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Abstract

Thousands of potential endocrine-disrupting chemicals present difficult regulatory challenges. 

Endocrine-disrupting chemicals can interfere with several nuclear hormone receptors associated 

with a variety of adverse health effects. The U.S. Environmental Protection Agency (U.S. EPA) 

has released its reviews of Tier 1 screening assay results for a set of pesticides in the Endocrine 

Disruptor Screening Program (EDSP), and recently, the Collaborative Estrogen Receptor Activity 

Prediction Project (CERAPP) data. In this study, the predictive ability of QSAR and docking 

approaches is evaluated using these data sets. This study also presents a computational systems 

biology approach using carbaryl (1-naphthyl methylcarbamate) as a case study. For estrogen 

receptor and androgen receptor binding predictions, two commercial and two open source QSAR 

tools were used, as was the publicly available docking tool Endocrine Disruptome. For estrogen 

receptor binding predictions, the ADMET Predictor, VEGA, and OCHEM models (specificity: 

0.88, 0.88, and 0.86, and accuracy: 0.81, 0.84, and 0.88, respectively) were each more reliable than 

the MetaDrug™ model (specificity 0.81 and accuracy 0.77). For androgen receptor binding 

predictions, the Endocrine Disruptome and ADMET Predictor models (specificity: 0.94 and 0.8, 

and accuracy: 0.78 and 0.71, respectively) were more reliable than the MetaDrug™ model 

(specificity 0.33 and accuracy 0.4). A consensus approach is proposed that reaches general 

agreement among the models (specificity 0.94 and accuracy 0.89). This study integrates QSAR, 

docking, and systems biology approaches as a virtual screening tool for use in risk assessment. As 

such, this systems biology pathways and network analysis approach provides a means to more 

critically assess the potential effects of endocrine-disrupting chemicals.
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1. Introduction

Endocrine-disrupting chemicals are exogenous compounds that alter the normal function of 

the endocrine system, potentially causing adverse health effects in humans and wildlife 

(McKinlay et al., 2008; Mnif et al., 2011). The endocrine-disrupting potential of many 

pesticides is a major health concern (Klotz et al., 1997; Bjorling-Poulsen et al., 2008; Mnif 

et al., 2011; Andersen et al., 2015; Ewence et al., 2015). Pesticide residues are found in the 

environment and in many food items as a result of the widespread use of pesticides. Humans 

are exposed to pesticides in many ways throughout life, knowingly and unknowingly. They 

might use pesticides at work, consume pesticide residue on foods they eat, or contact 

pesticides in air, soil, or water. Several studies have found pesticide residues and their 

metabolites in human tissues, demonstrating a global distribution (Wohlfahrt-Veje et al., 

2011; Roca et al., 2014; Andersen et al., 2015).

Most endocrine-disrupting pesticides mimic estrogen function by acting as a ligand for the 

estrogen receptor, converting other steroids to active estrogen or increasing the expression of 

estrogen responsive genes, as shown by some organochlorines, organophosphates, 

carbamates, and pyrethroids. Antiandrogenic effects also have been reported for 

organochlorine and carbamate insecticides, and for triazines, a group of herbicides, through 

inhibition of binding natural ligand to androgen-binding receptors. Endocrine disruption also 

occurs through competitive inhibition of thyroid hormone receptors by organophosphates 

and inhibition of progesterone action by pyrethroids (McKinlay et al., 2008). The results of 

various transactivation assays using mammalian and yeast cells have indicated agonistic or 

antagonistic activity of pesticides toward aryl hydrocarbon receptors and some members of 

the nuclear receptor superfamily, including retinoic acid receptors, pregnane X receptors, 

and peroxisome proliferator-activated receptors.

Structure activity relationship (SAR) and quantitative structure-activity relationship (QSAR) 

approaches have been used by academia, pharmaceutical, agrochemical, food, and other 

industries, and by various advisory and regulatory government agencies as decision support 

tools to address data gaps and provide provisional data in the toxicity database of a 

chemical. These tools allow for the assessment of chemicals for which no data are available. 

SAR/QSAR approaches are increasingly being used as core prediction systems in toxicology 

and have proven to be powerful tools to increase our understanding of the potential harmful 

effects of chemicals on the environment and human health.

As the number and variety of potentially hazardous chemicals continues to increase, 

regulatory authorities have approached the challenge by applying these approaches as 

decision support to chemical risk-based approaches. Furthermore, the ever-increasing 

economic, social, and political call to reduce animal testing in toxicity evaluation has led to 

an expansion of the use of these tools. Many different SAR/QSAR models and platforms for 
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predicting a wide range of toxicological endpoints have been documented. Many of these are 

commercially available (e.g., MultiCASE, DEREK, TOPKAT®, Leadscope), others are 

open source (e.g., OncoLogic™, ToxCast™, ECOSAR, OASIS, VEGA, CAESAR, TEST, 

OECD tool box), and some are proprietary in-house systems (e.g., U.S. Food and Drug 

Administration QSAR models). Although several SAR/QSAR computer-based models have 

been developed, only some have been routinely used in assessment of chemical toxicity. 

Their validation, reliability, and use protocols are crucial to further enhance their regulatory 

acceptance.

Government programs use structure–activity modeling to help protect human populations 

from exposure to environmental contaminants (Tong et al., 2004; Netzeva et al., 2005; Worth 

et al., 2007; Arvidson et al., 2010; Ruiz et al., 2011). Computational toxicology methods can 

identify chemicals that might pose an endocrin–disruption hazard and then prioritize those 

chemicals for additional in vitro or in vivo testing (Tong et al., 2004; Ruiz et al., 2013; 

Vuorinen et al., 2013; Zhang et al., 2013). Because of the diversity and complexity of 

endocrine disruption mechanisms and the limited data available for in silico modeling, most 

studies have focused on endocrine-disrupting chemicals that act via estrogen or androgen 

receptors (Tong et al., 2004; Li and Gramatica, 2010b, a; Ruiz et al., 2013; Zhang et al., 

2013). These modeling approaches include QSAR modeling (Li and Gramatica, 2010b; Ruiz 

et al., 2013, 2016; Devillers et al., 2015; Ruiz et al., 2016a), molecular dynamics simulations 

(Celik et al., 2008; Tsakovska et al., 2011; Chen et al., 2014), and docking (Celik et al., 

2008; Vedani et al., 2012; Kolsek et al., 2014; Plosnik et al., 2015). Regulators and industry 

stakeholders can select from several commercial and freely available computational tools to 

evaluate the potential toxicity of compounds. Comparative analysis of in silico methods and 

their interpretation on relevant data sets is of high interest to these stakeholders.

