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Abstract

Cell volume is one of the most aggressively defended physiological set points in biology. Changes 

in intracellular ion and water concentrations, which are induced by changes in metabolism or 

environmental exposures, disrupt protein folding, enzymatic activity, and macromolecular 

assemblies. To counter these challenges, cells and organisms have evolved multifaceted, 

evolutionarily conserved molecular mechanisms to restore cell volume and repair stress induced 

damage. However, many unanswered questions remain regarding the nature of cell volume 

‘sensing’ as well as the molecular signaling pathways involved in activating physiological 

response mechanisms. Unbiased genetic screening in the model organism C. elegans is providing 

new and unexpected insights into these questions, particularly questions relating to the hypertonic 

stress response (HTSR) pathway. One surprising characteristic of the HTSR pathway in C. elegans 
is that it is under strong negative regulation by proteins involved in protein homeostasis and the 

extracellular matrix (ECM). The role of the ECM in particular highlights the importance of 

studying the HTSR in the context of a live organism where native ECM-tissue associations are 

preserved. A second novel and recently discovered characteristic is that the HTSR is regulated at 

the post-transcriptional level. The goal of this review is to describe these discoveries, to provide 

context for their implications, and to raise outstanding questions to guide future research.
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Introduction

Intracellular water and solute content, and therefore cell volume, are directly influenced by 

extracellular osmolarity. Fluctuations in extracellular osmolarity is a common stress faced by 

all cells [1]. For example, cells are exposed to changes in extracellular osmolarity during the 
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switch from diuresis to anti-diuresis in the case of the mammalian kidney [2]. Organisms 

moving through their natural environment, such as the nematode C. elegans, also encounter 

variable levels of salinity. Virtually all cells have evolved mechanisms to acclimate to and 

survive changes in extracellular osmolarity [1]. In particular, the hypertonic stress response 

(HTSR) is a conserved cellular stress response that protects cells from cell volume loss due 

to increased extracellular osmolarity, or hypertonic stress (HTS). While the response to 

hypotonic stress and increases in cell volume also have physiological significance, this 

review will only focus on the hypertonic stress response.

A critical feature of the HTSR is the intracellular accumulation of compatible osmolytes. 

Compatible osmolytes are small organic molecules [3]. They include carbohydrates (i.e. 

glycerol, sorbitol), amino acids (i.e. betaine, taurine), and methylamines (i.e. glycine-

betaine, TMAO). Osmolyte intracellular concentrations track with extracellular solute 

concentration to maintain appropriate intracellular water content and therefore cell volume. 

There is significant chemical diversity in compatible osmolytes and the particular 

compatible osmolyte a cell uses depends on the organism and cell type [4, 5]. Most 

compatible osmolytes have a net neutral charge and therefore exhibit mostly neutral 

interactions with charged cell metabolites or other cellular components [5]. Their lack of 

reactivity allows compatible osmolytes to accumulate to molar concentrations [3, 6] within 

the cell without negatively interfering with cellular function [3, 6, 7]. In fact, many 

compatible osmolytes actually function as chemical chaperones to promote proper protein 

folding by interacting unfavorably with the peptide backbone and therefore increasing the 

Gibbs free energy required to shift a protein from the folded to unfolded state [8–11].

In virtually all organisms and cells types, the concentration of intracellular compatible 

osmolytes is increased via osmolyte biosynthetic enzymes or osmolyte transporter proteins 

whose expression is upregulated by HTS [12, 13]. These compatible osmolyte accumulation 

genes are part of a larger group of osmotically regulated genes that are transcriptionally 

upregulated during the HTSR to protect cells from cell shrinkage and facilitate acclimation. 

Mammals have more than one hundred osmotically regulated genes. In addition to osmolyte 

biosynthetic enzymes and transporter proteins, these osmotically regulated genes include 

heat shock proteins, paracrine and autocrine factors, and extracellular matrix (ECM) 

associated proteins [14].

