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A B S T R A C T   

This work aims to provide insights on the COVID-19 pandemic in three prime aspects. First, we attempted to 
understand the association between the COVID-19 transmission rate, environmental factors (air pollution, 
weather, mobility), and socio-political parameters (Government Stringency Index, GSI). Second, we evaluated 
the efficiency of various strategies, including radical opening, intermittent lockdown, phase lift, and contact 
tracing, to exit the COVID-19 pandemic and get back to pre-pandemic conditions using a stochastic individual- 
based epidemiology model. Third, we used a deep learning approach and simulated the vaccination rate and the 
time for reaching herd immunity. The analysis was done based on the collected data from eight countries in Asia, 
including Iran, Turkey, India, Saudi Arabia, United Arab Emirates, the Philippines, South Korea, and Russia (as a 
transcontinental country). Our findings in the first part highlighted a noninfluential impact from the weather- 
driven parameters and short-term exposure to pollutants on the transmission rate; however, long-term expo-
sure could potentially increase the risk of COVID-19 mortality rates (based on 1998–2017 p.m.2.5 data). Mobility 
was highly correlated with the COVID-19 transmission and based on our causal analysis reducing mobility could 
curb the COVID-19 transmission rate with a 6-day lag time (on average). Secondly, among all the tested policies 
for exiting the COVID-19 pandemic, the contact tracing was the most efficient if executed correctly. With a 2-day 
delay in tracing the virus hosts, a 60% successful host tracing, and a 70% contact reduction with the hosts, a 
pandemic will end in a year without overburdening a healthcare system with 6000 hospital beds capacity per 
million. Lastly, our vaccine simulations showed that the target date for achieving herd immunity significantly 
varied among the countries and could be delayed to October–november 2022 in countries like India and Iran 
(based on 60% immunized population and assuming no intermediate factors affecting the vaccination rate).   

1. Introduction 

The novel human coronavirus (2019-nCoV), also known as Severe 
Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), first 
appeared in late 2019 in Wuhan Province, China (Zhu et al., 2020). As of 
March 23rd, 2021, more than 123 million cases and 2.7 million deaths 
have been reported due to the COVID-19 worldwide (WHO COVID-19 
Dashboard. Geneva: World Health Organization, 2020. Available on-
line: https://covid19.who.int/). Coronaviruses belong to the subfamily 

of Orthocoronavirinae in the Coronaviridae family. The viral particles 
consist of a positive-sense, single-stranded RNA (+ssRNA), an enveloped 
capsid, and six functional open reading frames. Currently, this family 
has four genera α, β, γ, and δ, and SARS-CoV-2, like the SARS-CoV-1 and 
MERS-CoV, belongs to the genus β (Zhou et al., 2020). Many clinical and 
non-clinical (population-size) studies have considered evaluating 
different aspects of the COVID-19 pandemic (Cheng et al., 2020b; Lotfi 
et al., 2020; Wang et al., 2020). Re-evaluating the analysis at different 
scales with more data becomes available through the pandemic helps 
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validate/reject the early-stage studies’ findings. Additionally, with the 
manufacturing and development of the COVID-19 vaccine, we need to 
consider future scenarios to exit the pandemic and go back to normal 
conditions effectively. 

COVID-19 is a respiratory infectious disease and can survive in the 
aerosol for hours; thus, it is essential to investigate the association be-
tween air pollution and COVID-19 infection to identify potential expo-
sure risk (Zhang et al., 2020). Recent studies on the COVID-19 in 
different countries have examined the relationship between air pollution 
and the incidence and mortality of the virus. Based on some of the 
studies, geographical patterns of COVID-19 transmission and mortality 
among countries are linked with local levels of pollutants (Conticini 
et al., 2020; Frontera et al., 2020; Singh et al., 2021). Areas with limited 
health facilities, high population density, air pollution, and vulnerable 
climatic conditions are at higher risk of the virus spread. For example, 
Salam (2020) studied air quality indicators (PM2.5, PM10, AQI, and 
nitrogen dioxide (NO2)), carbon dioxide (CO2) emissions, and climate 
variables (temperature, relative humidity, rainfall, and wind) in Dhaka, 
Bangladesh, and found a significant positive correlation between 
COVID-19 cases and air quality indices and climatic variables. Never-
theless, Wu et al. (2020) reported that the association between air 
pollution needs to be re-evaluated using long-term exposure data. 

Meteorological variables have also been investigated for their impact 
on the COVID-19 transmission and severity. Some studies have reported 
that factors such as temperature and humidity could impact the COVID- 
19 transmission rate (Damette and Goutte, 2020; Rahman et al., 2020; 
Rizwanul Fattah et al., 2020; Sajadi et al., 2020). For example, Ma et al. 
(2020) reported that diurnal temperature and humidity change affect 
COVID-19 infections in Wuhan, China. On the other hand, studies like 
Jamshidi et al. (2020) reported no compelling evidence for including 
weather as a significant contributor to the spread of the COVID-19. 
According to this study, a higher level of mobility and traveling can 
increase the spread of the disease and transfer it from regional levels to 
global epidemics. The inconsistencies between the study’s findings 
highlight the importance of re-considering these factors for a larger time 
window and over different spatial scales. 

Many studies confirm the importance of screening, surveillance, and 
control efforts, particularly at airports and other transportation hubs, to 
prevent the spread of SARS-CoV-2 (Imai et al., 2020; Kraemer et al., 
2020; Stoecklin et al., 2020; Tian et al., 2020). Accordingly, authorities 
have imposed various lockdown or tracing policies to curb the 
COVID-19 pandemic growth. While executing these policies has been 
associated with lowering the risk of the transmission rate, the impact of 
lifting the limitations and re-opening remains unclear (Cheng et al., 
2020a). de Vlas and Coffeng (2021) evaluated the impact of different 
policies on COVID-19 transmission for exiting the COVID-19 pandemic 
in the Netherland. They proposed a “phased lift of control” strategy as a 
manageable and effective strategy to reach herd immunity (without 
considering the impact of vaccination). Kraemer et al. (2020) performed 
a study using real-time mobility from Wuhan and detailed case data, 
including travel history, to show the role of transmission case impor-
tation in cities across China and showed the impact of control measures. 
This study shows that China’s drastic control measures substantially 
mitigated the spread of COVID-19. 

Vaccine development is another aspect that can significantly affect 
the policies countries are imposing against COVID-19 for ending the 
pandemic. As of the time of developing this study (March 2021), most 
countries are in early-stage vaccinations. Several studies have reported 
the significant impact of the vaccination on reducing the COVID-19 
transmission and prioritizing vaccine allocations (Bubar et al., 2021; 
Mukandavire et al., 2020; Yang et al., 2020). The information on vaccine 
development and predicting the future scenarios based on the current 
vaccination rollout speeds could significantly contribute to incorpo-
rating more effective measures to confront COVID-19 in different 
countries. 

