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A B S T R A C T   

The Spike receptor binding domain (S-RBD) from SARS-CoV-2, a crucial protein for the entrance of the virus into 
target cells is known to cause infection by binding to a cell surface protein. Hence, reckoning therapeutics for the 
S-RBD of SARS-CoV-2 may address a significant way to target viral entry into the host cells. Herein, through in- 
silico approaches (Molecular docking, molecular dynamics (MD) simulations, and end-state thermodynamics), we 
aimed to screen natural molecules from different plants for their ability to inhibit S-RBD of SARS-CoV-2. We 
prioritized the best interacting molecules (Diacetylcurcumin and Dicaffeoylquinic acid) by analysis of protein- 
ligand interactions and subjected them for long-term MD simulations. We found that Dicaffeoylquinic acid 
interacted prominently with essential residues (Lys417, Gln493, Tyr489, Phe456, Tyr473, and Glu484) of S-RBD. 
These residues are involved in interactions between S-RBD and ACE2 and could inhibit the viral entry into the 
host cells. The in-silico analyses indicated that Dicaffeoylquinic acid and Diacetylcurcumin might have the po-
tential to act as inhibitors of SARS-CoV-2 S-RBD. The present study warrants further in-vitro and in-vivo studies of 
Dicaffeoylquinic acid and Diacetylcurcumin for validation and acceptance of their inhibitory potential against S- 
RBD of SARS-CoV-2.   

1. Introduction 

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
is a novel coronavirus (CoV) leading to CoV disease (COVID-19). SARS- 
CoV-2 has also been determined to have an enhanced transmission 
among the human population in comparison to other CoVs [1,2] 
Architecturally, the CoV genome is enclosed in a helical capsid, sur-
rounded by a protective envelope [3]. The Spike (S) protein present on 
the protective envelope has a critical function in the entry of the virus 
into the host cells. It binds with the angiotensin converting enzyme 2 
(ACE2) receptors of the host, giving rise to a cascade of events which 
ultimately lead to the fusion of the viral and the host cell membranes, 
thereby ensuring successful viral invasion [4]. Primarily, ACE2 is a 
membrane protein found in heart, kidneys, lungs, and intestine which 
assists in the maturation process of angiotensin (peptide hormone) 
required for controlling blood pressure by vasoconstriction, thus any 

hindrance in its functions leads to cardiovascular dystrophies [5]. 
S protein is a densely glycosylated (comprises N-linked glycans) 

homo-trimeric protein that protrudes from the outer protective envelope 
of the virus with each monomer comprising of S1 and S2 subunits. The 
S1 subunit performs the cellular receptor recognition step and attaches 
itself to the host cell while S2 contains the fusion machinery required to 
perform the membrane fusion step [6–9]. The S1 subunit further com-
prises the receptor binding domain (RBD) which interact directly with 
the peptidase domain (PD) of the ACE2 receptor via hinge like confor-
mational movements [7,8,10]. Prior to the membrane fusion step, the S1 
and S2 subunits are non-covalently bonded to each other and the S2 
subunit is stabilized by the S1 subunit in the prefusion conformation [8, 
10]. Once the S protein attaches to the cellular receptors via S1 RBD, the 
host proteases act on S and cleaves it at the boundary of S1 and S2 up-
stream of the location of the fusion peptide [4,10]. This cleavage 
prompts the S2 to transit form the metastable prefusion state to an 
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activated post fusion state through dramatic and irreversible rear-
rangements in its conformation, required for membrane fusion [8], 
eventually shedding the S1 subunit [4]. The residues Thr333-Gly526 of 
S-RBD of SARS-CoV-2 and ACE2 residues Ser19-Asp615 were identified 

to interact with each other [9]. Moreover the S-RBD of S1 subunit bind 
to ACE2 with a very high affinity implying that it is crucial component of 
S1 required for interaction with host [9,10]. 