Prior cellular studies provided important first insights into mechanisms of osmotic gene 

regulation. Tonicity element binding protein (TonEBP) / nuclear factor of activated T cells 5 

(NFAT5) is a transcription factor that is activated by HTS and induces the transcriptional 

upregulation of many mammalian osmotically regulated genes, including the compatible 

osmolyte accumulation genes aldose reductase and sodium / myo-inositol cotransporter 

SMIT [15–17]. Some studies suggest that p38 mitogen activated protein kinases (MAPKs) 

phosphorylate and activate TonEBP/NFAT5, while other studies suggest that p38 MAPK 

signaling is dispensable for activation [18–22]. Together, these cellular studies show that the 

regulation of TonEBP/NFAT5 is complex. Although TonEBP/NFAT5 has been the major 

focus of studies investigating the mammalian HTSR, it is certainly not the only signaling 

mechanism and pathway involved in the HTSR. Genetic studies in particular offer an 

opportunity to identify new signaling mechanisms associated with cell physiology in an 
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unbiased manner. While the HTSR has been studied for decades, it is only in the last ~10 

years that unbiased genetic screening approaches have been deployed to identify HTSR 

genes and pathways in multicellular organisms.

The small nematode C. elegans has emerged as a relatively new platform for investigating 

how osmotically regulated genes, in particular osmolyte accumulation genes, are 

upregulated during the HTSR. Several experimental attributes make C. elegans an ideal 

system in which to investigate HTSR mechanisms using unbiased genetic approaches. First, 

the entire 100 Mb C. elegans genome of roughly 20,000 protein coding and 1,300 non-

protein coding genes has been sequenced and thoroughly annotated [23]. ~ 80% of C. 
elegans genes have human homologs, suggesting that many aspects of this organism’s 

physiology are conserved across evolution [24]. The compact and stable nature of the 

genome, along with inexpensive whole-genome resequencing, allows investigators to rapidly 

identify phenotype causing mutations isolated in unbiased genetic screens. A publically 

available repository maintains and distributes thousands of mutant strains, which greatly 

facilitates genetic studies [25]. Additionally, C. elegans is compatible with the full range of 

CRISPR/Cas9 approaches, which makes generation of custom alleles and/or tagged proteins 

at the endogenous locus rapid and inexpensive [26, 27].

Second, the reproductive biology of C. elegans facilitates large-scale genetic approaches to 

address questions in physiology. C. elegans exists as two sexes - hermaphrodites and males. 

A single hermaphrodite self-fertilizes to produce 200 – 300 offspring that are genetically 

representative of the maternal genotype. These characteristics make it simple to identify and 

propagate single animals exhibiting rare mutant phenotypes from genetic screens through 

hermaphrodite ‘selfing’. At the same time, crossing hermaphrodites to males allows mutated 

genes to be introduced into a population. While most mutations studied in C. elegans are 

recessive homozygous loss/reduction of function (LOF) mutations (e.g. there is very little 

haploinsufficiency), rare gain-of-function (GOF) mutants can also be identified and 

maintained.

A third benefit of C. elegans for unbiased genetic methods is that genes can be knocked 

down via feeding-based RNAi. Genome-wide RNAi screens are enabled through the 

commercial availability of bacterial RNAi feeding libraries targeting ~90% of C. elegans 
protein coding genes [28]. One important advantage of this approach is that RNAi screening 

can be initiated post-developmentally, which allows these screens to test the function of 

genes that are otherwise essential for development. Such genes are not isolated from typical 

forward genetic screens, which usually demand that mutants exhibit viability and fertility. 

