be the most 

therapeutically advantageous. As in many other cases, the unique structure and properties of 

the eye make it a valuable model to test such therapeutics and, because of the local delivery 

methods, also make therapeutics less likely to have unwanted side effects in other tissues. 

With the efforts now being directed towards understanding the basic properties and 

therapeutic effects of UCP2 and the other uncoupling proteins, we can look forward to have 

a set of novel therapeutics that will greatly increase the tools available to combat retinal 

degenerative diseases.
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Figure 1. Main Components of the Electron Transport Chain and their Roles in Forming ROS.
(A) In this simplified model of the electron transport chain, electrons are either derived from 

oxidation of NADH by complex I (NADH:CoQ Oxidoreductase) or succinate by complex II 

(succinate dehydrogenase). These electrons are transported through complex III (Coenzyme 

Q: Cytochrome C reductase) and complex IV (Cytochrome C Oxidase) where they power 

translocation of protons from the mitochondrial matrix to the intermembrane space, before 

finally being used to reduce O2 to H2O at complex IV. (B) Should more NADH be supplied 

than complex I can quickly oxidize, electrons from NADH will interact with O2 to form a 

superoxide molecule (a form of ROS) (C) Uncoupling, mediated by a protonophore or an 

uncoupling protein, can decrease production of superoxide by NADH. (D) Should more 

succinate be supplied than complex III or IV can transport electrons from, electrons from 

succinate can be transported ‘in reverse’ to complex I through the shared complex I and 

complex II substrate coenzyme Q10. Reverse electron transport through complex I further 

aggravates superoxide production. (E) Uncoupling mediated by a protonophore or an 

uncoupling protein may allow complex I, III, or IV to transport electrons more quickly in the 

conventional ‘forward direction’, preventing reverse electron transport and thus aggravated 

superoxide production.
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Figure 2. Elevated intraocular pressure impairs mitochondrial function and decreases mtDNA/
nDNA in a mouse model of glaucoma.
Impaired mitochondrial function in microbead-injected Ucp2flox/flox retinal tissue. (A) 

Representative histochemical labeling of cytochrome oxidase activity in retinal tissue 

sections 3 days following bead injections, and (B) measurement of 3,3’-diaminobenzidine 

intensity (n=5). (C) mtDNA/nDNA was also measured in this tissue, and this measure of 

mitochondrial mass was unchanged 3 days after bead injection (n=3), but was significantly 

decreased 30 days following bead injection (n=8). *p<0.05. Figure and legend were 

reproduced and modified with permission from (Hass & Barnstable, 2019b).

Hass and Barnstable Page 44

Prog Retin Eye Res. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Unrooted phylogenetic tree for mammalian UCPs, plant uncoupling proteins (PUMPs) 
and other mitochondrial carrier protein sequences.
The lengths of the lines connecting genes corresponds to the relative evolutionary distance 

(sequence divergence) between them. The clusters (shaded) represent groups of genes that 

are much more closely related to each other than to any others on the tree. UCP1, UCP2 and 

UCP3 appear in cluster I, UCP4 in cluster III and UCP5 in cluster IV. Figure reproduced 

from (Nogueira et al., 2005) with permission. The tree indicates an early separation of UCP4 

and 5, a second separation on non-vertebrate uncoupling proteins and then the later 

separation into the UCP1,2, and 3 forms of uncoupling protein. The following sequences 

(accession numbers in parentheses) were used for the phylogenetic analysis: UCP1_MOUSE 

(P12242), UCP1_RAT (P04633), UCP1_RABBIT (P14271), UCP1_HUMAN (P25874), 
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UCP2_HUMAN (P55851), UCP2_CANFA (Q9N2J1), UCP2_RAT (P56500), PsUCP2 