The current study aims to identify the impact of environmental and 

socio-political factors on COVID-19 transmission in eight countries, 
including Iran, Turkey, India, Russia, Saudi Arabia, the United Arab 
Emirates, the Philippines, and South Korea. Russia is a transcontinental 
country extending from Asia to Europe, with its most land in Asia and 
most population in Europe. Yet, to be consistent with the context, we 
refer to it as in Asia. Next, we evaluated the impact of different 
lockdown/re-opening strategies on the transmission rates to find the 
optimal approach for returning to normal (pre-pandemic) conditions. 
Comparing these factors and the policies can guide the public and 
governments in controlling COVID-19 transmission more effectively 
during similar critical situations. Therefore, in this study, we have also 
compared the vaccination speed in these countries during the initial 
vaccination phase. The negative binomial regression was used to fore-
cast vaccination progress and the amount of time needed to reach 
vaccine-induced herd immunity, considering the population and current 
vaccination speed for each country. 

2. Materials and methods 

2.1. Study areas 

We analyzed eight Asian countries, including Iran, Turkey, Saudi 
Arabia, United Arab Emirates, India, Russia, the Philippines, and South 
Korea. The selection of these countries was made based on two prime 
criteria. First, these countries were selected to represent various geo-
spatial and political characteristics (e.g., different climates, socio- 
economic conditions). Second, we considered the availability of the 
data required for the analysis (discussed in the following subsection). 
Fig. 1 shows the locations of the selected countries on the map with their 
demographic information. The population of the selected countries 
ranges from 9.9 million (United Arab Emirates) to 1.380 billion (India), 
with the variable climate ranging from arid (Saudi Arabia) to tropical 
(Philippines), temperate (North of India), and very cold (Russia). 

The analysis was done in three main sections. In the first part, we 
performed a correlation and causality analysis between the COVID-19 
infection rate and a number of environmental and social factors, 
including weather (air temperature and humidity), air pollution, 
mobility, and governmental responses. The objective of this analysis was 
to understand the driver factors of COVID-19 at a large scale. In the 
second part of the analysis, we evaluated the impact of different stra-
tegies for getting back to pre-pandemic (normal) conditions using a 
stochastic individual-based epidemiology model (the VirSim model). 
The objective of this section was to shed light on the success of different 
exit strategies that countries could adopt. Lastly, for the third part, we 
compared the vaccination progress of these eight countries using the 
daily administered doses of vaccine during the initial vaccination phase 
(Dec 2020–Mar 2021). The objective of this section is to highlight the 
impact of vaccination speed on the ultimate control of COVID-19 by 
predicting the amount of time needed to vaccinate 60% of each coun-
try’s population considering the current daily average of administered 
doses. 

2.2. Data collection 

We collected daily data of COVID-19 infection and death rate from 
March to December 2020 from the World Health Organization (avail-
able at https://www.who.int/). A subset of the data associated with the 
eight countries, selected for the evaluations, was furthered processed (i. 
e., quality checked, converted to desired formats for modeling 
purposes). 

Daily meteorological variables, including the air temperature (Tair) 
and relative humidity (Rh), were retrieved from the Modern-Era 
Retrospective Analysis for Research and Applications, version 2 
(MERRA-2) (Gelaro et al., 2017). We used MERRA-2 data because it 
combines disparate meteorological measurements and generates physi-
cally uniform and spatially consistent gridded datasets at hourly time 
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steps and spatial resolution of ⁓50 km. The Tair and Rh data were 
spatially averaged for each of the countries, temporally reaggregated to 
daily, and used in the analysis. 

To evaluate the interplay between air quality and COVID-19 infec-
tion risk, we considered a short and long-term analysis. First, we per-
formed a short-term analysis by evaluating the association between the 
satellite-based AOD (Aerosol Optical Depth) and COVID-19 cases during 
the pandemic (March to December 2020). AOD is a measure of the 
extinction of the solar beam by particles in the atmosphere, and thus, 
provides a decent metric of air quality. We should highlight that air 
quality should be ideally represented using PM2.5 data (fine particle 
matter with a diameter smaller than 2.5 μm), however, the satellite- 
driven PM2.5 data were not available during the COVID-19 pandemic, 
and thus we used the AOD data instead. Many studies have reported a 
strong correlation between the AOD and PM2.5 (Jin et al., 2020; Krishna 
et al., 2019). The AOD data were retrieved from the Sentinel 3 (A and B) 
satellites available from Copernicus Climate Data Store (https://cds.cli 
mate.copernicus.eu/). The data has been retrieved at a daily level and 
spatially averaged over each of the countries for further analysis. 

Second, we considered a long-term analysis to evaluate the associa-
tion between the long-term exposure to pollutants (using PM2.5 data) 
and susceptibility to COVID-19 infection. For the long-term analysis, we 
used all available PM2.5 data from 1998 to 2017 from the Socioeco-
nomic Data and Applications Center (SEDAC). The PM2.5 data were 
temporally averaged for all the years, and the long-term averaged data 
were used to evaluate the link between the hotspots of air pollution and 
COVID-19 mortality rates. 

The mobility data were retrieved from the GitHub repository of the 
reports generated by Google, Apple, and Waze COVID-19 Community 
Mobility Reports (https://github.com/ActiveConclusion/COVID19 
_mobility). A baseline was calculated for each weekday by averaging 
the values during February (as the pre-pandemic phase). The daily 
percentage change from the baseline corresponding to the weekdays was 
calculated and used as the mobility index (MI). The MI demonstrates the 
percentage of increase (positive values) or decreases (negative values) in 
the daily trips from March to December 2020 with reference to the 
baseline (during February). 

The government stringency index (GSI) is a composite measure based 
on nineteen response indicators, including eight indicators on contain-
ment and closure policies, four economic policies, and seven indicators 
of health system policies. The index is calculated as the metrics mean 
score, each taking a value between 0 and 100 (i.e., 100 = strictest 
response). These data were provided by the Oxford COVID-19 Govern-
ment Response Tracker (https://www.bsg.ox.ac.uk/research/research 
-projects/covid-19-government-response-tracker#data), and we used a 
subset of the data for the countries used in the analysis. 

2.3. Models and simulations 

For simulating the strategies to exit the COVID-19 pandemic, we 
used the VirSim model (de Vlas and Coffeng, 2021) and considered four 
different scenarios. VirSim is a compartmental SEIR (Susceptible, 
Exposed, Infected, Recovered) model that considers a region or country 
by clustering individuals into small groups (e.g., sub-city scale, villages) 
with each group being a part of a supercluster (e.g., city or province). 
The model details and its technical aspects can be found at the “science 
versus corona” project (available from https://scienceversuscorona.co 
m/interactive-exploration-of-covid-19-exit-strategies/), but in essence, 
the model explores the efficiency of different policies for controlling the 
COVID-19 pandemic growth and exiting the pandemic. The simplified 
schematic of the model workflow is presented in Fig. 2. The model 
calculates the force of infection (λ) as a function of i) the virus infection’s 
occurrence in the cluster and superclusters, ii) variations of the trans-
mission rate and contact rate, and iii) the effect of interventions 
considered by the model. 

The VirSim model used in the study simulates an epidemic by 
randomly seeding 10 infections. The model then considers a general 
lockdown condition for 60 days (7 days of loose lockdown and 53 days 
of stricter lockdown) when the number of infections extends a certain 
level. The interventions are considered by the model 30 days later. These 
values are the default values considered by the developers of the models, 
yet, since we intended to compare the different strategies, we kept these 
values unchanged and similar among the different simulations. The 
model parameterizations are provided in Supplementary Table S1. 

