Skip to main content
. 2021 Jul 8;2(5):371. doi: 10.1007/s42979-021-00762-x

Table 1.

Comparison of the proposed HOG + CNN model with related works using chest X-ray images

Author Architecture CXR Images/class Accuracy %
Razzak et al. [20] MobileNet

COVID-19 (200)

Viral pneumonia (200)

Bacterial pneumonia (200)

Normal (200)

80.95
Asif and Wenhui [21] Inception V3

COVID-19 (864)

Pneumonia (1345)

Normal (1341)

96
Pathari and Rahul [22] MobileNet V3

COVID-19 (6000)

Pneumonia (6000)

Normal (6000)

95.58
Makris et al. [23] VGG16

COVID-19 (112)

Pneumonia (112)

Normal (112)

95.88
Gomes et al. [24] SVM

COVID-19 (464)

Viral pneumonia (1490)

Bacterial pneumonia (2783)

Normal (1583)

89.78
Elaziz et al. [26] K Nearest Neighbor (KNN)

COVID-19 (216)

Normal (1675)

96.09
Wang and A. Wong [27] Deep Convolutional Neural Network (COVID-Net)

COVID-19 (358)

Pneumonia (5538)

Normal (8066)

93.3
Duran-Lopez et al. [28] Deep Convolutional Neural Network (COVID-XNet)

COVID-19 (2589)

Normal (4337)

94.43
Oh et al. [29] ResNet-18

Viral Pneumonia + COVID-19 (200)

Bacterial pneumonia (54)

Tuberculosis (57)

Normal (191)

88.9
Proposed HOG + CNN Model Deep Convolutional Neural Network (HOG + CNN)

COVID-19 (576)

Pneumonia (4273)

Normal (1583)

96.74