(AAG33984), UCP2_MOUSE (P70406), UCP2_PIG (097562), X1UCPput (AAH44682), 

UCP2_BRARE (Q9W720), UCP2_CYPCA (Q9W725), UCP3_MOUSE (P56501), 

UCP3_RAT (P56499), PsUCP3 (AAG33985), UCP3_CANFA (Q9N2I9), UCP3_PIG 

(097649), UCP3_HUMAN (P55916), UCP3_BOVIN (077792), UCP-gallus (AAL35325.2), 

MgUCP (AAL28138), EmUCP (AAK16829), PmUCP2 (AAL92117), GmPUMPlb 

(AAL68563), GmPUMPla (AAL68562), MiPUMP-1 (AAK70939), LePUMP (AAL82482), 

AtPVMP1 (CAA11757), SfUCP (BAA92172), HmUCP (BAC06495), ZmPUMP 

(AAL87666), OsPUMP1 (BAB40657), OsPUMP2 (BAB40658), OsPUMP3 (CAE01569), 

OsPUMP4 (BAD09745), TaPUMP1 (BAB16385), AtPUMP2 (NP_568894), AtPUMP3 

(F7A19_22), AtPUMP4 (F22K18_230), AtPUMP5 (F14M13_10), AtPUMP6 (T5E8_270), 

DIC_MOUSE (Q9QZD8), RnDCput (NP_596909), DIC_HUMAN (Q9UBX3), CeM2OM 

(NP_509133), NcDCput (XP_327953), M2OM_MOUSE (Q9CR62), M2OM_RAT 

(P97700), M2OM_HUMAN (Q02978), M2OM_BOVIN (P22292), NtDTC (CAC84545), 

StM2OM (CAA68164), AtM2OM (NP_197477), PmM2OM2 (S65042), P1aFa1M2OM 

(CAD51134), P1aYoeM2OM (EAA21506), BMCP1/UCP5 MOUSE (Q9Z2B2), 

MmBMCP1/UCP5 (NP_035528), RnBMCP1/UCP5 (NP_445953), BMCP1/

UCP5_HUMAN (095258), UCP4_HUMAN (095847), MmUCP4 (BAC66453), RnUCP4a 

(CAC20898), RnUCP4b (CAC20899), RnUCP4c (CAC20900), and CeUCP (NP_505414). 

Protein abbreviations are from the SWISPROT database.
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Figure 4. Simplified phylogenetic tree of human UCPs.
In agreement with the larger tree of Figure 2, we compared protein sequence homologies 

using the Clustal Omega program (Madeira et al., 2019) give rise to a tree indicating the 

early divergence of UCP4 and 5 and a later divergence into invertebrate UCPs and a 

precursor of UCP1, 2 and 3.
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Figure 5. Sequence alignment of the five human UCP proteins.
Sequences used for alignment were the RefSeqs UCP1 (NP_068605.1), UCP2 

(NP_003346.2), UCP3 (NP_003347.1), UCP4 (NP_004268.3) and UCP5 

(XP_016885426.1). Alignment was carried out using the Clustal Omega program (Madeira 

et al., 2019). Conserved residues are marked with “*”, and conserved residues with “.” or 

“:”. The transmembrane helices are underlined in blue, key prolines in these helices outlined 

in red, and highly conserved glycines in yellow.

Hass and Barnstable Page 48

Prog Retin Eye Res. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
(A) Crystal structure of the Adenine Nucleotide Transporter from which most of the 

structural models of UCPs are derived. The 3D crystal structure of the carboxyatractyloside-

ADP/ATP carrier complex (devoid of the inhibitor) is shown with the following regions in 

color: cytosolic gate (blue); substrate-binding site (orange); and matrix gate (purple). In P-G 

level 1 and P-G level 2, prolines are shown in red and glycines in yellow. From (Palmieri & 

Pierri, 2010) with permission. (B) When the crystal structures are rotated 90 degrees and 

viewed end on, UCP2 and other members of the SLC25 transporter family have a clear 

central pore.
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Figure 7. Schematic of conformational changes of the six MC transmembrane a-helices 
occurring during the catalytic transport cycle.
In (A) the structural changes occurring during one transport cycle are shown. At the top left 

the protein is in the C-state and substrate (proton or protonated fatty acid for UCP2) can 

enter the pore from the intermembrane space. Following a conformation change, the M-state 

has an open gate at the gate at the matrix side and release the proton or protonated fatty acid. 

This cycle is reversible and if the fatty acid molecule is transported back without its proton, 

the net results is the movement of one proton down its concentration gradient. (B) shows the 

crystal structure of the first repeat with two transmembrane helices. (C) represents the 

conformational changes undergone by this repeat in going from the C-state to the M-state. 
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The yellow (glycine) and red (proline) residues are those identified in Figures 4 and 5. 

Figure reproduced from (Nogueira et al., 2005) with permission.
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Figure 8. Factors Regulating UCP2 Transcription, Translation, and Activity.
(A) The UCP2 gene contains several upstream regulatory elements that serve as binding 

sites for transcription factors that either enhance or repress gene expression. (B) Abundance 

and translation of the UCP2 transcript is further regulated by the presence of an upstream 

open reading frame (uORF), microRNAs, and RNA-binding proteins such as hnRNP-K. (C) 
Following translation, UCP2 activity is modulated by the abundance of fatty acids, 

superoxide levels, and lipid peroxides. Activity is inhibited by the nucleotide GDP and the 

redox-active dipeptide glutathione (GSH).
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Figure. 9. UCP2 is protective against H2O2 and NO in PC12 cells.
A, RT-PCR amplification of UCP2 from a plasmid positive control (hUCP2), PC12 cells 

transfected with GFPalone (Con), and PC12 cells transfected with GFP plus hUCP2 

(GFP_hUCP2), confirming expression only in the transfected cells. B–D, Images of cells 

transfected with GFP alone before (B) and after (C) treatment with H2O2 or transfected with 

both GFP and hUCP2 (D). All fluorescent spots represent cells, with the larger spots 

represent multicellular aggregates. Many more cells survive after hUCP2 transfection. E, 