The natural molecules and their derivatives were stated to hold a 
broad array of biological actions, including neuro-protective, anti-in-
flammatory, cardio-protective, anti-cancer, anti-microbial, anti-viral, 
and anti-oxidant effects [11–14]. Recent articles recommended that the 
natural compounds and their metabolites in various plants showed 
striking potential to inhibit different SARS-CoV-2 proteins [15–19]. It is 
challenging to develop new drugs with all clinical trials in this emer-
gency situation. Hence, common use, cost-effectiveness and low risk of 
side effects of phytochemicals make them prime candidates for antiviral 
drug discovery. In this study, bioactive molecules from diverse plants 
(used in in-house developed immunoboosting drink) were selected to 
find active ingredients for the prevention of COVID-19. The main ob-
jectives were to find highly potential drug candidates as fusion in-
hibitors of S-RBD and ACE2. Next, to verify the docking outcomes and 
in-depth study of receptor-ligand complexes by conducting (250 ns) 
long-term molecular dynamics simulations. Finally, employing Molec-
ular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) evalua-
tions to recognize the most effective molecule by measuring the 
thermodynamic binding free energy. 

Fig. 1. 3D interactions of S-RBD of SARS-CoV-2 protein with bioactive molecules (a) Diacetylcurcumin, (b) Dicaffeoylquinic acid.  

Fig. 2. RMSD of backbone C-α atoms of S-RBD of SARS-CoV-2 protein com-
plexes with bioactive molecules. 

Fig. 3. Pictorial representation of conformational flexibility using cluster analysis for S-RBD in complex with (a) Dicaffeoylquinic acid, (b) Diacetylcurcumin. 
* Number of clusters. 
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2. Materials and methods 

2.1. Datasets 

X-ray crystallographic co-ordinates for the tertiary structure of the S- 
RBD (PDB id: 6M0J) [9] of SARS-CoV-2 were downloaded from the 
Protein Data Bank. In this crystal structure, only S1 subunit of the S 
glycoprotein bound to the ACE2 was diffracted at a resolution of 2.45 Å 
[9]. The molecules employed in this analysis comprised of a wide range 
of bioactive (33) molecules (from plants used in in-house developed 
immunoboosting drink) that were collected from Pubchem database 
[20] which were also reported in earlier studies [13,21–23]. These 
molecules were listed in Table S1 with their plant of origin. Prior to 

docking, the structure of the protein is prepared via the “prepare pro-
tein” methodology [24]. Subsequently, the ligand molecules were 
geometrically optimized via the minimization protocols of Gaussian16’s 
DFT [25]. 

2.2. Protein-protein molecular dynamics simulation 

The crystal structure obtained from PDB comprised of the S-RBD of 
SARS-CoV-2 bound with the human ACE2 protein. This structure was 
subjected to protein-protein molecular dynamics (MD) simulation of 
125 ns to identify the binding site residues that are required for inter-
action between the two proteins. The simulation was performed by 
GROMACS under the GROMOS96 43a1 force field [26,27]. Here, the 
two proteins in the structure were prepared via the pdb2gmx module 
and then set as the initiation points of the simulation. The entire simu-
lation was performed inside a simple point charge/extended (SPC/E) 
water model solvated simulation box [28]. This box was stabilized by 
the add-on of counter ions via the “gmx genion” script of GROMACS [29, 
30]. Furthermore, steepest descent method was used for energy mini-
mization of the system followed by NPT and NVT equilibration simu-
lations. During the simulation the two proteins interacted with each 
other forming new long range and short range interactions. These in-
teractions are restrained via the LINCS algorithm [31]. For the complete 
simulation experiment, the temperature was maintained at 300K with 
the help of Berendsen Thermostat [32], whereas the pressure was 
maintained at 1 bar with the help of Parrinello-Rahman barostat [33]. 
After completion of MD run, end-state thermodynamics free energy was 
evaluated by MM-PBSA approach [34]. The binding free energy was 
further decomposed into per residue contribution energy to identify 
residues with most favorable energies. The identified residues of S-RBD 
involved in interactions with ACE2 determined through protein-protein 
MD simulations were accepted as the ligand-binding site for docking 
experiments. 