With the VirSim model, we have tested the impact of four strategies 

Fig. 1. Map of the study area (Asia) with locations of the countries evaluated in this study, including Iran (IRN), Turkey (TUR), Russia (RUS), India (IND), Saudi 
Arabia (SAU), United Arab Emirates (UAE), Philippines (PHL), and South Korea (KOR) and their demographic information. 

Fig. 2. The simplified graphical representation of SEIR (susceptible, Exposed, 
Infectious, Recovered) model. λ is the force of infection, β is the average contact 
rate, and N is the population size. 
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for ending the semi-lockdown conditions that countries have been 
regulating. The first tested policy is the Radical Opening (RO), in which 
all the businesses will get back to a normal condition (pre-pandemic) 
with a sudden lift of all imposed policies. The second tested policy is the 
Phased Lift of Control (PLoC), in which a country lifts the lockdown in 
different areas at different times. The third tested policy is the inter-
mittent lockdown, in which several cycles of lockdown occur (a lock-
down is imposed whenever the COVID-19 cases increase to a particular 
level, and the lockdown is removed after a certain time (considered as 25 
days in the simulations). The last tested scenario is contact tracing, in 
which the infectious/symptomatic cases are identified and isolated to 
reduce the risk of transferring the virus. The variations of these scenarios 
are evaluated for a country with ten regions, including an equal number 
of sub-regions and 1000 individuals per sub-regions. 

2.4. Analysis and statistics 

For evaluating the associations between the individual variables and 
the COVID-19 cases, we first applied generalized linear models (GLM) to 
account for the non-linear behavior of the variables and their non- 
normal distributions. In the GLM models, each outcome (Y) of the 
dependent variables (x) for each observation (i) is assumed to be: 

Yi ∼ FEDM( ⋅ |θ,φ,ωi)&μi =E[Yi|xi] = g− 1( x
′

iβ
)

(1)  

where FEDM denotes a distribution family, μis the mean of the distribu-
tion, g is the link function, x′

iβ is the linear predictor, and E[Yi|xi] is the 
expected value of Y conditional on x. Based on the resulting distribution 
of individual variables, we applied various GLM including the Poisson, 
Binomial, and Gaussian models. The robustness, significance, and rela-
tive quality of the applied models and correlations were examined by the 
chi-square (ϰ2) , Pvalue, and Akaike information criterion (AIC), respec-
tively. A superior model performance is linked with a lower magnitude 
of ϰ2 and AIC. 

Given the time-dependent and non-linear nature of the real-world 
data, as denoted by Jamshidi et al. (2020), the correlation-based anal-
ysis could not reveal and quantify the causal relationships between the 
observations. For example, a number of studies have reported on a 
strong correlation between COVID-19 mortality rate and air pollution, 
but the question remains if the COVID-19 and its restrictions caused the 
change in the air pollution or changes in air pollution have caused the 
COVID-19 cases to rise or drop. Therefore, the interconnection between 
the variables was evaluated through a causality analysis. 

We identified the time-lagged causal dependency structure (consid-
ering ten time-lagged steps) underlying the networks of the variables 
(Tair, Rh, MI, GSI, and AOD) and quantified causal strength using the 
PCMCI index (Runge et al., 2019). The PCMCI index considers a 
time-dependent network of variables (X1

t ,X2
t ,…,XN

t ) with: 

Xj
t = fj

(
P
(
Xj

t

)
, ηj

t

)
(2)  

where fj is the non-linear function between the variables, ηjt is the noise, 
and P(Xjt) denotes the causal parents of variable Xjt at different time lags 
(Xt− 1, Xt− 2, …). Next, it applies the principal component (PC) using a 
Markov set discovery through an iterative process to only select the 
relevant parents and conditions, i.e., P̂(Xjt), for all the variables as: 

(3) 

Then, the model employs the momentary conditional independence 
(MCI) test to capture the dependencies at lag-time steps: 

(4) 

We performed the causality tests and calculated the PCMCI index 
using the Tigramite open-source software package (https://github. 
com/jakobrunge/tigramite). The dependency structure of the variables 

is represented in a graphical model to make it visually simpler to 
understand. 

In the last part of the manuscript, we used a deep learning approach 
combined with the negative binomial regression model (NBR) (Cameron 
and Trivedi, 2013) to predict the number of administered COVID-19 
vaccine doses and an approximation date that countries reach 
vaccine-based herd immunity. For the deep learning approach, we used 
the Long Short Term Memory network (LSTM) approach (Hochreiter 
and Schmidhuber, 1997). We selected this model primarily due to its 
high capability of learning long-term dependencies and capturing the 
patterns in sequences of data, such as numerical time’s series data. 

LSTM takes the current and historical inputs and applies three sig-
moid layers (known as “gates”) to decide which information to be used 
or removed from the model. The gates include a forget gate (decides 
what information to be removed), an input gate (decides which infor-
mation to update), and, and an output gate (decides which information 
to be generated as the output). The mathematical form of these gates is 
summarized below. 

ft = σ
(
Wf × [ht− 1, xt] + bf

)
(5)  

it = σ(Wi × [ht− 1, xt] + bi) (6)  

C̃t = tanh(Wc × [ht− 1, xt] + bc) (7)  

Ct =Ct− 1 ×Ct + it × C̃t (8)  

ot = σ(Wo × [ht− 1, xt] + b0) (9)  

ht = ot × tanh(Ct) (10)  

where ft is the forget gate vector, it is the input/update gate vector, ht is 
the output gate vector, σ is the sigmoid function, W is the weight 
matrices, and ct is the cell state vector. 

The NBR model assumes the dependent variable (Y) as a function of 
count data (vaccination doses) following the negative binomial distri-
bution. Unlike the regular regressions, the variance and mean do not 
need to be equal in the NBR model. The prediction of the dependent 
variable for an observation “i” is calculated using the following 
equation: 

Pr(Y = yi|μi, α)= Γ(yi, α− 1)

Γ(α− 1)Γ(yi + 1)

(
1

1 + αμi

)α− 1(
αμi

1 + αμi

)yi

(11)  

where μ is the mean rate of y per unit of time, α is the reciprocal of a scale 
factor, and Γ is the gamma distribution. 

We first trained the model based on the current vaccination rates in 
all countries. Then for each of the countries considered in this study, the 
current vaccinates data (as of May 22nd, 2021) was ingested into the 
model and the future vaccination rates were simulated. Based on the 
simulation results, the approximate time at which the countries would 
reach herd immunity was estimated. Herd immunity was considered 
when the countries vaccinate 60% of their population with two doses of 
vaccine. We applied LSTM Model in Python using “TensorFlow” and 
“Keras” packages and the NBL model was applied using the “statsmodel” 
package. We highlight that the performed analysis is solely based on the 
currently available data (end of March 2021) and subject to bias due to 
the future changes in vaccination policies imposed by the countries. 