A lack of test data for many of the thousands (>84,000) of chemicals in the Toxic Substance 

Control Act (TSCA) inventory presents a challenge for regulatory decision making. One of 

the high-interest toxicity endpoints is endocrine-disrupting activity, which includes 

interference with several nuclear hormone receptors, such as estrogen, androgen, thyroid, 

glucocorticoid, and mineralocorticoid receptors that have been associated with cancers, 

diabetes, obesity, reproductive, or immune problems, and metabolic disorders. Recently, the 

U.S. Environmental Protection Agency (U.S. EPA) released its reviews of the ESDP Tier 1 

screening assay results for a set of pesticides (U.S. EPA, 2015). Even more recently, the 

Collaborative Estrogen Receptor Activity Prediction Project (CERAPP) provided a training 

set data of 1677 chemicals derived from ToxCast and Tox21 programs (Mansouri et al., 

2016).

The study provides an analysis into the scientific understanding and value of the practical 

application of these methods for classification and regulatory decision making. This work 

also aims to stimulate formation of new testable hypotheses to address some of the data gaps 

previously identified by in the U.S. EPA Endocrine Disruptor Screening Program (EDSP) 

Tier 1 assessment (U.S. EPA, 2015). Collaborations that focus on alternative methods and in 
silico studies with endocrine disruptors continue to evolve (e.g., CERAPP) (Mansouri et al., 

2016). The data set from CERAPP is also used as a comparative reference with the defined 

regulatory Tier 1 data set. For estrogen and androgen receptor binding predictions, 
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comparisons among two commercially available QSAR tools (ADMET Predictor™ and 

MetaDrug™), two publicly available QSAR tools (Virtual models for property Evaluation of 

chemicals within a Global Architecture [VEGA] and the Online Chemical Modeling 

Environment [OCHEM]), and an open source docking tool (Endocrine Disruptome) were 

performed (Roncaglioni et al., 2008; Sushko et al., 2011; Kolsek et al., 2014).

As part of the study, a computational systems biology approach was applied to assess the 

underlying mechanisms related to endocrine disruption; a case study using a well-study 

carbamate pesticide, carbaryl, which has been associated with endocrine-disrupting toxicity 

is presented. This carbaryl case study includes an in silico generation of metabolites and a 

biological pathway enrichment analysis, and the results of this analysis were compared with 

some known findings for carbaryl. The purpose of this study is not the development of a new 

in silico model. Instead, this work evaluates and integrates in silico methods and 

computational systems biology approaches to assess their usefulness in screening endocrine-

disrupting chemicals.

2. Material and methods

2.1. Dataset

U.S. EPA recently released the Tier 1 screening results for 52 chemicals included in its 

Endocrine Disruptor Screening Program (U.S. EPA, 2015). This screening is used to 

determine if chemicals have the potential to interact with the three hormonal pathways 

(estrogen, androgen, and thyroid) in the body’s endocrine system. Eleven assays — five in 
vitro (cell systems) and six in vivo (live animal) — are used to determine if the chemicals 

interact with these three hormone pathways, and whether or not they are potential 

developmental and carcinogenic toxicants. The results of the 52 chemicals studied in the 

EDSP Tier 1 were used as a reference for androgen binding (Table 1S). The recently 

available training data set described by CERAPP (Mansouri et al., 2016), which consist of 

1677 chemicals, was used for the estrogenicity endpoint.

2.2. QSAR modeling

For this study, the ability of five QSAR modeling packages to estimate the potential of these 

pesticide chemicals to interact with the estrogen and androgen receptor hormonal pathways 

was evaluated using ADMET Predictor™ 5.0 (Simulations Plus Inc.), MetaDrug™ with 

System Toxicology Module, VEGA, OCHEM, and the Endocrine Disruptome docking 

program.

In silico predictions for determining potential human metabolite profiles were performed 

using MetaDrug™ and ADMET Predictor. Chemical structures for all compounds in the 

dataset were drawn in MOL file format using ChemBioDraw Ultra 12.0 (CambridgeSoft), 

from which they could be imported into the QSAR packages. Qualitative assessment of the 

in silico predictions of potential metabolite structures was established by comparison with 

human in vivo metabolic profiles characterized in available biomonitoring studies from the 

literature.
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2.2.1. ADMET Predictor™—ADMET Predictor™ is a state-of-the-art computer 

program designed to estimate certain absorption, distribution, metabolism, elimination, and 

toxicity properties of a chemical from its 2- and 3-dimensional molecular structures. The 

program uses molecular descriptor values as inputs to independent mathematical models 

(generally, nonlinear machine learning techniques) to generate estimates for each of the 

ADMET properties. Numerous studies have been gathered in U.S. EPA’s Distributed 

Structure-Searchable Toxicity (DSSTox) database, which was used to train ADMET 

Predictor’s models of endocrine receptor binding.

ADMET Predictor™ estimates qualitative and quantitative models of several measures of 

toxicity. It includes a qualitative assessment of estrogen receptor toxicity in rats 

(TOX_ER_filter), together with a quantitative measure of estrogen receptor toxicity in rats 

(TOX_ER [IC50 (estrogen)]) that is applied only for compounds classified as “toxic” by the 

previous quantitative assessment model.

Two neural network ensemble models are used to assess a compound’s likelihood of binding 

to the estrogen receptor. The first is a straightforward prediction of whether the molecule 

will have a detectable affinity for the receptor. A result of “nontoxic” indicates that the 

compound is unlikely to cause endocrine toxicity by binding to the receptor. A result of 

“toxic” indicates only that the compound is likely to bind detectably to the receptor. The 

degree of toxicity is not specified.

The second model predicts the degree of binding for those compounds that are identified by 

the filter as “toxic.” This model displays the relative binding affinity (%RBA) of a molecule 

determined by a competitive binding assay. The %RBA is a dimensionless number 

expressed as the percent ratio: 100% * (50% of the maximum inhibitory concentration 

(IC50) for 17 β-estradiol/IC50 for the chemical in question). Higher values indicate greater 

binding affinity and likelihood for endocrine-related toxicity.

Likewise, two neural network ensemble models were built for the androgen receptor: 

qualitative TOX_AR_Filter (toxic/nontoxic) and quantitative TOX_AR. Unlike the 

corresponding estrogen receptor models referenced by a natural estrogen, the reference 

ligand here was 17R-methyl-[3H]-methyltrienolone (R1881), a synthetic substrate that binds 

more strongly than testosterone. The binary classification of TOX_AR_Filter was based on 

the LC25 value of R1881 displacement assay. Compounds with LC25 ≤ 10 μmol/L were 

labeled “toxic” (likely to bind). Those >10 μmol/L were considered “nontoxic.”