2.3. Molecular docking 

Next we characterized the interaction pattern followed by the S-RBD 
with the 33 chosen bioactive molecules through molecular docking ex-
periments. This experiment was performed on the Accelrys Discovery 
Studio 2018 software [35] that utilizes the CDOCKER algorithm to meet 
this purpose. In this protocol of docking, conformation of the protein 
receptor is kept stagnant while the ligand molecule is movable and 
flexible so that it is able to adapt the conformational changes occurring 
in the receptor. This is stated as flexible-ligand and protein-fixed dock-
ing. All the CDOCKER parameters for this experiments were kept 
default. 

As there was no ligand binding site defined in the crystal structure, so 
the residues identified from the formerly performed protein-protein MD 
simulation were selected as the ligand binding site. Since, the residues of 
S-RBD (Thr333, Arg346, Arg355, Lys356, Arg357, Lys378, Lys386, 
Arg403, Arg408, Lys417, Lys424, Lys444, Arg454, Arg457, Lys458, 
Lys462, Arg466, and Arg509) were involved in interaction with the 
ACE2 protein of humans. The shape of this region is crucial for the ac-
curate simulations of interactions between the protein-ligand. Given 
that CDOCKER is a grid-based approach [36,37], a grid box with a 
spacing of 0.50 and a grid angle of 90◦ was also defined. The X, Y, and Z 
coordinates of the binding site within the grid box are (− 33.550696, 
38.344658, 5.080347) bearing a radius of 12.98 Å. The molecules were 
then docked onto the chosen ligand binding site and favorable poses for 

Fig. 4. Hydrogen bond profiles of S-RBD of SARS-CoV-2 protein complexes 
with bioactive molecules. 

Fig. 5. Graphical representation of the Delta_E_Binding free energy in kJ/mol 
showing S-RBD of SARS-CoV-2 protein complexes with bioactive molecules, 
Dicaffeoylquinic acid (green), Diacetylcurcumin (red). 

Table 1 
MM-PBSA calculations of all components of binding free energy for both the selected complexes.  

S. No. Bioactive molecules Binding energy (kJ/mol) Polar solvation (kJ/mol) Electrostatic (kJ/mol) SASA (kJ/mol) Van der Waal (kJ/mol) 

1. Diacetylcurcumin − 187.6 89.79 − 27.94 − 17.81 − 231.65 
2. Dicaffeoylquinic acid − 193.75 179.55 − 170.6 − 17.07 − 185.63  
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the protein-ligand complexes were generated. High temperature kinetics 
was administered during the docking process to ensure that the ligand 
molecules occupy a flexible conformational space in the protein, and 
simulated annealing verified the docking accuracy [36]. Furthermore, 
energy minimization of the docked complexes was handled by the 
CHARMm force field minimizing their total energy to 0.01 kcal/mol/Å 
thereby stabilizing the conformations [37]. CHARMm also refines the 
complexes by removing any hetero-atoms and bound inhibitors present 
in them, that aren’t requisite for analysis as well as inspecting them for 
any structural issues [36,37]. Pose generation was proceeded by 
computation of CDOCKER interaction energy that was used as a 
parameter to rank the generated poses, where a pose having the lowest 
interaction energy was considered to have the most favorable associa-
tion between the protein and ligand [36]. Top 2 molecules with best 
CDOCKER interaction energy scores were selected for molecular dy-
namics simulation analysis. Interactions formed in a protein-ligand 
complex were visualized via PLIP server [38]. 