3. Results 

As of March 2021, the world is still struggling with the COVID-19 
pandemic. During the past year (from March 2020 to March 2021), 
the epicenter of the COVID-19 in Asia has been changing from China to 
Iran, India, Russia, and Turkey. Currently (As of March 2021, India, with 
over 11.7 million confirmed cases and 160,000 deaths, has the highest 
COVID-19 reports among the Asian countries, followed by Russia with 
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4.4 million cases and 93,800 deaths (while Georgia has the largest 
COVID cases and mortality per capita). Among the eight countries 
considered in this study (shown in Fig. 3), United Arab Emirates has the 
highest cases per capita (42,500 per one million population), and Iran 
has the highest mortality rate (722 per one million population). With 
only 1850 COVID-19 cases and 32 deaths per capita, South Korea had 
the lowest COVID-19 statistics, depicted also in Fig. 3 (bottom rows). 
While several socio-cultural, economic, environmental factors interact 
with each other in each country for dealing with the COVID-19 
pandemic, in the following sections, we have broken down how 
certain factors affect the transmission rate of COVID-19. Fig. 3 sum-
marizes the statistical reports for COVID-19 over Asia and for the 
selected countries. 

3.1. Correlation assessments 

We used GLMs to investigate the correlation between the COVID-19 
cases, mobility, air quality, air temperature, relative humidity, and 
governmental response. The resulting pair-wise correlations and statis-
tics (based on the best fitted GLM) are summarized in Fig. 4 in a matrix 
format. The sub-figures on the principal diagonal of the matrix show 
each variable distribution. Overall, we only found mobility to have a 
significant impact on virus transmission. The next subsections discuss 
details of each variable role. 

3.1.1. Meteorological variables 
For air temperature (Tair) and relative humidity (Rh), the weekly 

relative changes in Tair and Rh were examined against the number of 
infected cases using the Gaussian model. As depicted by Fig. 4, there was 
no significant correlation between the weather-driven parameters and 
the number of COVID-19 patients. For the entire period from March to 
December 2020, the relationship between the Tair, Rh, and COVID-19 
cases resulted in statistically non-significant correlations (Pvalue ≫ 
0.05). Therefore, the impact of meteorological factors on the virus 

transmission was found to be unlikely. There was no static upward or 
downward trend in the number of the COVID-19 infections with the 
increase or decrease in air temperature (or relative humidity) during 
different months, signifying the transmission rate is not driven by the 
change in the weather-driven parameters. The meteorological variables 
did not also correlate with other parameters considered in the study. 

Thus, studies and analyses focusing on only a limited time window or 
specific geographical location could be largely biased. A number of 
early-stage studies (e.g., Gupta et al., 2020; Ma et al., 2020; Tosepu 
et al., 2020; Xie and Zhu, 2020) have reported specific ranges for air 
temperature and relative humidity at which the virus has its most effi-
ciency. However, these studies do not consider the impact of various 
spatiotemporal scales in the analysis. 

Overall, our analysis showed that meteorological variables do not 
affect virus transmission or prevention. Similarly, Jahangiri et al. (2020) 
analyzed the effect of absolute temperature (AT) on virus transmission 
in 31 different Iran provinces and reported on the low sensitivity of AT 
and the COVID-19 patient. Jamshidi et al. (2020) performed a similar 
analysis globally and reported no impact from the weather on the virus 
transmission. Therefore, there is no scientific reason to have fewer pa-
tients in warmer climates than in moderate or cold climates. 

3.1.2. Mobility 
The correlation between mobility and the number of COVID-19 cases 

was investigated using the Poisson model. It should be noted that 
mobility data used in the analysis was computed as the difference in the 
transportation during the pandemic with respect to a similar time during 
pre-pandemic (negative values show reduction and positive show in-
crease in mobility). It was found that the change in mobility was strongly 
correlated with the COVID-19 pandemic growth change. While the 
resulting models fitted to the data were not adequately representative 
(given the high magnitude of ϰ2 = 6623), the resulting Pvalue (<0.01) 
shows the significance of the resulting correlation coefficients. 

Our analysis depicted that the reduction of mobility was in concert 

Fig. 3. Overall statistics of COVID-19 infected cases and mortality rate in Asia with specific attention to Iran (IRN), Turkey (TUR), Russia (RUS), India (IND), Saudi 
Arabia (SAU), United Arab Emirates (UAE), Philippines (PHL), and South Korea (KOR). The spatial distribution and time series of daily COVID-19 cases are shown in 
the top row, and the bottom row shows the changing rate of the daily COVID-19 cases and mortality from March 2020 to March 2021. 
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with the dropping COVID-19 cases, and when there was a surge in 
mobility, COVID-19 transmission increased rapidly. Taking the United 
Arab Emirates as an example, we can see that when mobility increased 
from 50% to 200%, the number of infected cases per capita increased 
from 5 to 15. The link between daily changes in mobility and COVID-19 
cases was observed during all months with different levels of strength for 
the countries investigated. 

Although the relationships between the mobility and COVID-19 
pandemic has not been much discussed at cross country level, it has 
been highlighted at the country or city level in a number of studies (Badr 
et al., 2020; Engle et al., 2020; Nouvellet et al., 2021). Mobility was also 
found to have a significant impact on the level of pollutants as shown in 
Fig. 4. A higher transportation rate would directly contribute to the level 
of particulate matter in the atmosphere and change air quality. 

3.1.3. Governmental responses 
To investigate the correlation between the stringency index and 

COVID-19 transmission rate, we applied the negative binomial model. 
The governmental response yielded a non-significant (Pvalue = 0.966) 
correlation with the COVID-19 cases, with overall ϰ2 of 650. The reason 

for the absense of correlation between the GSI and COVID-19 was the 
consideration of all eight countries at once. As depicted in Fig. 5 (B and 
C), there were two distinct patterns in the resulting GSI. Exploring the 
two opposite patterns together resulted in the non-significant pattern 
shown in Fig. 5, A. 

Expecting a lower number of COVID-19 cases with a higher strin-
gency index would be a logical and reasonable hypothesis and was 
observed in Russia, United Arab Emirates, India, and the Philippines 
(Fig. 5, B). Nevertheless, a negative trend (increased number of COVID- 
19 cases with higher GSI) was detected for certain countries. The 
negative correlation (upward trend) likely signifies a delayed govern-
mental response in imposing mitigating strategies against the COVID-19 
pandemic. Iran, Turkey, and Saudi Arabia were the examples where the 
governmental response showed a positive correlation with the COVID- 
19 transmission rate (Fig. 5, C). 

Taking the case of Iran as an example, the country publicly reported 
the first 43 COVID-19 cases in mid-February, and with no strict quar-
antine or public health measures, the country reported more than 
29,000 cases by mid-March 2020 (Analysis of Traveler Data Suggests 
Iran’s COVID-19 Trajectory Far Higher Than Officially Reported 2020. 