The TOX_AR model predicts the degree of binding for those compounds identified by the 

filter as “toxic.” In this case, IC50 measurements were used from R1881 displacement 

assays. The % RBA is defined in a way analogous to TOX_ER.

ADMET Predictor tool automatically determines whether a given compound is within the 

scope (applicability domain) of each of these models. The phrase “within the scope” is 

defined in terms of molecular descriptor space, not in terms of the relative value of an 

ADMET property. Let X denote an ADMET model with known training set and let xi i = 1
N

be a descriptor set on which model X is based. For each descriptor, xi(i = 1, …, N), its 
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minimum and maximum values, ximinandximax, are determined over the training set of X. A 

new compound C is said to be within the scope of X if the value of each relevant descriptor 

ci(i = 1, …, N) calculated for C is contained within the corresponding interval 〈ximin, ximax〉 

with tolerance equal to 10% of the interval length. Such a compound has its X value typed in 

black bold font. Otherwise, the compound in question is outside the scope of X and its X 
value is marked by magenta font.

2.2.2. MetaDrug™—MetaDrug™ includes more than 70 QSAR models calculated with 

ChemTree™ (Golden Helix, Bozeman, MT, USA) using a recursive partitioning algorithm. 

Overall, these models cover the full spectrum of absorption, metabolism, distribution, 

excretion, and toxicology (ADMET) properties for a given chemical compound. QSAR 

models are built based on two types of training sets, those taken directly from the literature 

and those manually annotated from the MetaCore™/MetaDrug™ database. Every molecule 

in the training set is carefully analyzed for duplicates, stereoisomers, salts, etc.

A QSAR model built with ChemTree™ is passed through internal validation (Myshkin et 

al., 2012). The coefficient of determination (R2) and root mean squared error are calculated 

for real vs. predicted values of the training set. Activity predicted from the corresponding 

QSAR model for the uploaded compound constitutes its QSAR value. The QSAR value has 

to comply with two QSAR thresholds. One corresponds to the negative logarithm of activity 

value of the most active compound of the training set defining the predictability limit of the 

model. The other is the negative common logarithm of 50 μM (−1.7), because less potent 

compounds are considered to be non-active. If the QSAR value falls within two thresholds it 

is colored green and the compound is considered as active. Red indicates QSAR values 

outside the thresholds and non-active compounds. Blue relates to physicochemical 

properties.

MetaDrug™ estimates qualitative and quantitative models of several measures of toxicity. It 

includes a qualitative assessment of estrogen and androgen receptor toxicity in mammals. 

The MetaDrug™ tool for androgen binding (ADR-lig, prob) predicts the potential to bind to 

androgen receptor, range from 0 to 1. Cutoff is 0.5. Values higher than 0.5 indicate potential 

androgen receptor ligands. The compounds used in this QSAR model are from Fang et al. 

(2003).

The MetaDrug™ tool for estrogen binding (ESR-lig, prob) predicts the potential to bind to 

the estrogen receptor at 100 μM or less, range from 0 to 1. Cutoff is 0.5. Values higher than 

0.5 indicate potential estrogen receptor ligands. The 219 compounds used in this QSAR 

model are based on U.S. EPA DSSTox KIERBL data. To establish the reliability of the 

QSAR to evaluate the chemical compound, the structure similarity is calculated for the most 

similar compound in the training set. This is done using the Tanimoto Prioritization score, 

which is calculated using the Accord Chemistry Cartridge™ (Accelrys, San Diego, CA, 

USA). Tanimoto prioritization scores are reported on a scale from 0 to 1.

2.2.3. The Online Chemical Modeling Environment (OCHEM)—OCHEM is a 

web-based platform that aims to automate and simplify the typical steps required for QSAR 
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modeling. The platform consists of two major subsystems: the database of experimental 

measurements and the modeling framework (Sushko et al., 2011). OCHEM is widely used to 

perform QSPR/QSAR studies online and share those with other web users. The ultimate 

goal of OCHEM is to collect all possible chemoinformatics tools within one simple, reliable, 

and user-friendly resource. OCHEM is free to use and available online at http://

www.ochem.eu.

For this work, consensus estrogen-binding class QSAR modeling was applied to the data set. 

This model was developed and applied under CERAPP. The descriptors were calculated 

using several program packages, which cover different representations of chemical structures 

from simple fingerprints and a count of chemical groups. Detailed information about 

chemicals in the data sets, descriptor calculations, model parameters, and statistics are 

provided on the OCHEM platform (Sushko et al., 2011).

2.2.4. VEGA-QSAR—VEGA is a freely available platform of QSAR models for 

regulatory purposes (Roncaglioni et al., 2008). It assesses the chemical space where the 

model predictions are reliable through the Applicability Domain Index (ADI), with scoring 

from 0 to 1 (VEGA v. 1.1.1. (http://www.vega-qsar.eu/)). This work uses the relative binding 

affinity (RBA) QSAR model for the qualitative prediction of RBA for screening estrogen 

mediated endocrine-disrupting activity. This is a classification model based on a 

classification and regression tree (CART) algorithm and data set of 806 chemicals from the 

Japanese Ministry of Economy, Trade, and Industry database, as reported by Roncaglioni et 

al. (2008).

2.2.5. Endocrine Disruptome—Endocrine Disruptome is a freely available program 

package for estimating binding activities toward the following14 human nuclear receptors: 

androgen receptor (AR), estrogen receptors (ER α and ER β), glucocorticoid receptor (GR), 

liver X receptors (LXR α and LXR β), mineralocorticoid receptor (MR), peroxisome 

proliferator activated-receptors (PPAR α, PPAR β, and PPAR γ), progesterone receptor 

(PR), retinoid X receptor (RXR α), and thyroid receptors (TR α and TR β). (Kolsek et al., 

2014) provide details of the docking protocol and development of the models, and data sets 

of compounds. Endocrine Disruptome’s docking simulation, which is an assessment of a 

ligand’s position within a target receptor, is performed by the Docking interface for Target 

Systems (DoTS) platform using the AutoDock Vina software package (Vedani et al., 2012; 

Kolsek et al., 2014).