2.4. Protein-ligand molecular dynamics simulation and binding free 
energy calculation 

Lastly, to analyze the strength of the interactions between the chosen 
protein-ligand complexes as well as to reaffirm their overall conforma-
tional stability. We have taken the complexes to undergo protein-ligand 
MD simulation analysis of 250 ns. This simulation was executed by the 
GROMOS96 43a1 force field [26,27], where the ligand topology 
development was carried out by the PRODRG server [39] and the pro-
tein topology development was carried out by pdb2gmx module of 
GROMACS. Complexes were kept inside the statistical process control 
water model (solvated simulation box), stabilized by the add-on of 
counter ions via the “gmx genion” script of GROMACS. Furthermore, 
steepest descent method was used for energy minimization of the system 
followed by NPT and NVT equilibration simulations. LINCS and SETTLE 
algorithms were applied to restrain the bond length and water molecules 
in the complexes respectively [40,41]. Particle Mesh Ewald (PME) 
approach was used for the handling of the long range electrostatic 
interaction, where the Fourier grid spacing was kept 0.15 [42]. A time 
step of 2fs was allowed via the Shake algorithm, which constrains the 
H-bond lengths, whereas the coulombic and van der Waal interactions 
were clipped at 1.0 nm. For the complete simulation experiment, the 
temperature was maintained at 300K with the help of Berendsen Ther-
mostat [32], whereas the pressure was maintained at 1 bar with the help 
of Parrinello-Rahman barostat [33]. In-built GROMACS scripts were 
used to analyze the results and produce trajectories of root mean square 
deviation (RMSD) through “gmx_rms” script and Hbond through 
“gmx_hbond” script [29]. Snapshots of the simulated complexes were 
saved using Coot package [43]. Dynamically stable complexes topol-
ogies obtained from simulation [44] were further put through Molecular 
Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) calculations by 
applying the g_mmpbsa script [30,34], which provided the binding free 
energy trajectories for the selected complexes. 

3. Results and discussion 

3.1. Identification of binding site 

The SARS-CoV-2 utilizes the S-RBD to interact with the human cell 
receptor ACE2. Thus, we conducted protein-protein MD simulation 
study of 125 ns to find out crucial residues involved in the binding of S- 
RBD and ACE2. The binding free energy for S-RBD and ACE2 was 
− 918.744 kJ/mol. This energy was further decomposed to per residue 
contribution energy to identify crucial residues responsible for interac-
tion between S-RBD and ACE2. Based on lower per residue contribution 
energy, S-RBD interface residues (Table S2) were selected to define the 
binding site for molecular docking study. The binding site was defined 
with a 12.98 Å radius containing all the residues selected from per 

residue contribution energy. 

3.2. Binding interaction analysis 

We adopted molecular docking, the most commonly accepted 
method in structure-based drug design to examine the nature of binding 
affinity and interaction between selected compounds and target protein. 
This method can predict the ligand interaction within the target binding 
site with a significant degree of precision. A library of bioactive mole-
cules from different medicinal plants used in in-house developed 
immunoboosting drink were used to predict their binding capability 
with S-RBD of SARS-CoV-2. Based on best interaction energy, Diac-
etylcurcumin and Dicaffeoylquinic acid were selected for further anal-
ysis. The interaction energies of these molecules were presented in 
Table S3. The docking poses of top two molecules were shown in Fig. 1, 
while the 2-D interaction poses of the following three molecules 
(Pipercide, Guineensine, and Demethoxycurcumin) were provided in 
Fig. S1. In the docked conformations, Diacetylcurcumin formed one 
hydrogen bond and salt bridge with residue Lys417, π stacking with 
residue Tyr489, and a hydrophobic interaction with residue Phe456. On 
the other hand, Dicaffeoylquinic acid formed seven hydrogen bonds 
with the residues Lys417, Glu484, Arg457, Tyr473, Gln493, and Lys458. 
Additionally, residue Lys417 also formed a salt bridge. The residues 
Phe456 and Tyr489 were also involved in double hydrophobic in-
teractions. The visual analysis of docked complexes revealed that the 
Dicaffeoylquinic acid displayed maximum number of hydrogen bond 
with the residues responsible for significant role in binding. Previously 
published studies reported that the residues Lys417, Phe456, Gln493, 
Glu484, Tyr473, and Tyr489 of S-RBD interface majorly contributed in 
binding with ACE2 [7,9,45–52]. Moreover, in various in-silico studies, 
many phytochemicals (Bis-demethoxycurcumin, compound-4, com-
pound-2, hesperidin, emodin, chrysin, nabiximols, pectolinarin, epi-
gallocatechin gallate, rhoifolin, andrographolide, artemisinin, apigenin, 
berberine, emodin, capsaicin, glabridin, colchicine, harmaline, kaemp-
ferol, harmine, niranthin, phyllanthin, oleic acid, rosavin, withanolide 
A, withaferin A, curcumin, apigenin, and chrysophanol) were also rec-
ommended as S-RBD inhibitors on the basis of molecular docking studies 
[53–56]. 