Fig. 4. The relationships between the COVID-19 infected cases and air quality, air temperature, relative humidity, mobility, and governmental response based on the 
best fitted GLM in Iran, Turkey, India, South Korea, Russia, Philippines, Saudi Arabia, and the United Arab Emirates (from March to December 2020). The sub-figures 
on the principal diagonal of the matrix show each variable distribution and upper diagonal elements show the statistics for each of the models. 
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Available from: https://www.contagionlive.com/view/analysis-of-trav 
eler-data-suggests-irans-covid19-trajectory-far-higher-than-officially- 
reported/). After a sharp increase in the COVID-19 cases in March, Iran 
has imposed a national lockdown from March 20th to April 3rd, 2020. 
Another more strict national lockdown was imposed from November 
21st to December 4th, 2020, again after a radical surge in the number of 
cases (from less than 5000 daily cases on October 21st to more 
than14000 daily cases on November 21st). Although these policies were 
successful in terms of curbing the pandemic growth (reduced nearly 
40–50% of daily cases), they were imposed late and after the virus surge, 
causing the negative trend depicted in Fig. 5, D. 

Among the studied countries, South Korea had the best performance 
in governmental responses. As demonstrated in Fig. 5-C, with the onset 
of the COVID-19 pandemic, the country imposes policies with a high GSI 
(>40), nearly twice stricter than other countries in our study. The rapid 
and strict governmental response in South Korea was further increased 
during the pandemic and provided an excellent example of curbing the 
virus transmission. Therefore, the early response would be a key for 
controlling an outbreak like COVID-19. 

It should be highlighted that while China was not among our studied 
countries, its implementation of multifaceted public health measures 
and aggressive non-pharmaceutical interventions to control the COVID- 
19 pandemic can be seen as an excellent example for future efforts to 
combat global health emergencies. Intensive intracity and intercity 
traffic restriction, social distancing measures, cancellation of social 
gatherings, and home quarantine were among the main implemented 
interventions (Leung et al., 2020). Several studies have shown that the 
effective reproduction number (Rt) gradually decreased in Wuhan, 
China (as the first epicenter of COVID-19 pandemic) in late January 
2020, when the government blocked all outbound transportation from 

the city, suspended public transit within the city, and implemented 
strategies such as compulsory mask-wearing in public places (Pan et al., 
2020). The Rt further decreased by improvement in medical resources, 
the government implemented a stay-at-home policy in the city and 
initiation of door-to-door and individual-to-individual symptom 
screening for all residents (Hao et al., 2020; Pan et al., 2020). 

3.1.4. Air quality 
As discussed in the material and method section, we used satellite- 

driven AOD data (for the short-term analysis) and PM2.5 (for the 
long-term analysis) for the air quality metric. The correlation between 
the AOD and COVID-19 infection during the study period was investi-
gated using the Poisson model. Based on our analysis n the short term, 
while we found footprints of higher infectious rates in more polluted 
areas, the correlation between the two was not statistically significant 
(Pvalue = 0.07, ϰ2 of 10,579). We highlight that exploring the role of air 
quality on the COVID-19 health outcome using the regression analysis is 
challenging because of the chain effect that exists between the variables 
in an urban setting. The sources of air pollution are intrinsically linked 
with transport and industry. The COVID-19 pandemic’s direct impact on 
shutting down transportation and business would translate into air 
quality changes. This interconnectivity between the variables indicates 
the importance of the causal analysis presented in the following sub- 
section. 

While a number of studies have shown the link between the air 
quality and COVID-19 mortality rate using the data during the pandemic 
(Fattorini and Regoli, 2020; Wu et al., 2020), we emphasize that 
comparing the number of COVID-19 mortality and the air quality data 
would not be the optimal approach to identify the associations between 
the two variables. Analyzing such attribution requires the exposure data 

Fig. 5. The relationships between the COVID-19 infected cases and the governmental response index (GSI) in Iran, Turkey, India, South Korea, Russia, Philippines, 
Saudi Arabia, and United Arab Emirates (A) and the overall trend in each country (B and C). An example of time series of the GSI and daily COVID-19 cases and 
lockdown periods is shown in subfigure D. The data period is from March to December 2020. 
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at a personal level. In a recent work by Wu et al. (2020) using a 
long-term analysis for capturing the impact of air pollutants on the 
COVID-19 mortality rates was suggested. They have analyzed a 17-year 
average of PM2.5 concentrations (using satellite data) over the United 
States and reported that for every 1 μg/m3 increase in air pollution, 
there would be an 11% increase in mortality from COVID-19 infection. 
In a similar manner, we have used the PM2.5 data over an 18-year 
period (1998–2017) to check the long-term exposure health outcome 
concerning COVID-19. Fig. 6 shows the spatial distribution of PM2.5 and 
COVID-19 deaths over the Asian countries. The cross-country correla-
tion (scatter plot in Fig. 6) did not show any significant correlation be-
tween the air quality and the higher risk of COVID-19. We caution that 
evaluating the association between air pollution and COVID-19 trans-
mission or mortality rates at the countrywide level may not be an 
optimal approach. This is particularly due to each country’s specific 
socio-economic situation and the measures that have been taken during 
the pandemic that may interfere with the outcome. For example, in the 
eastern part of China, the air quality is extremely low (PM2.5 > 50 
μg/m3); however, the policies and measures that China has imposed 
during the pandemic have led to a low mortality rate (1–2 per 100,000 
inhabitants). 

Therefore, we further analyzed the long-term exposure taking the 
examples of Iran, India, and South Korea. These countries were selected 
because we had access to state-level COVID-19 data. As demonstrated in 
Fig. 7, the more polluted areas were associated with a higher risk of 
severe COVID-19 outcomes. The hotspots of air pollution in Iran are 
located in the southwest, west, and northwest of the country (up to 27 
μg/m3), where we found a higher number of COVID-19 death. In 
particular, the Khuzestan province (in southwest Iran) has been a hot-
spot for COVID-19 deaths with nearly 200 per 100,000 population. This 
region has been suffering from low air quality due to frequent dust 
storms (Goudarzi et al., 2019), which could have contributed to the 
susceptibility of the inhabitants to respiratory disease, including but not 
limited to COVID-19. We should highlight that air quality could be one 
of the underlying factors for a higher COVID-19 death rate in Khuzestan 
province, as other factors (in particular socio-cultural factors) would be 
important as well. For example, excessive social gatherings and local 

ceremonies in the Khuzestan province (based on the authors’ local 
knowledge) could cause a higher number of COVID-19 cases and a 
higher likelihood of COVID-19 death in this province. 

In India, the center to the northern part of the country experiences 
one of the worst air quality (PM2.5 > 60 μg/m3), and in these areas, the 
likelihood of COVID-19 mortality was higher. However, in southern 
India, despite a relatively better air quality compared to the central and 
northern parts, the COVID-19 death rate was higher. This inconsistency 
could stem from the coarse spatial resolution COVID-19 data (although 
we have scale it down to state-level). Such complex problems require 
fine resolution data at a personal level, as other variables such as pol-
icies, urbanization, demographic information, and the healthcare sys-
tem could also possess important roles in changing the COVID-19 
transmission rate (Jamshidi et al., 2020; Mallires et al., 2019). For 
example, southern states in India have less developed health infra-
structure, particularly in rural areas, compared to the northern states 
(Kumar et al., 2020). The inefficient healthcare system in these states 
may contribute to the higher number of mortalities despite their better 
air quality. Maharashtra state, located in southwestern India, is the 
second-most populous state and one of the most urbanized states (more 
than 50%) in India. These factors could cause rapid COVID-19 trans-
mission in this state. The high infection rate and failure of the health 
system during the second wave of COVID-19 likely caused the highest 
mortality rate in Maharashtra (After Delhi) as shown in Fig. 7. These 
examples clarify the impact of other factors driving the COVID-19 
mortality rate and the low correlation with air quality. 