Another advantage of RNAi is the ability to functionally silence highly homologous gene 

duplicates, which can reveal phenotypes for recently duplicated genes. Such phenotypes 

would be missed in mutagen-based genetic screens which are unlikely to induce SNPs in 

both genes simultaneously. On the other hand, RNAi screens only reveal loss/reduction of 

function mutant phenotypes. Unusual alleles affecting specific gene functions (i.e. missense 

LOF or GOF alleles) are not revealed through RNAi screening. Therefore, RNAi screening 

and forward genetic mutagenesis screening play complementary roles in defining genetic 

pathways.
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The final and perhaps greatest of advantage of C. elegans is its optical transparency 

throughout its entire lifecycle. This makes it possible to use fluorescent reporters to view 

gene and protein expression in all tissues of live animals without disrupting native tissue or 

ECM integrity. As a result, genetic screens based on the isolation of single, live mutant 

hermaphrodites with altered GFP expression is a commonly utilized screening approach in 

C. elegans [29–34]. Such screens are virtually impossible in other systems due to their lack 

of optical transparency. Despite its advantages, there are still considerable limitations with 

C. elegans, such as its small size (which complicates biochemical approaches), lack of 

immortal cell lines, and differences in functional anatomy. Nevertheless, this system 

provides a wealth of new opportunities to investigate molecular mechanisms of the HTSR in 

the context of a live multicellular animal.

The C. elegans HTSR

HTS is induced in C. elegans by increasing the osmolarity of its environment. True 

isotonicity for C. elegans is not known. However, most studies of the C. elegans HTSR 

consider standard Nematode Growth Media (NGM), which contains 51 mM NaCl and has 

an osmolarity of ~170 mOsm, to be isotonic. Raising NaCl concentrations is typically how 

HTS is elicited. HTS causes at least three distinct organismal phenotypes in C. elegans. 

First, acute HTS (>500 mM NaCl) can lead to death of the organism within 24 hours. 

Second, acute exposure to non-lethal HTS (i.e. acclimation, 200 mM NaCl) allows animals 

to subsequently survive a normally lethal HTS for naïve animals [35]. Third, chronic 

exposure to non-lethal HTS (250 mM NaCl) elicits acclimation mechanisms that enable 

growth and development over multiple generations [34]. Specific and sometimes 

overlapping molecular mechanisms mediate each of these organismal responses.

Immediately upon exposure to HTS, the body cavity of C. elegans shrinks as water leaves 

[35]. This HTS - induced cell shrinkage activates the conserved ‘With No Lysine’ protein 

kinase 1 (WNK-1) pathway [36]. The WNK-1 cell volume recovery pathway is the initial 

cellular response to HTS that mediates the influx of ions (and osmotically obliged water) 

into the cell to quickly restore cell volume. In mammals, cell shrinkage activates auto-

phosphorylation of WNK-1. Phosphorylated WNK-1 subsequently phosphorylates and 

activates the Ste20/SPS1-related proline/alanine-rich kinase (SPAK) and oxidative stress 

responsive kinase 1 (OSR1). Finally, SPAK and OSR1 phosphorylate and activate the Na – 

K – Cl cotransporter NKCC1, which mediates the influx of sodium and water to correct cell 

shrinkage [37, 38]. The WNK-1 pathway is also activated in C. elegans following HTS [36]. 

Although the WNK-1 pathway acutely restores cell volume, the activation of WNK-1 targets 

increases intracellular ionic strength due to the influx of sodium ions. Increased intracellular 

ionic strength interferes with many cellular processes such as protein folding and enzyme 

activity [6, 39]. While the WNK1 pathway is primarily important for the acute phase of the 

HTSR, other pathways mediate long-term aspects of the HTSR that replace inorganic ions 

with compatible solutes.

Glycerol is the primary compatible osmolyte used by laboratory-reared C. elegans to 

acclimate to HTS [35]. This is similar to yeast, which also utilize glycerol [40]. Although 

mammals do not utilize glycerol as an osmolyte, they do take a similar metabolic approach 
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to osmolyte production by breaking down glucose to produce sorbitol [41]. In this respect, 

C. elegans may represent an evolutionarily intermediate between yeast and mammals in 

terms of mechanisms of HTS acclimation. Intracellular glycerol concentration tracts 

extracellular osmolarity and accumulates on the order of hours in C. elegans [35, 42]. When 

C. elegans acclimated to a hypertonic environment is transferred back to normal growth 

conditions, glycerol levels drop due to glycerol efflux [35]. Therefore, glycerol 

accumulation in C. elegans is dynamic.