3.3. Analysis of post-dynamics trajectories 

A crucial but often overlooked perspective to be acknowledged in 
molecular docking is the flexibility of the target binding site [57]. The 
protein may experience conformational fluctuations during 
protein-ligand interactions. Structural changes caused by the dynamic 
activity of a protein’s structural components can also affect the biolog-
ical functioning [57]. Several obscure biological roles of proteins and 
their intense dynamic mechanisms can be discovered by observing their 
internal changes [17]. Molecular docking, although effective, only 
presents a static pose of protein-ligand interaction. The structural per-
turbations during protein-ligand interactions can be dealt with robust 
MD simulations. Accordingly, 250 ns of MD simulations were conducted 
for two best-docked complexes. MD simulations were used to analyze 
the dynamic properties of the selected complexes required for the in-
hibition mechanism and structural changes. 

The dynamic function of whole simulated systems was analyzed in- 
depth, by employing various MD-driven parameters, such as RMSD, 
ensemble clustering, and H-bond analysis. To validate the interaction 
poses generated by molecular docking, RMSD of backbone C-α atoms of 
both the selected complexes was calculated. The RMSD is an established 
measure of the conformational stability of the protein-ligand complexes 
[58]. RMSDs of both the complexes were interpreted in a graphical 
mode to analyze the stability of protein-ligand complexes (Fig. 2). The 
average RMSD value for complexes with Diacetylcurcumin and Dicaf-
feoylquinic acid were ~0.37 nm and ~0.5 nm respectively. The complex 
with Diacetylcurcumin showed a gradual increase in RMSD value for the 
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first ~30 ns, while the RMSD trajectory of Dicaffeoylquinic acid 
increased rapidly till ~60 ns. Afterwards, both the RMSD trajectories 
equilibrated and followed stable trajectories till the end of simulation. 
The protein-ligand complexes containing potential phytochemicals 
suggested by recent in-silico studies [59–64] also showed average RMSD 
values within ~0.5 nm. The low RMSD values of complexes validated 
the stability of molecular docking poses. The low degree of fluctuations 
and small variations in the average RMSD values directed equilibration 
of trajectories, suitable for further computational interpretations. 

The RMSD clustering simulation strategy is an adequate and dynamic 
process of examining the structural flexibility of proteins [65]. The well 
equilibrated (last 5ns) simulation trajectories of the complexes were 
collected and subjected for the interpretation of central conformations 
obtained from the average structure of each complex during the sam-
pling time. We clustered the examined configurations trajectories based 
on the Daura’s approach [66]. The atomic motion was analyzed and 
adequately described the conformational changes during the simulation 
(Fig. 3). In complex with S-RBD, Diacetylcurcumin formed 51 clusters 
with an average RMSD of 0.19 nm, while Dicaffeoylquinic acid formed 
51 clusters with an average RMSD of 0.18 nm. The binding of selected 
molecules had minimal effect on the secondary structures of S-RBD. All 
the helices and sheets showed minimal fluctuations and retained native 
conformations throughout the sampling period. Moreover, the selected 
molecules displayed intermediate structural fluctuations within the 
binding pocket by completely occupying it; hence possibly ceasing its 
interaction with ACE2. Further, to access the stability of protein-ligand 
interactions, we carried out analysis of hydrogen bonds between the 
selected molecules and S-RBD of SARS-CoV-2. 