The 18 proteins (14 agonists and 4 antagonists) in Endocrine Disruptome were carefully 

selected from a pool of 103 proteins extracted from Protein Data Bank, with consideration 

being given to the quality of data and docking results on reference compounds. The final 

results of the predictions are the binding affinities given numerically as binding free energies 

(in kcal mol−1) and, alternatively, presented as four colored classes at the tool output (Kolsek 

et al., 2014). For this classification, the program uses three threshold values, defined by 

calculations of sensitivity (SE) and the validation experiments. The threshold values are SE 

< 0.25 (red) for high binding affinity, 0.25 < SE < 0.5 (orange) and 0.5 < SE < 0.75 (yellow) 

for medium binding affinity (orange), and SE > 0.75 (green) for low binding affinity. The 

absolute values for the thresholds are also reported by (Plosnik et al., 2015). Thus, in this 
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study, for classification of endocrine-disrupting chemicals as potential androgen or estrogen 

disruptors, if the receptor binding energy for agonists or antagonists is predicted as high or 

medium high, the chemical is classified as a potential disrupter (active).

2.3. QSAR modeling evaluations

A common way to evaluate the performance of classification models is to use a confusion 

matrix (Fjodorova et al., 2010). Such a matrix was used to show the number of correct and 

incorrect predictions made by each classification model compared with the actual 

(experimental value) in the data. The matrix is N × N, where N is the number of actual 

values (positive and negative). Performance of such models is commonly evaluated using the 

data in the matrix. The following illustration shows a 2 × 2 confusion matrix for two classes 

(positive and negative).

Several statistical parameters were used:

• Sensitivity or recall: the proportion of actual positive cases correctly identified

• Specificity: the proportion of actual negative cases correctly identified

• Accuracy: the proportion of the total number of predictions that were correct

• Balanced accuracy: (sensitivity + specificity)/2

• Positive predictive value or precision (PPV): the proportion of positive cases 

correctly identified

• Negative predictive value (NPV): the proportion of negative cases correctly 

identified

• Matthews correlation coefficient (MCC): a coefficient of +1 represents a perfect 

prediction, 0 an average random prediction, and −1 an inverse prediction

2.4. Chemoinformatics and ontology enrichment analysis: carbaryl case study

The chemoinformatics tools in MetaDrug™ identify structurally exact or similar compounds 

annotated in the MetaDrug™ database and report information on proteins with which these 

exact or similar compounds interact. This allows users to predict biological effects using the 

workflow scheme shown in Fig.1. As a case study, a chemical similarity search was 

conducted for carbaryl, a carbamate insecticide used on a variety of crops, in a database of 

some 700,000 manually annotated compounds linked via physical compound-protein 

interactions with some 4500 proteins known as targets for at least one small molecule 

xenobiotic. Accord Chemistry Cartridge™ (Accelrys, San Diego, CA, USA) fragment-based 

fingerprints were applied to perform a similarity search. A list of compounds was generated 

using the chosen similarity of exact match or 100% similarity score (Tanimoto coefficient = 

1), which will search the information related to this specific chemical to validate the system 

biology analysis. An exact match analysis was used to mine this database for curated 

information about carbaryl. In this way, only targets for carbaryl reported in the literature 

and those predicted from QSAR models would be used for further pathway analysis. From 

this list, protein targets were retrieved using the collection of protein–target interactions 

annotated and stored in the MetaDrug™ database.
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A list of potential protein targets can be used for enrichment analysis in Canonical Pathway 

Maps, one of the proprietary Thomson Reuters ontologies, to identify and rank cellular 

pathways and processes most influenced by the uploaded chemical. Every map consists of 

molecular entities (genes, proteins, microRNAs, or compounds) participating in a pathway 

and linked by well-established interactions. The significance of enrichment was defined by 

p-values calculated using a hypergeometric distribution (applied Fisher exact test). As a 

result, the chemical was associated with a quantitatively ranked list of maps summarizing its 

possibly toxic effects at a systems-biology level.

In the next step, the protein target list for carbaryl was computationally expanded by the 

nearest neighbors in the process of network building (i.e., by first-step protein–protein 

interactions) and intersected to identify unique targets for carbaryl compounds. The network 

is based on valid protein–protein and compound–protein interactions identified through 

manual curation using full text articles within MetaDrug™. Individual chemicals and 

proteins are mapped to functional ontologies such as gene-disease associations, biological 

processes, and mechanisms of toxicity, and later used to reconstruct biological networks 

linking the component nodes into biologically meaningful clusters.

3. Results and discussion

The performance and predictive ability of in silico methods, such as QSAR and docking, 

were investigated and compared with the U.S. EPA EDSP Tier 1 androgen assay results and 

with the CERAPP training set estrogen results.

The U.S. EPA Tier 1 androgen screening assay assessed the potential binding with the 

androgen receptor for 52 chemicals (Table 1S). Of these, 33 chemicals displayed no 

evidence of binding, 10 chemicals showed binding, and the remaining 9 chemicals showed 

an equivocal result. The CERAPP collected concentration-response results from 18 in vitro 
high-throughput screening (HTS) assays that explore several sites in the mammalian 

estrogen receptor pathway. (Judson et al., 2015) reported a mathematical model that 

integrates the in vitro data and calculates an area under the curve score, and proposed an 

activity consensus score across the estrogen receptor assays. The CERAPP training set data 

contain 1677 chemicals, of which 1440 were classified as inactive and 237 as active.

High priority issues in risk assessment include prioritizing chemicals for review, filling data 

gaps, and reducing the use of animals for experimental testing. HTS aids the investigation of 

thousands of chemical and provides a means to rapidly predict potential chemical toxicities 

or identify key receptors that regulate specific toxicity pathways (Judson et al., 2015).

In silico methods such as QSAR and docking approaches could support the identification of 

key characteristics in chemical structures responsible for a toxicity endpoint. These can be 

used to provide predictions about the possible activity of a chemical in virtual screening 

settings for regulatory purposes. The quality of in silico model development and assessment 

of commercial or open source models, based on chemical data sets from HTS experiments, 

varies depending on the efficiency of the assays, experimental design, data analysis, 
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validation, access to the data, and quantity. However, the accuracy is usually high enough to 

support prioritizing chemicals identified as worth being subjected to experimental testing.

When using the U.S. EPA EDSP Tier 1 and CERAPP data set, differences were identified 

between the reported activities for an endpoint and a need for a balanced data set. CERAPP 

and Judson et al. (2015) reported the development of a classification method that integrates 

several HTS assays for estrogenic activity. This proposed classification for estrogen-binding 

activity was used to develop and evaluate QSAR models under CERAPP, led by U.S. EPA 

(Judson et al., 2015; Mansouri et al., 2016). Use of these data, which covers several different 

levels of the estrogen signaling pathway, is not equivalent to an individual-specific assay 

result.