In South Korea, the western and northwestern regions suffer from 
higher particulate matter and higher mortality rates. However, the 
positive correlation between the pollutants and COVID-19 mortality 
rate, unlike Iran and India, was not statistically significant. One reason 
for this inconsistency could be the intermediate factor of urban density, 
which highly contrasts with the administrative boundaries of South 
Korea. The role of urban density is also noticeable in the case of Iran and 
India (scatter plots, Fig. 7), where higher PM2.5 values and mortality 
rates were found in denser areas (bigger circles in the scatter plots). The 
administrative divisions of South Korea (for which the COVID-19 data 
was available) consists of heavily dense areas like Seoul (16,150 

Fig. 6. The spatial distribution of the mean long-term PM2.5 pollutants from 1998 to 2017 (A), total number of COVID-19 deaths (from March to December 2020) 
(B) across the Asian countries. The correlation between A and B is shown in subfigure C for all the nations with available data. 
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inhabitants/km2) or Ulsan (4450 inhabitants/km2), and less dense re-
gions like Gangwon (75 inhabitants/km2) or Gyeongsangbuk (144 in-
habitants/km2). As urban density is directly linked with air quality, 
mixing the areas with different urban densities could lead to weak 
correlations (McCarty and Kaza, 2015). As shown in Supplementary 
Figure S1, we divided the states in South Korea into low-density areas 
(<500 inhabitants/km2) and high-density regions (>500 inhab-
itants/km2) and found a stronger correlation between air quality and 
COVID-19 mortality in less dense areas. The interplay between the 
pre-existing intermediate factors (e.g., socio-cultural or demographic 
factors that are explained above) becomes more complex in high-density 
areas. In these areas capturing the correlation between air quality and 
respiratory diseases are more challenging and cannot be done by 
regression analysis. Another intermediate factor affecting the 
PM2.5-mortality correlation in South Korea could be its strict public 
health strategies. South Korea instituted and maintained effective and 
immediate containment and mitigation strategies, including wide-
spread, free and rapid testing, meticulous tracing of all contacts, and 
crowd avoidance, which could have greatly impacted the associations 
between COVID-19 and environmental variables, including air 
pollution. 

Although our analysis showed a potential link between long-term 

exposure and COVID-19 health outcome, we caution that these ana-
lyses only provided an overall insight as we did not consider other 
cofounding parameters in the long-term analysis that could potentially 
interfere with the results. Nevertheless, the insights provided by our 
study create an avenue for conducting a more detailed analysis 
considering other environmental and socio-economic factors. 

3.2. Causal analysis 

We also performed the causality analysis for each of the countries 
(separately) and all together. Our results are shown in Fig. 8 (full results 
with all countries are included in the Supplementary Fig. S2). As dis-
cussed in the Material and method section, ten time-lagged steps were 
analyzed (i.e., the relationships between the variables at each time steps 
were analyzed with respect to the last ten days {i− 10, i− 9, …, icurrent}. 
Therefore, Fig. 8 includes four key features: the auto-MCI, cross-MSI, lag 
time, and correlation arrows. The auto-MCI shows the correlation for 
each variable with itself at previous time steps and displayed using the 
colored circle around the variable. The cross-MCI signifies the correla-
tion between the variables and is shown with the colored arrows. The 
blue-colored arrows indicate a negative correlation (ranging from − 1 to 
0), and orange arrows show a positive correlation (ranging from 0 to 1). 

Fig. 7. The spatial distribution of the mean long-term PM2.5 pollutants from 1998 to 2017, the total number of COVID-19 deaths (from March to December 2020) for 
Iran (column A), India (column B), and South Korea (column C). The correlations at the state (or province) level are shown in the scatter plots (the size of circles show 
the density of the states and the lines are fitted using generalized linear models). 
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The numbers on the arrows show the time step at which the correlation 
occurred. 

While different countries demonstrated a slightly different causality 
pattern among the variables, the overall concept was similar. Accord-
ingly, the connection between the number of COVID cases and mobility 
was found to be mutual. A change in mobility has been translated to a 
shift in the COVID-19 cases with a six day-time-lag (on average). That 
means based on the data from March to December 2020, whenever the 
mobility was reduced, its positive impact on curbing the COVID-19 
transmission could be observed within six days. On the other hand, a 
change in COVID-19 has also triggered a reverse change in mobility with 
a 3-day-lag-time. Considering COVID-19 as a driver of mobility caused 
the reverse correlation and likely occurred due to a ‘fear concept’. More 
specifically, the higher COVID-19 cases were caused people to be more 
cautious, and therefore, the number of daily trips has been reduced, 
shaping the reverse correlation. 

The governmental response was linked to the COVID-19 cases and 
mobility. As shown in Fig. 8, GSI impacted COVID-19 cases with a 
positive link (given GSI as the parent) and a negative link (given COVID- 
19 cases as the parent). The reversed links conveyed that (on average) 
the imposed policies, while effective, were not timely mannered. The 
reversed links between the GSI and the number of infected cases 
confirmed that stricter strategies (higher GSI) were imposed with a rise 
in the COVID-19 cases. The GSI also caused mobility changes (negative 
cross-MCI), and the mobility changes have altered the virus transmission 
(as stated above). The links between GSI and mobility were negative, 
conveying that higher GSI caused lower mobility levels with a 1–4 days’ 
lag. 

No links were found between the PM2.5 with the number of COVID- 
19 cases. There were also some links between mobility and air tem-
perature to PM2.5, which were reasonable. A number of studies have 
demonstrated the connection between the meteorological variables and 
the air quality variations (Bloomer et al., 2009; Chen et al., 2019; Koken 
et al., 2003). The positive link between higher mobility and higher air 
pollution was expected as transportation has consistently been 

recognized as a significant air pollution source. These links are crucial 
for a factual analysis of the factors affecting COVID-19 cases. In 
particular, the climate condition may not directly affect the COVID-19, 
but it may cause a change to other variables (for example, air quality) 
and thus, indirectly affect the COVID-19 condition. 

3.3. COVID-19 exit strategies to normal condition 

This section presents the VirSim model simulation results consid-
ering different strategies for a transition from the COVID-19 pandemic to 
a normal condition. As discussed in the material and method section, the 
simulations were carried out for a country with ten sub-regions (states or 
provinces), each comprised of equal divisions (e.g., 100 divisions) and a 
population of 1000 people living in each division. Fig. 9 shows how the 
execution of each strategy affects the number of COVID-19 cases over 
time. The horizontal line at 6000 cases per million reflects the health-
care capacity (the value was originally developed by the model for 
Netherland, but here since we are comparing different countries with 
different healthcare capacities, we leave 6000 cases per million as a 
plausible consideration). The vertical dashed lines show the moment at 
which intervention occurs. Each strategy’s execution affects the per-
centage of the population recovering from the infection over time in a 
different manner which is visualized in the Supplementary Fig. S3. The 
horizontal dashed line at 60% indicates the minimum level of herd 
immunity required to avoid an epidemic (de Vlas and Coffeng, 2021). 