C. elegans biosynthesizes glycerol via transcriptional upregulation of a glycerol-3-phosphate 

dehydrogenase homolog (gpdh) [35]. GPDH catalyzes the rate-limiting step in glycerol 

biosynthesis. Therefore, upregulation of gpdh enhances the rate of glycerol production [43]. 

There are two classes of eukaryotic GPDH enzymes, a cytosolic NADH-dependent form and 

a mitochondrial FAD-dependent form. NADH – and FAD – dependent GPDHs together 

make up the ‘glycerol – phosphate shuttle’ that is critical for cellular glucose metabolism 

[44, 45]. NADH – dependent GPDH reduces dihydroxyacetone (DAP) to glycerol-3-

phosphate (G3P) while oxidizing NADH to NAD. FAD – dependent GPDH oxidizes G3P to 

DAP while reducing FAD to FADH2 [45]. Only NADH – dependent GPDH is involved in 

the HTSR [35].

There are two NADH-dependent gpdh genes in the C. elegans genome encoded by gpdh-1 
and gpdh-2 [35, 42]. During the HTSR, gpdh-2 exhibits little to no upregulation [42]. This 

contrasts with gpdh-1, which is upregulated > 20 – 50 – fold within the first three hours of 

HTS exposure [34, 46]. Notably, loss of gpdh-1 does not significantly reduce steady state 

whole animal glycerol levels in response to HTS, although the rate of glycerol accumulation 

is slowed [42]. gpdh-1 mutants do exhibit a mild defect in their ability to acutely acclimate 

to HTS, showing that gpdh-1 does play a functionally significant role the HTSR [34]. 

However, animals lacking both gpdh-1 and gpdh-2 exhibit a ~50% reduction in steady-state 

glycerol levels [42]. This suggests that gpdh-2 can function redundantly with gpdh-1 in 

HTS-induced glycerol production. It also suggests the existence of gpdh-independent 

mechanisms for glycerol production.

A transcriptional reporter for gpdh-2 is constitutively expressed in the intestine, hypodermis, 

and excretory cell and is not substantially upregulated by HTS [42]. On the other hand, a 

gpdh-1 transcriptional reporter is virtually undetectable under control conditions but is 

strongly induced in the hypodermis and intestine during HTS. This reporter is specifically 

induced by HTS since it is not induced by other cellular stressors, such as heat shock, ER 

stress, or oxidative stress. Interestingly, the gpdh-1 reporter is not activated in other tissues, 

such as the muscle, neurons, or germline [42]. This suggests a model in which the 

hypodermis and intestine, which are environmentally exposed epithelial tissues that are the 

first to encounter HTS, are the primary sites of glycerol production. Glycerol is then shunted 

out of the basolateral membranes into the pseudocoelomic space, where it can be 

accumulated by non-glycerol producing cells, such as muscle and neurons, via passive 

uptake mechanisms. In support of such a model, glycerol permeant aquaglyceroporins are 

localized to the basolateral epithelial membrane, while water permeant aquaporins are 

present on the apical membrane [47]. This could provide a permeability pathway for the 
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efflux of glycerol out of the intestine as well as an influx pathway for osmotically driven 

water movement.

gpdh-1 is one of 324 osmotically regulated genes in C. elegans. Several of these upregulated 

osmotic genes suggest there may be other interesting physiological mechanisms involved in 

the C. elegans HTSR. For example, the H+-coupled myo-inositol transporter hmit-1.1 is 

upregulated >100-fold by HTS. The kinetics of hmit-1.1 upregulation differ from those of 

gpdh-1 in that hmit-1.1 upregulation peaks at later timepoints than gpdh-1 [46]. While myo-

inositol is a major osmolyte in mammalian cells and is accumulated via transcriptional 

upregulation of the sodium-coupled myo-inositol transporter SMIT, there is no evidence that 

C. elegans accumulate myo-inositol under laboratory conditions [48, 49]. However, myo-

inositol is a major breakdown product of plant organic material, which is present in many of 

the sites C. elegans are known to inhabit [50]. Therefore, the upregulation of hmit-1.1 may 

indicate that C. elegans in the wild can utilize myo-inositol as an osmolyte in addition to 

glycerol, but that it is unable to use myo-inositol in the laboratory since it is absent from the 

cultivation conditions.