3.1. Model performance evaluations

3.1.1. Androgen receptor and U.S. EPA tier 1 data set—For QSAR androgen 

receptor binding predictions, the predictive ability of the ADMET Predictor™ models were 

more reliable than those obtained with MetaDrug™. The Endocrine Disruptome docking 

results had similar reliability when compared with the ADMET Predictor QSAR model. The 

Endocrine Disruptome androgen receptor model was able to correctly predict the binding 

activity for more than 70% of the chemicals, with an overall prediction accuracy of 70% for 

the androgen receptor binding activity. This model showed good specificity (79%) and a low 

sensitivity (40%) (Table 1). Two molecules were outside of the applicability domain of the 

model: abamectin was predicted toxic and fenbutatin oxide was predicted negative.

For the androgen receptor MetaDrug™ model, overall prediction accuracy for binding 

activity was 35%, with low specificity (33%) and low sensitivity (40%) (Table 1). The 

applicability domain of the MetaDrug™ QSAR model for this particular data set of 

chemicals was poor; only 17 of the 52 chemicals showed a favorable Tanimoto score. Thus, 

it showed poor accuracy, sensitivity, and specificity, which could be because of the 

dissimilarity between the training (n = 162) and test set data (n = 32) used to develop and 

evaluate the QSAR model with a data set of pesticides. The model predicted the inactive 

chemicals better than the active chemicals. The ADMET Predictor docking model was able 

to correctly predict more than 70% of the chemicals, with an overall prediction accuracy of 

78% for androgen receptor binding activity. The ADMET Predictor docking model also 

showed good specificity (94%), but low sensitivity (30%) (Table 1). The Endocrine 

Disruptome tool could not perform docking predictions for abamectin and fenbutatin oxide 

chemicals. The ADMET predictor QSAR model and the Endocrine Disruptome docking 

tools had a high chemical applicability domain for this data set; most chemicals were within 

the optimum prediction space, with high reliability of predictions. Both models show very 

good specificity, accuracy, and negative predictive value, which might be because these 

models were developed and evaluated on data sets that mainly consist of inactive chemicals.

3.1.2. Estrogen receptor and CERAPP data set—Table 2 shows the results of the 

four QSAR models predictions (ADMET predictor, MetaDrug™, VEGA, and OCHEM) for 

the CERAPP estrogen-binding data set. The dataset collects 1677 chemicals, of which 1440 

are classified as inactives, and 237 as active. Because these data contain an unbalanced ratio 
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of actives (positive) and inactive (negative) chemicals, balanced accuracy and MCC (which 

makes use of all the four calculated measures) are best taken into consideration. For 

balanced accuracy, the higher the value the better (the values range from 0 to 1). MCC 

ranges from −1 to 1, where −1 indicates perfect negative correlation, 0 predicts random 

distribution, and 1 predicts perfect correlation. Sensitivity, also called true positive rate, and 

specificity (true negative rate) show the ratio of the active and inactive chemicals correctly 

identified by the QSAR models. Positive predictive value and negative predictive value are 

conditional probabilities. MetaDrug™ and ADMET predictor estrogen receptor QSAR 

models showed low MCC, compared with VEGA and OCHEM estrogen receptor QSAR 

models. The balanced accuracy values are higher for VEGA and OCHEM.

The best performance was observed with the OCHEM model, which was expected, because 

the model was developed using the CERAPP data set. The other models have a good 

balanced accuracy, but low MCC value compared with OCHEM. This could be because of 

the size and the distribution of the imbalanced data set used to develop the QSAR models. 

The models have good random distribution but less than perfect predictions. In general, all 

these models have high negative predictive value, most likely because they have a low 

number of active chemicals in their training sets, and positive predictive value is also poor 

for most of these models. These models provide relatively reliable predictions for inactive 

chemicals, but many incorrect active chemical predictions.

In terms of sensitivity (Sn), the ADMET predictor shows the lowest value (0.43) and also 

the highest number of false negatives (FN) (134), compared with the other models. 

Specificity (Sp) was very good for all models, with values ranging from 0.81 to 0.88. 

ADMET Predictor and OCHEM had higher chemical applicability domains for this data set 

compared with VEGA. The Tanimoto prioritization score calculated by the MetaDrug™ 

model for some chemical predictions was low, which brings into question the applicability 

of the QSAR results for those compounds.

3.1.3. QSAR consensus approaches—The consensus approach combines the 

predictions of several QSAR models to maximize their strengths, minimize their 

weaknesses, and increase their global prediction accuracy. Estrogen receptor and androgen 

receptor QSAR and docking models were selected. These are based on different molecular 

descriptors and statistical and modeling techniques. They were merged in two types of 

consensus approaches. In the first (consensus I), all the model predictions agreed on the 

predicted class. In the second (consensus II), based on the majority agreement approach, the 

compound was classified according to the most frequently predicted class.

For androgen binding model predictions, a 2-model or 3-model consensus using both 

approaches did not increase prediction reliability, especially for the active compounds (Sn 

ranging from 0.3 to 0.4). When using a 2-model consensus, a combination of the ADMET 

Predictor or MetaDrug™ model with the docking model, results are strongly influenced by 

the docking predictions, showing good accuracy and specificity. However, the consensus 

model using all three models shows higher specificity, accuracy, and MCC (Table 3).
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For estrogen-binding model predictions, the consensus II approach was used to obtain a 3- 

and 4-models consensus. A 4-model consensus, (164 chemicals have a tied call [2 and 2]), 

provided an increase in predictions reliability and a substantial decrease in false positives, 

with a resultant increase in specificity and accuracy. When using a 3-model consensus, the 

OCHEM model was excluded because the training set data used to develop the model were 

the CERAPP data, so the OCHEM model would have strongly influenced the predictions. 

The 4-model consensus performed better when compared with the 3-model consensus, as 

shown in Table 4.

The strengths and weaknesses of each model were considered, knowing that none of them 

was a perfect model. If the strength and advantage of a model is clearly known, the output of 

such a model can be used with greater certainty. The applicability domain of the estrogen or 

androgen binding QSAR models for the pesticide data set could be poor or strong (i.e., the 

chemical could be outside or inside the optimum prediction space). Estrogen and androgen 

receptor ADMET predictor models had higher chemical applicability domain for this data 

set when compared with the MetaDrug™ models. Both commercially available QSAR 

models were internally and externally validated. However, the ADMET predictor models 

had superior performance compared with the MetaDrug™ models, which might be because 

of the size and heterogeneity of the training data sets. A comparative QSAR analysis 

approach when using multiple models (commercially and open sources) could compensate 

for the limitations of the individual models that use different descriptors and statistical 

methods to model different aspects of the toxicological effects. Thus, the use of a consensus 

model approach could be more beneficial than using individual models. Such a consensus 

model approach could be used to confirm model predictions for the same endpoint or as a 

weight of evidence when supporting available data with related endpoints describing various 

modes of action.