In the radical opening, as shown in Fig. 9, A, the number of infected 
cases dramatically increases over a short period of time, exceedingly far 
beyond the healthcare capacity. The radical opening strategy issues a 
rapid exit from the pandemic with achieving herd immunity within the 
first 100 days (Fig. 9, A) and has economic justifications for a country 
(del Rio-Chanona et al., 2020). Nevertheless, it causes a high number of 
mortality cases. 

Considering the Phased Lift of Control (PLoC) strategy, we have 
evaluated four variations, including 10 and 20 lifting phases with 30 and 
60 interval days (Fig. 9, B, and C). Lifting the imposed policies at 10 

Fig. 8. The causal dependencies of air temperature (T), relative humidity (Rh), Mobility (MI), air quality (PM25), governmental response (GSI), and the number of 
COVID-19 infections (CVD). The arrows show the cross-variable MCI, with the head showing the parent and tail showing the child. The numbers on the arrows show 
the lagged-time step. The circle around each variable shows the self-dependency (Auto-MCI). The data is based on the March to December 2020 period, and examples 
of the individual countries are shown as subfigures. 
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phases with 30-day intervals overburdens the healthcare capacity with a 
number of cases fluctuating from 10,000 to 15,000 per million; how-
ever, the herd immunity achieves with 10 months (red lines in Fig. 9, B) 
and ends the pandemic condition entirely in less than 15 months. 
Increasing lifting intervals of the lockdowns to two months (60-day in-
tervals) would end the pandemic in nearly two years (achieving the herd 
immunity in ⁓17 months, green lines in Fig. 9, B), but the healthcare 
should be operating at its full capacity during the two years. For coun-
tries with a lower healthcare capacity, like Iran with 1600 and the 
Philippines with 1000 hospital beds per one million populations (ac-
cording to the world bank data (2021). www.data.worldbank. 
org/indicator/SH.MED.BEDS.ZS, and National Center for Biotech-
nology Information. https://www.ncbi.nlm.nih.gov/nuccore), the 10- 
phased lift strategy has a huge cost for the healthcare system. In 
contrast, countries like South Korea, with 12,000 hospital beds per 
population, could better manage the 10-phase lift strategy. Shifting from 
10 to 20 phases reduces the healthcare burden but significantly delays 
herd immunity and increases the pandemic duration. A 20-phase lifting 
strategy with 60-day intervals causes the number of infections to 
maximize at nearly 3000 cases per million (half of the healthcare 

capacity) but takes nearly four years to leave the pandemic condition 
entirely. 

The intermittent lockdown strategy (Fig. 9, D) leads to a spike in 
COVID-19 cases after each lockdown is ended. When a lockdown is 
executed sub-optimally (light lockdown), the transmission rate was 
considered 30%, and in a perfectly executed lockdown, the transmission 
rate was 25%. With a light lockdown (red lines), the number of peaks is 
twice higher than the healthcare system’s capacity for the first six 
months and then decreases. Compared to a light lockdown, a perfectly 
executed lockdown leads to a more controlled virus transmission with 
smaller waves during the first six months but slightly higher peaks 
during the pandemic, which took nearly 26 months to end. The inter-
mittent lockdown is not an ideal strategy as it creates a critical moment 
overloading the healthcare system (with 6000 hospital beds per 
million). Both intermittent lockdown strategies bring herd immunity at 
nearly two years (Fig. 9, D). 

The last two rows of Fig. 9 (E and F) show the contact tracing strategy 
simulations. The policy was found to be very sensitive to the delayed 
time for identifying the host and the rate of success in tracing the 
infected cases. Considering a 5-day delay in tracing the infected cases 

Fig. 9. The simulated number of COVID-19 cases resulting from the VirSim model (de Vlas and Coffeng, 2021) for exiting the COVID-19 pandemic based on radical 
opening (A), Phased Lift of Control (PLoC) with 10 phases (B), and 20 phases (C), intermittent lockdown (D), contact tracing with different tracing percentage (E) and 
different identification delays (F). The vertical dashed lines show the moments at which an intervention was removed, and the horizontal dashed line shows the 
healthcare capacity (fixed at 6000 beds per one million). The two lines (red and green) show different settings used in the exit strategy (also showed in the legend). 
(For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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and reducing their contact with other individuals at 70% level, there was 
a large difference between 30% and 60% tracing levels. When only 30% 
of the infected cases were identified, there would be a large surge in the 
COVID-19 cases because 70% of the infected cases could freely interact 
with others and transmit the virus (the red lines in Fig. 9, E). Doubling 
the success rate of tracing the virus hosts to 60% would flatten the curve 
and reduces the number of infected people in the community (the green 
lines in Fig. 9, E). Nevertheless, a 5-day delay in tracing will not be 
optimal for the healthcare capacity. Reducing the delayed time from 5- 
day (the green lines in Fig. 9, F) to 2 days (the green lines in Fig. 9, F), the 
maximum number of infected cases would not surpass the healthcare 
capacity with peaking at nearly 6000 patients for a short period of time. 
The contact tracing variations were not sensitive to time as they showed 
one year to get back to a pre-pandemic condition (i.e., normal condi-
tion). In non-of the variations of the contact tracing strategies, the herd 
immunity would be achieved (Fig. 9E and F) as this strategy boils down 
at the individual level and puts the lockdown conditions on individuals, 
not the community. Therefore, there would be a limited community 
spread and no herd immunity. 

Among all the strategies, contact tracing seems to work the best if 
executed correctly. With a 2-day delay in tracing the virus hosts, a 60% 
success rate of tracing the hosts, and a 70% contact reduction with the 
hosts, a pandemic will end in a year without overburdening a healthcare 
system with 6000 capacities per million. Note that all these simulations 
were carried out considering a 25% transmission rate without consid-
ering vaccination. Vaccination could significantly impact the simulated 
strategies. It should be noted that while we did not perform an in-depth 
risk assessment for each strategy, our visualizations partially cover this 
shortcoming. Considering only one average healthcare capacity for all 
countries and simulations, we can consider the risk probability of each 
scenario exceeding the healthcare capacity close to one (when the 
simulated infected cases break the healthcare capacity line) or close to 
zero (for the simulated curves below the healthcare threshold). 

The factors evaluated in this study were only examples that could 
potentially affect the virus transmission. Other factors could have been 
triggered for the analysis, yet we skipped those factors due to the text 
limitations and data availability. For example, the virus mutation could 
affect the transmission rate, and because the SARS-CoV-2 is an RNA 
virus, frequent mutations are expected (Holland et al., 1982). One 
example of such mutations that become the dominant mutation in Iran is 
D614G. This mutation occurs in spike protein leads to an amino acid 
change from aspartate to glycine at position 614 (D614G) (Fattahi et al., 
2020). As studies suggested the viral isolates which carry D614G mu-
tation have a significant role in increased infectivity and transmission by 
enhancing viral loads in the upper respiratory tract of COVID-19 pa-
tients (Korber et al., 2020; Plante et al., 2020; van Dorp et al., 2020; Volz 
et al., 2020). 