Hydrogen bonding is one of the main element in biological systems 
responsible for molecular interactions. Hydrogen bonds render the basis 
for molecular recognition by allowing explicitness and directionality to 
molecular interactions [67,68]. We analyzed the formation of hydrogen 
bonds for selected complexes during the entire run of MD simulations 
(Fig. 4). The molecule Dicaffeoylquinic acid formed eight average 
hydrogen bonds, while Diacetylcurcumin formed an average of four 
hydrogen bonds with S-RBD of SARS-CoV-2. The formation of hydrogen 
bonds between protein and ligands continuously persisted throughout 
the simulation with minor fluctuations. These results confirmed that the 
molecules formed a significant number of hydrogen bonds with S-RBD 
during the simulations and showed the stability of protein-ligand in-
teractions. Interactions of inter-molecular hydrogen bonds limits the 
internal movement of the binding site and enhances its stability [69]. 
The bioactive molecules were capable of maintaining strong interactions 
with the binding pocket of S-RBD during the simulation period. These 
results showed the potential of both the selected molecules to be 
developed as fusion inhibitors to tackle SARS-CoV-2. 

3.4. Thermodynamic binding free energy analysis 

The MM-PBSA is an advanced and broadly adopted method that 
couples the continuum solvent forms and molecular mechanics to 
measure binding free energy between two molecules [34]. From the 
equilibrated MD simulation trajectories, all the conformations of the 
complexes were inspected using the MM-PBSA method. The binding free 
energies for the Dicaffeoylquinic acid and Diacetylcurcumin were 
− 193.74 kJ/mol and − 187.60 kJ/mol, as depicted in Fig. 5. The binding 
free energy suggested that Dicaffeoylquinic acid binds more tightly to 
the S-RBD of SARS-CoV-2 than Diacetylcurcumin. The electrostatic and 
van der Waals energies were the major driving energies behind binding 
free energy of Dicaffeoylquinic acid and S-RBD of SARS-CoV-2. In 
contrast, the polar solvation energy negatively contributed to the 
binding free energy, as displayed in Table 1. In the already published 
literature, bioactive and their derivatives (O-Demethyldemethox-
ycurcumin, Tellimagrandin-II, 2,3-Dihydrowithaferin A, and Asparoside 
D) in complex with S-RBD bestowed − 12.48, − 32.08, − 87.60, and 
− 66.49 kJ/mol binding free energies [60,61,70]. However, our 

suggested molecules (Diacetylcurcumin and Dicaffeoylquinic acid) with 
S-RBD showed more favorable (− 193.74 and − 187.60 kJ/mol) binding 
free energies. The MM-PBSA analysis stated that the Dicaffeoylquinic 
acid and Diacetylcurcumin could be adopted as a lead molecules to 
design inhibitors against S-RBD of SARS-CoV-2. 

4. Conclusion 

The present study aimed to discover small bioactive molecules that 
could inhibit SARS-CoV-2 by binding to the S-RBD and prohibiting the 
virus from penetrating into the host cells. A potent binding site was 
identified by per residue contribution energy obtained by protein- 
protein MD simulations. Bioactive molecules from different plants 
were docked on the predicted binding site. The top two molecules 
(Diacetylcurcumin and Dicaffeoylquinic acid) with best interaction en-
ergies were selected for further computational analysis. To validate our 
selection, the selected complexes were subjected to long-term MD sim-
ulations. The MD-driven data suggested that these potential molecules 
obstructed the S-RBD-ACE2 interactions by tightly adhering to the 
binding site. Our results assured the testing of Dicaffeoylquinic acid and 
Diacetylcurcumin by in-vitro and in-vivo examinations against S-RBD of 
SARS-CoV-2 to inhibit the viral entry into host cells. 
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