When using multiple models with varying modeling techniques (molecular descriptors, 

statistical methods, and validation), judging the output from each can be particularly 

challenging when their performance is comparable but slightly different (Li and Gramatica, 

2010a; Novic and Vracko, 2010; Ruiz et al., 2012, 2013; Plosnik et al., 2015). In such cases, 

conventional wisdom and expert knowledge could be used to examine how the QSAR 

models follow the development, validation, and application principles described by OECD.

3.2. Chemoinformatics and ontology enrichment analysis: carbaryl case study

In silico predictions for the estrogen-binding potential of carbaryl were negative across the 

QSAR models, and for androgen receptor binding, positive predictions were in agreement 

with the experimental data (U.S. EPA, 2010, 2011, 2015; Mansouri et al., 2016).

In this case study, Metadrug™ was used to predict the most likely metabolites of carbaryl, to 

allow a qualitative prediction for the metabolism of carbaryl, and to compare results with 

available published information. In silico metabolism approaches could be used as part of 

the in vitro testing as a means to improve metabolite identification strategies, particularly 

those mediated by CYP450 family enzymes. These approaches have been used to predict 

potential profile metabolites from a chemical structure, and to highlight the involvement of 

enzymatic reactions with the cytochrome P450 superfamily of enzymes.
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Prediction of first pass and sequential metabolites, both phase I and phase II reactions, was 

selected to evaluate metabolite predictions for carbaryl, using MetaDrug™. Prediction of 

first pass and sequential metabolites, both phase I and phase II reactions, identified 59 

possible phase I, and 2 phase II reactions. These include aromatic hydroxylation, N-

dealkylation, epoxidation, epoxidation and hydrolysis, N-hydroxylation, N-/O-acetyl 

transfer reactions, N-/O-glucuronide transfer reactions, N-/O-methyl transfer reactions, 

N-/O-sulfate transfer reactions.

The prioritization of metabolites in MetaDrug™ is based on a score representing the 

occurrence rate. Occurrence rate (OC) is the ratio of the occurrence of a particular metabolic 

reaction to the total number of metabolic reactions in the MetaCore™/MetaDrug™ 

database. This occurrence frequency is then assigned to predicted metabolites as a negative 

log value (logOC). The larger the score, the higher the frequency of the metabolic reaction in 

the database. Metabolites are prioritized into major metabolites and minor metabolites on the 

basis of the logOC. Ranking the metabolites by the logOC values indicated three possible 

aromatic hydroxylation reactions, each with logOC = −1.08, as being the most likely to 

occur (Table 2S), and N-dealkylation was predicted to be only slightly less prevalent (logOC 

= −1.21). Nevertheless, numerous other metabolites were identified, confirming the diversity 

and relative ranking of metabolites predicted by MetaDrug™.

Carbaryl metabolite predictions using MetaDrug™ agreed very well with available 

published data (Tang et al., 2002). Carbaryl can be hydrolyzed by esterases and oxidized by 

cytochrome P450-mediated monooxygenases (CYP) to form hydrolysis and hydroxylation 

products, respectively. These are subject to further conjugation, such as sulfate and 

glucuronic acid conjugates of 1-naphthol and 4-hydroxycarbaryl. The major hydroxylation 

products include 5-hydroxycarbaryl (5-hydroxy 1-naphthyl N-methylcarbamate), 4-

hydroxycarbaryl (4-hydroxy 1-naphthyl N-methylcarbamate), and carbaryl methylol (1-

naphthyl N-[hydroxymethyl] carbamate). Although the contributions of hydrolysis and 

hydroxylation toward total metabolism of carbaryl have yet to be elucidated, hydroxylation 

by CYP is thought to be the more important route of carbaryl metabolism (Tang et al., 

2002).

Assessment of the in silico prediction of potential carbaryl metabolites from a qualitative 

standpoint can substantially help in analyzing the available metabolism data. Fast and 

reliable in silico predictions could accelerate the in vitro/in vivo characterization of carbaryl 

metabolites. In silico tools could be continually used to explore or develop analysis of the 

potential endocrine disrupting effects of chemicals, the potential interferences with the 

metabolism of endogenous hormones, and the prediction of metabolism of chemicals by 

phase I and II enzymes. One of the most frequently cited limitations of in vitro assays 

without metabolic capacity concerns the qualitative and quantitative deficiencies in the 

metabolism of test chemicals. The case study presents the use of in silico metabolism 

prediction as a potential tool to integrate with endocrine-disrupting chemical HTS to be used 

for screening chemicals before endocrine disrupting chemical testing.

Based on QSAR predictions for carbaryl from the underlying database (MetaBase™), 

MetaDrug™ software generates a list of known and possible targets. Of these targets, three 
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were cytochromes P450, including CYP1A2, CYP3A4, and CYP2D6, which were identified 

as possible targets by QSAR models (Tang et al., 2002; Myshkin et al., 2012). The androgen 

receptor was also identified as a potential target in this search, again supporting the results of 

the QSAR prediction (U.S. EPA, 2010, 2011, 2015). Another potential target included the 

fatty acid amide hydrolase (FAAH), with which carbaryl was previously reported to interact 

(Tarzia et al., 2003). This protein degrades bioactive fatty acid amides, such as oleamide, the 

endogenous cannabinoid, anandamide, and myristic amide to their corresponding acids, 

thereby serving to end the signaling functions of these molecules. This suggested that 

carbaryl has the potential to strongly affect metabolism and clearance.

For this study, the biological functions of the predicted protein targets for carbaryl were 

investigated in several ways, beginning with enrichment of the target list across three 

different ontological categories. The hypergeometric distribution p-value of Gene Ontology 

(GO) biological processes, GeneGo canonical pathway maps, and GeneGo toxicity 

networks, were calculated with respect to each category. GO processes and toxicity networks 

both confirmed the initial suggestion of a strong effect. Metabolic process and catabolic 

process were the two most affected GO processes. Metabolism_CYPs and Fanconi anemia 

group proteins and protein folding_HDAC, nucleophosmin were the two most affected GO 

toxicity networks (Fig. 1S).