Another factor could be mask usage among the community. The 
positive role of mask-wearing in reducing the droplets and air dispersion 
from a coughing incident has been well-established in clinical studies 
(Tang et al., 2009). Non-clinical studies have also shown that countries 
such as Hong Kong, South Korea, Vietnam, Singapore, and China, which 
started using face masks earlier, could control the disease spread and 
return to pre-COVID condition more efficiently. Based on these studies, 
people’s habit of mask usage was already widespread before the 
COVID-19 pandemic (i.e., generally to protect people from respiratory 
viruses such as MERS, SARS, and seasonal flu or as a reaction to air 
pollution) in such countries (Han et al., 2020; Nishiyama et al., 2008) 
(MarketWatch website. 2020. https://www.marketwatch.com/stor 
y/what-we-can-learn-from-south-koreaand-singapores-efforts-to-sto 
p-coronavirus-in-addition-towearing-face-masks-2020-03-31). The data 
on the mask use is limited and mostly based on non-official surveys, 
which may not sufficiently represent the spatial distributions of the 
mask usage among the individuals, and thus, was not applicable in our 
study. 

3.4. COVID-19 vaccination prediction 

One year after the beginning of the COVID-19 outbreak, countries 
worldwide are racing to provide and distribute vaccines for their citi-
zens. As of May 2021, over 1.7 billion COVID-19 vaccine doses have 
been administered worldwide, out of which approximately 52% (893 
million) have been injected in Asia. Vaccination plans are still in the 
early stages in most Asian countries and differ from country to country. 
The vaccine rollouts in Asia are affected by factors such as the economic 
potential of countries, vaccine skepticism/mistrust among the citizens, 
and an overcautious attitude towards the vaccines (Cable News Network 
(CNN), 2021, https://www.cnn.com/2021/01/08/asia/asia-covid-va 
ccines-explainer-intl-hnk-scli-dst/index.html). In this section, we 
focused on the vaccination data for the eight countries in Asia. 

As of May 2021, India, with around 194 million doses, has the largest 
number of administered doses of vaccines, while Iran and the 
Philippines have the least vaccinations. The lagging vaccination rate in 
the Philippines has been partially attributed to the public anxiety 
stemming from the association between the Denvaxia vaccine and 
children’s deaths (Cohen, 2019). In Iran, the bans against 
western-manufactured vaccines have been reported as the primary 
reason for the slow vaccination rate (available at: https://www.the 
guardian.com/world/2021/jan/08/untrustworthy-covid-vaccines-fro 
m-us-and-uk-banned-by-iran). While India outperformed the other 
seven countries with respect to the number of vaccines, UAE has 
vaccinated the highest ratio of its population. 

The vaccination simulation results based on the deep learning 
approach and using the available vaccination data (from December 
2020 to May 2021) are presented in Fig. 10. The simulation includes an 
uncertainty range (shown as a red shaded area in Fig. 10 with upper and 
lower bounds). The upper and lower bounds were defined based on the 
weight matrices and bias vector parameters that were primarily influ-
enced by the data in countries with high and low vaccinate rates, 
respectively. Accordingly, the upper bound shows an optimistic scenario 
with the maximum vaccination rate, and the lower bound defines a 
pessimistic scenario with the minimum vaccination rate. 

Based on the simulations, after UAE (which has already reached the 
herd immunity stage), Saudi Arabia would be the first country that in-
oculates its population (i.e., 60% fully vaccinated population) around 
August to September 2020, significantly faster than other evaluated 
countries. Turkey and South Korea could be the next countries to reach 
herd immunity ambitiously by the end of 2021 (which could extend to 
March 2022). Russia and the Philippines showed a higher range of un-
certainties due to the various vaccination rates administered in these 
countries with the onset of vaccination. Accordingly, in an optimistic 
scenario, Russia and the Philippines would reach herd immunity by 
early 2022. However, in a pessimistic scenario (based on the lower 
bound simulations), reaching vaccination-based herd immunity could 
be postponed to the end of July in the Philippines and October in Russia. 
India and Iran would be the last countries that vaccinate their people 
(October to November 2022). For India, the high population and limited 
vaccine supply (due to the sharp rise of COVID-19 in February-April, 
2021 and impeded vaccine development) would be the primary causes 
of the delayed herd immunity. For Iran, the late onset of vaccination and 
slow vaccination rates would likely contribute to the delayed herd im-
munity. It should be noted that our simulations hypothesize that no 
other catalyst or inhibitor factors interfere with the future vaccination 
rate (which can be violated given real-world data dynamics and complex 
behaviors). For example, Iran has been developing its own vaccine 
which could help to achieve a faster than predicted herd immunity. 
Another complex intervention is the delayed COVID-19 vaccine supply 
and export by India. India is the home of the world’s biggest producer of 
COVID-19, nevertheless, with the devastating second wave of COVID-19 
infection in the country during February-March 2021, the country has 
halted vaccine exports to focus on domestic inoculations (Gettleman 
et al., 2021). The vaccine shortage by India has also slowed down the 
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vaccination rates in countries that have ordered their vaccine supply 
from India (e.g., Iran). 

4. Conclusion 

Analyzing the real-world data specifically for an epidemic disease 
with complex dynamic interactions in day-to-day life is challenging and 
a bias-free analysis would not be possible without accurate high 
spatiotemporal resolution data. Nevertheless, we attempted to address 
the role of several parameters in driving the COVID-19 pandemic and 
evaluate different strategies that countries can adopt to exit the 
pandemic condition without overburdening the healthcare capacity. 
Our analysis is carried out at a countrywide scale to assess if the in-
teractions between the environmental and socio-economic factors could 
be captured. Among the evaluated variables, we found mobility to be 
most effective for controlling the virus spread. Weather-driven param-
eters were found to be ineffective in driving the COVID-19 cases. A long- 
term analysis of air pollution and COVID-19 mortality revealed a higher 
risk of mortality for the population consistently exposed to low air 
quality. We highlight that an accurate estimate of air pollution’s impact 
on COVID-19 cases (and other respiratory diseases) requires information 
at an individual level. 

We also showed the efficiency of different policies for exiting the 
pandemic condition. While contact tracing was found to be more 
effective, selecting the best policies for each country depends on several 
factors, such as the healthcare capacity and the country’s economic 
situation. All the tested policies were sensitive to the timing and dura-
tion of the interventions, and thus, executing them in practice requires 
diligent attention to the details discussed in the result section. Never-
theless, vaccine-induced herd immunity is the only long-term solution to 
protect the population from SARS-CoV-2 infection. 

Our evaluations on the current vaccination status highlighted the 
socio-economic factors affecting the inoculation rates. The vaccine 
simulations differed significantly among the countries as UAE has 
already reached herd immunity (May 2021) and Saudi Arabia could 
reach this level by August to September 2021. Nevertheless, in countries 
like India and Iran, vaccine-based herd immunity could be achieved by 
late 2022. We should highlight that our simulations hypothesize that no 
other factor interferes with the current vaccination rates and the 
assumption can be violated given real-world data dynamics and complex 
behaviors. 
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