Summary of three independent experiments, in each of which six separate wells were 

counted. Cell death is presented as the mean ± SE. After treatment with either H2O2 or NO, 

there is significantly less (P <0.05) cell death in cultures transfected with hUCP2. (Adapted 

from ref 11)

Hass and Barnstable Page 53

Prog Retin Eye Res. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 10. Layer Specific Ucp2-deletion dependent retinal autophagy.
We performed an immunohistochemistry experiment to label the autophagy marker LC3B 

(green) and DNA (Hoechst-33258, blue) in fixed frozen retinal tissue sections from 

Ucp2flox/flox (n=4), Ucp2flox/flox; Gfap-creERT2 (n=3), and Ucp2flox/flox; Thy1- creERT2 

(n=3) mice. In mice expressing Gfap-creERT2, Ucp2 was deleted in GFAP-expressing 

astrocytes and müller glia, and in Thy1-creERT2-expressing mice, Ucp2 was deleted in 

projection neurons, which in the retina are retinal ganglion cells. Example images are on the 

left, and quantifications of LC3B puncta density are on the right. Compared to the same 

regions of Ucp2flox/flox retinas, LC3B puncta significantly increase in the outer retinas of 

Ucp2flox/flox; Gfap-creERT2, and in the inner retinas of Ucp2flox/flox; Thy1- creERT2 mice. 

*p<0.05.

Hass and Barnstable Page 54

Prog Retin Eye Res. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 11. UCP2 Protects CNS neurons from degeneration.
A. Stereological quantification of dopamine cell number revealed that UCP2 TG mice had 

significantly (p<0.05) more surviving neurons than their WT littermates after MPTP 

treatment. *Significant with respect to wild-type controls. B. Epileptic seizure-induced cell 

death is diminished in hUCP2- expressing mice. Cell death in the CA1 area of the 

hippocampus was significantly reduced in surviving transgenic animals compared with 

surviving wild-type littermates 24 h after seizures. Figure adapted form refs 160 and 11.
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Figure 12. Increased Ucp2 Expression in RGCs but not Astrocytes and Müller Glia Decreases 
Retinal Ganglion Cell Loss.
(A) Difference tonometric intra-ocular pressure (IOP) readings between bead- and PBS-

injected eyes before and following intraocular surgery. Injection of polystyrene microbeads 

through the conea elevated IOP over a 30 day period in Ucp2KI (n=11), Ucp2KI; Gfap-
creERT2 (n=6), Ucp2KI; Thy1- creERT2 (n=9) eyes. (B) We performed an 

immunohistochemistry experiment to visualize the retinal ganglion cell marker RBPMS in 

fixed, flat-mounted retinal tissue from the mice in (A), and determined RGC loss due to 

microbead- and PBS-injected eyes of the indicated genotypes, 30 days following microbead 

injection. (C) Representative images of retinal whole-mounts labeled for RBPMS, quantified 
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in (B). In mice expressing Gfap-creERT2, Ucp2 was overexpressed in GFAP-expressing 

astrocytes and müller glia, and in Thy1- creERT2-expressing mice, Ucp2 was overexpressed 

in projection neurons, which in the retina are retinal ganglion cells. Figure reproduced from 

(Hass & Barnstable, 2019a) with permission. *p<0.05.

Hass and Barnstable Page 57

Prog Retin Eye Res. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 13. Ucp2 Deletion Protects Against Glaucoma
(A) intra-ocular pressure (IOP) difference between microbead and PBS-injected 

Ucp2flox/flox, Ucp2flox/flox; Gfap-creERT2, and Ucp2flox/flox; Thy1- creERT2 eyes over 30 

days following a single microbead injection. (B) Example RBPMS-labeled RGCs in PBS- 

and Bead-injected eyes from Ucp2flox/flox (n=29), Ucp2flox/flox; Gfap-creERT2 (n=10), and 

Ucp2flox/flox; Thy1- creERT2 (n=13). Scale bar (red) = 100 μm. Differences in RGC density 

between PBS- and Bead-injected eyes are quantified in (C). A difference of “0” indicated no 

retinal ganglion cell death. **p<0.01.

Hass and Barnstable Page 58

Prog Retin Eye Res. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hass and Barnstable Page 59

Table 1

Survival of neurons in the ganglion cell layer of mouse eyes injected with NMDA or kainic acid

NMDA (160 nmol) KA (10 nmol)

Wild type 61.66 ± 2.1 21.19 ± 1.4

Transgenic 103.66 ± 3.6*** 39.96 ± 1.8***

Numbers represent cells counted per 1000 μm length of retina. In all experiments, n=6

***
p<0.0001. Table adapted from ref 123.
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