Enrichment in canonical pathway maps gave a slightly different picture, with the highest 

enrichment in pathways representing metabolism of endogenous hormones, particularly 

estrogenic and androgenic steroid hormones. Fig. 2 shows the map for estradiol metabolism, 

the pathway with the highest enrichment in the dataset. Disruption of steroid hormone 

homeostasis, as is suggested by the enrichment in these pathways for the predicted targets of 

carbaryl, is a plausible mechanism for the developmental defects associated with exposure to 

this chemical and its metabolites. Indeed, disruption of steroid hormone homeostasis as a 

result of altered metabolism after activation of nuclear receptors such as pregnane X receptor 

(PXR), androgen receptor, estrogen receptor, and aryl hydrocarbon receptor (AhR) has 

recently been hypothesized as a possible mechanism of the observed developmental and 

reproductive effects.

This list of potential protein targets was used to build a biological network to further study 

pathway interactions and potential downstream effects. The carbaryl network was further 

refined using the shortest path algorithm network option on MetaDrug™. A Dijkstra’s 

shortest paths algorithm calculates the shortest directed paths between selected objects. 

Thus, a complete network of interactions was generated for carbaryl targets (Fig. 3). The 

advanced search function, a Java application tool within the MetaDrug™ software, was also 

used to look for combined information. The advanced search made it possible to create 

Boolean queries and retrieve the results. A detailed methodological description of the 

systems biology procedures and protocols for using the software are available at http://

lsresearch.thomsonreuters.com/. The advanced search tool was used to find all transcription 

targets of the androgen receptor that are part of the GO process “reproductive/development 

structure” and its sub-folders then used this list to build a network representation (Fig. 2S).
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Computational systems biology was applied to carbaryl as a case study, for which few 

experimental developmental effects have been reported. Carbaryl is a carbamate pesticide 

still in use today. Animal studies on young and adult rodents have been the basis for risk 

assessment. Those studies have indicated that neonate animals are more sensitive to 

carbamates than are adult animals. The goal of the case study was to understand carbaryl’s 

potential toxicity pathways and biological network interactions related to endocrine 

disruption. The results were compared with published findings (Klotz et al.,1997; Bjorling-

Poulsen et al., 2008; U.S. EPA, 2010, 2011, 2015; Mansouri et al., 2016).

In toxicology, computational systems biology facilitates the identification of important 

pathways and molecules from large data sets. These tasks can be extremely laborious when 

performed through a classical literature search. Computational systems biology offers more 

advantages than just providing a high-throughput literature search engine. These tools might 

provide the basis for establishing hypotheses on potential links between environmental 

chemicals and human diseases. Comprehensive databases containing information describing 

networks of human protein–protein interactions and protein–disease associations make this 

possible. Experimentally determined targets of the specific chemical of interest can be fed 

into these networks to obtain additional information that can be used to establish 

hypothetical links between the chemical and human diseases. Such information can also be 

applied for designing animal and cell-based laboratory experiments that can test the 

established hypotheses more intelligently (Ruiz et al., 2016b).

By using the in silico metabolite prediction and the QSAR tools in MetaDrug™ for this 

study, modes of toxic action were inferred and a major mechanism of toxicity of carbaryl 

was identified. QSAR models and targets of structurally similar compounds in the software 

database, when analyzed using the systems biology molecular interaction data and network 

analysis tools in the product, pointed toward profound effects on metabolic enzymes, 

including cytochromes P450, conjugating phase II metabolic enzymes, and xenobiotic 

transporters. Pathway and network analysis suggested that the androgen receptor was a key 

regulator of these processes and, through its activation, carbaryl has the potential to affect 

xenobiotic metabolism and homeostasis of endogenous steroid hormones.

The pathway and network for carbaryl presents a novel computational systems biology and 

in silico models of different molecular mechanisms of endocrine disruption action that point 

to potential disease outcomes. Future experimental evaluation of this model might lead to 

the development of new predictive markers of endocrine-disrupting chemical effects that 

could translate into new disease prevention and clinical use strategies. A major objective of 

the present study is to stimulate experimental laboratory research by identifying good 

biological pathways and chemical candidates for investigation. Specific avenues of 

laboratory research might include in vitro and in vivo studies that should be conducted using 

exposure to selected endocrine-disrupting chemicals on an individual or mixture basis using 

a factorial design approach. Specific receptors or pathway nodes of interest identified using 

these combined in silico and computational systems biology model approaches could be 

technically evaluated by application of genomic, proteomic, or metabolomic methods.
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4. Conclusions

This study integrated QSAR, docking, and computational system biology tools to develop a 

novel approach for evaluation of the estrogen and androgen binding activity of pesticides. 

The predictions of two commercially available (ADMET Predictor and MetaDrug™) and 

two open source QSAR tools (VEGA and OCHEM) were evaluated. The study used the 

publicly available Endocrine Disruptome docking tool using the U.S. EPA Tier 1 screening 

assay results for a set of pesticides in the Endocrine Disruptor screening program, and 

CERAPP data set. For estrogen receptor binding predictions, the predictive ability of the 

ADMET Predictor, VEGA, and OCHEM models (specificity: 0.88, 0.88, and 0.86, and 

accuracy: 0.81, 0.84, and 0.88, respectively) were more reliable than those obtained by 

MetaDrug™ (specificity 0.81 and accuracy 0.77). In general, all models have high negative 

predictive value, most likely because they have a low number of active chemicals in their 

training sets; thus, the positive predictive value is also poor for most of the models. The 

models have shown more accurate predictions for inactive chemicals than for active 

chemicals. On the other hand, for androgen receptor binding predictions, the predictive 

ability of the Endocrine Disruptome and ADMET Predictor models (specificity: 0.94 and 

0.8, and accuracy: 0.78 and 0.71, respectively) were more reliable to those obtained by 

MetaDrug™ (specificity 0.33 and accuracy 0.4).

It is proposed that the consensus approach for the estrogen receptor prediction reduces the 

limitations related to an individual in silico prediction by reaching a general agreement 

among a collection of models (specificity 0.94 and accuracy 0.89). This systems biology 

pathways and network analysis shows insightful potential effects on metabolic enzymes 

(CYP450), androgen receptors, and xenobiotic transporters. The results provided here show 

that application or use of these tools as an integrated approach could support chemical safety 

assessment and guide further experimental testing. It could also be extended to evaluate 

other environmental chemicals classes because these tools allow screening of large libraries 

of molecules for potential endocrine-disrupting activity. This approach could also help 

circumvent the resource-intensive laboratory work currently used to evaluate the rapidly 

increasing number of chemicals detected in humans and the environment.