Many genes upregulated by HTS are also upregulated during bacterial and fungal infection 

in C. elegans. This does not include gpdh-1 or hmit-1.1 which appear to be exclusively 

upregulated by HTS. Many of these co-regulated genes are components of the C. elegans 
innate immune response, such as members of the neuropeptide-like protein (nlp) and 

caenicin (cnc) gene families [46]. Some pathogens, such as the fungal pathogen Drechmeria 
coniospora, physically penetrate the cuticle as part of the infection process [31, 51]. Since 

both pathogens and HTS impinge on the specialized C. elegans ECM that forms the cuticle, 

this supports the hypothesis that upregulation of some osmotically regulated genes may be 

triggered via hypertonicity- or pathogen-induced disruptions in the cuticle. Consistent with 

this hypothesis, several mutants affecting structural components of the cuticle, including 

many collagen-encoding dpy genes (i.e. dpy-7, -8, -9, and -10), constitutively activate the C. 
elegans HTSR [42, 46, 52]. One possible interpretation of these genetic findings is that the 

cuticle is a water impermeant cell wall-like structure that slows the movement of water out 

of the underlying tissues during the HTSR. However, the cuticle is permeable to many small 

molecule dyes [53], suggesting that smaller molecules, such as water, can move through this 

structure with relative ease, although such permeability could be dynamically regulated by 

HTS. Moreover, enhancing cuticle permeability does not alter the osmotic stress phenotype 

of C. elegans mutants [53]. Another possible hypothesis that is consistent with such 

observations is that the cuticle functions as a mechanical osmosensor whose shape, tension, 

and/or connections to the underlying hypodermis are influenced by changes in the 

hypodermal tissue volume. Whether or not HTS itself leads to specific disruption of the 

cuticle and how such disruptions might couple to signaling pathways that activate 

osmotically regulated genes is not yet known.

Although the HTSR was described in C. elegans over a decade ago, many interesting 

questions can now be addressed due to the recent availability of whole-genome resequencing 

for mutant identification and CRISPR/Cas9 genome engineering. For example, what are the 

signaling mechanisms that allow HTS to upregulate osmolyte biosynthesis genes like gpdh-1 
in vivo? Where and when do these pathways function? Are these mechanisms / pathways 
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conserved in other animals, including mammals? Forward genetic screens are providing 

unanticipated answers to these questions. Below, we highlight data describing mechanisms 

of transcriptional regulation, as well as newly discovered and unanticipated mechanisms 

involving post-transcriptional regulation.

Transcriptional regulation of the C. elegans HTSR

The initial genetic screen for regulators of the HTSR utilized genome-wide RNAi screening 

to identify genes that when inhibited caused upregulation of gpdh-1 under isotonic 

conditions [42]. This screen identified over one hundred genes negatively regulating gpdh-1 
and other osmotically regulated gene expression at the transcriptional level. Surprisingly, 

most of the genes identified in this screen fell into two transcriptional pathways (Figure 1).

The first class of osmotic regulators included protein homeostasis genes involved in RNA 

processing, protein synthesis, protein folding, and protein degradation [42]. One hypothesis 

to explain this discovery is that cells sense HTS and upregulate gpdh-1 expression through 

detection of stress-induced protein damage. While protein damage can be replicated by 

inhibition of protein homeostasis genes, other stressors, such as heat shock, also cause 

protein damage but nevertheless fail to upregulate gpdh-1 expression [42]. This suggests the 

possibility that HTS causes a type of protein damage that differs from other types of protein 

damage and specifically activates the HTSR without activating other stress response 

pathways. In support of this hypothesis is the observation that HTS causes a model protein 

(polyQ) to form aggregates. These polyQ aggregates differ from aggregates caused by other 

stressors in both C. elegans and mammalian cells in their morphology, solubility, and 

ubiquitination characteristics, suggesting they are a unique aggregate species [54, 55]. 