Key molecular networks, toxicity pathways, potential modes of action, and potential 

biomarkers of diseases can potentially be identified early during the process of chemical 

safety assessment. In silico tools such as QSAR and docking can be used for hazard 

identification and prioritization of chemicals for further experimental testing (Jensen et al., 

2008; Mays et al., 2012; Nendza et al., 2013; Rybacka et al., 2015). Later, when empirical 

computational systems biology data have been generated for a chemical, (e.g., omics data, 

HTS, in vitro assays) or when specific toxicogenomic, metabolic, or toxicologic pathways 

are known, all these data can be analyzed and integrated. Using virtual screening to generate 

new hypotheses will expand and improve the comprehensive systems evaluation of a 

chemical’s effects on biological systems.
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Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• An integrative virtual screening tool for risk assessment of EDCs is proposed.

• Contemporary estrogen and androgen models show agreement with 

experimental data.

• QSAR consensus modeling presented and evaluated for transparency and 

reliability.

• Approach applied to Carbaryl show usefulness in screening EDCs and further 

testing.
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Fig. 1. 
Analysis methods. The workflow for predicting biological effects based on a 2-dimensional 

chemical structure. Structures of the chemical was uploaded into MetaDrug™. A similarity 

search was performed based on the structure of input compound (Tanimoto coefficient 1) 

against the underlying database (MetaBase™) that contains nearly 700,000 annotated 

compound structures. The known targets of the chemical plus the targets added via the 

MetaDrug™ similarity search were added to the final target list by the MetaDrug™ 

software. These target lists were then used for further functional enrichment analysis that 
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showed overrepresented pathway maps, as well as network construction and analysis, which 

displays annotated connections between targets, other nearby nodes, and the relevant 

diseases.
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Fig. 2. 
Representation of canonical pathway map of predicted targets of carbaryl and the estradiol 

metabolism canonical map at the bottom. Blue hexagon shows the CYPs regulated targets. 

Green arrows = activating interactions. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.)
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Fig. 3. 
Proposed shortest paths network for potential genes associated to carbaryl. Green arrows = 

activating interactions; red arrows = inhibiting interactions. Large blue circles represent the 

genes that are the seed nodes the shortest paths algorithm was required to go through. Small 

red circles next to the genes indicate the targets of carbaryl. Catalytic factors = yellow; 

transcription factors = red; cytokines and lipoproteins = green; receptors and adaptor 

proteins = blue. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.)
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Table 1

Models predictions for the androgen binding receptor Tier 1 EDSP data.

MD AP Disruptome

TP 4 3 4

TN 11 29 26

FN 6 7 6

FP 22 2 7

Total Predicted 43 41 43

Sn 0.40 0.30 0.40

Sp 0.33 0.94 0.79

Accuracy 0.35 0.78 0.70

Balanced accuracy 0.37 0.62 0.60

PPV 0.15 0.60 0.36

NPV 0.65 0.81 0.81

MCC −0.23 0.31 0.18

TP:true positives, TN:true negatives, FN:false negatives, FP:false positives, Sn:sensitivity, Sp:specificity, PPV:positive predictive value, 
NPV:negative predictive value, MCC:Matthews correlation coefficient, MD:MetaDrug, AP:ADMET Predictor.

Chemosphere. Author manuscript; available in PMC 2021 July 08.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ruiz et al. Page 26

Table 2

Models predictions for the estrogen binding receptor CERAPP data set.

MD AP VEGA OCHEM

TP 128 103 131 203

TN 1170 1263 1273 1228

FN 109 134 104 32

FP 270 177 167 200

Total Predicted 1677 1677 1675 1665

Sn 0.54 0.43 0.56 0.86

Sp 0.81 0.88 0.88 0.86

Accuracy 0.77 0.81 0.84 0.88

Balanced Accuracy 0.68 0.66 0.72 0.86

PPV 0.32 0.37 0.44 0.50

NPV 0.91 0.90 0.92 0.97

MCC 0.28 0.29 0.40 0.56

TP:true positives, TN:true negatives, FN:false negatives, FP:false positives, Sn:sensitivity, Sp:specificity, PPV:positive predictive value, 
NPV:negative predictive value, MCC:Matthews correlation coefficient, MD:MetaDrug, AP:ADMET Predictor.
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Table 3

Consensus model results for the androgen binding receptor Tier 1 EDSP data set.

Consensus II 3-models Consensus II 2-models combinations

MD+D AP+D MD+AP

TP 3 2 3 3

TN 26 12 24 9

FN 7 8 7 7

FP 5 19 7 24

Sn 0.30 0.20 0.30 0.30

Sp 0.84 0.39 0.77 0.27

Accuracy 0.71 0.34 0.66 0.28

Balanced accuracy 0.57 0.30 0.54 0.29

PPV 0.38 0.10 0.30 0.11

NPV 0.79 0.60 0.77 0.56

MCC 0.15 −0.35 0.07 −0.37

TP:true positives, TN:true negatives, FN:false negatives, FP:false positives, Sn:sensitivity, Sp:specificity, PPV:positive predictive value, 
NPV:negative predictive value, MCC:Matthews correlation coefficient, MD:MetaDrug, AP:ADMET Predictor, D:Endocrine Disruptome.
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Table 4

Consensus model results for the estrogen binding receptor CERAPP data set.

Consensus II 4-models Consensus II 3-models (excluded OCHEM)

TP 108 109

TN 1232 1299

FN 85 141

FP 88 128

Total predicted 1513 1677

Sn 0.55 0.46

Sp 0.94 0.90

Accuracy 0.89 0.84

Balanced accuracy 0.75 0.68

PPV 0.56 0.44

NPV 0.93 0.84

MCC 0.49 0.35

TP:true positives, TN:true negatives, FN:false negatives, FP:false positives, Sn:sensitivity, Sp:specificity, PPV:positive predictive value, 
NPV:negative predictive value, MCC:Matthews’s correlation coefficient.

Chemosphere. Author manuscript; available in PMC 2021 July 08.


	Abstract
	Introduction
	Material and methods
	Dataset
	QSAR modeling
	ADMET Predictor™
	MetaDrug™
	The Online Chemical Modeling Environment (OCHEM)
	VEGA-QSAR
	Endocrine Disruptome

	QSAR modeling evaluations
	Chemoinformatics and ontology enrichment analysis: carbaryl case study

	Results and discussion
	Model performance evaluations
	Androgen receptor and U.S. EPA tier 1 data set
	Estrogen receptor and CERAPP data set
	QSAR consensus approaches

	Chemoinformatics and ontology enrichment analysis: carbaryl case study

	Conclusions
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Table 1
	Table 2
	Table 3
	Table 4