Additional studies show that endosomal sorting pathways and lysosomes clear existing 

protein damage and new protein synthesis is decreased to facilitate survival and acclimation 

during HTS [56, 57]. However, when genes involved in degradation or translation regulation 

are inhibited, protein damage accumulates and C. elegans can no longer survive or acclimate 

to HTS [55, 56]. It remains unknown if specific degradative pathways, such as the ERAD 

(endoplasmic-reticulum-associated protein degradation) pathway are activated during HTS. 

Nevertheless, these data clearly reveal an important role for maintenance of the proteome in 

the regulation of the C. elegans HTSR.

In a mechanism likely related to HTSR-induced accumulation of damaged proteins, 

regulation of protein translation also has a critical role in the regulation of the HTSR. Global 

protein translation is inhibited ~50% by mild HTS (200 mM NaCl) [58]. Moreover, 

pharmacological inhibitors of translation led to mild upregulation of gpdh-1 mRNA even in 

the absence of HTS, suggesting a direct signaling link between HTS-induced translational 

inhibition and regulation of the osmotically regulated gene gpdh-1 [58]. HTS-induced 

translational inhibition requires phosphorylation of eIF2α by the kinase GCN-2 and its 

accessory protein GCN-1 and loss of gcn-1 or gcn-2 reduced HTS-induced gpdh-1 
expression by ~50% [58]. GCN-1/-2 appear to act in the same pathway as the WNK-1 and 

GCK-3 kinases since gcn-1 mutants are non-additive with wnk-1/gck-3 knockdown [58] 

(Figure 1). How this pathway for HTS-induced translational inhibition is linked to 

transcriptional regulation of gpdh-1 is currently unknown.
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The second large class of genes that negatively regulate gpdh-1 gene expression and the 

HTSR are genes encoding extracellular proteins (Figure 1). While all of these proteins are 

predicted to be secreted, many are synthesized by the hypodermis and secreted from the 

apical membrane to generate the specialized C. elegans ECM called the cuticle. This ECM is 

shed and resynthesized during each of the four larval molts that occur in C. elegans 
development. The precise organization and makeup of the cuticle differs between these 

developmental stages. The adult cuticle contains about 500 ring-like annular furrows that 

form circumferential-oriented ingressions along the length of the animals [59]. One of the 

most abundant structural components of the cuticle are collagen proteins, which are encoded 

by many genes in C. elegans [60]. Mutations in several of these collagen genes lead to 

alterations in body shape. Interestingly, mutations in the collagen genes dpy-7, -8, -9, and 

-10 that disrupt the furrow, but not other collagens, activate gpdh-1 expression under isotonic 

conditions and cause the accumulation of glycerol to levels that are similar to levels seen in 

acclimation. As a result, these mutants retain motility in extremely hypertonic environments 

(500 mM NaCl), whereas wild type animals rapidly paralyze [42, 52]. Many other 

detoxification genes which are regulated by HTS and other stressors are also responsive to 

these extracellular protein mutations, although the effect size is significantly more modest 

than that observed for osmotically regulated genes [52, 61]. Nevertheless, the osmotic stress 

resistance of these extracellular protein mutants suggests that the furrow plays an important 

role is the C. elegans HTSR. However, other secreted proteins, such as the mucin-like 

protein OSM-8, the notch ligands OSM-7 and OSM-11, and the novel secreted protein 

OSR-1 exhibit qualitatively normal furrows but also activate gpdh-1 expression, accumulate 

glycerol, and are osmotic stress resistant [42, 46, 53, 62–64]. One possibility is that these 

non-furrow disrupting extracellular proteins act to couple furrow-based osmosensing to the 

underlying hypodermis through detection of HTS-induced structural changes. Direct tests of 

this mechanically- based osmosensing model are still needed.

The genetic origins of several HTSR-regulating genes encoding extracellular proteins reveal 

connections between whole-animal HTS acclimation and behavioral responses that allow C. 
elegans to avoid hypertonic environments. osm-7, -8, and -11 were isolated in a forward 

genetic screen for osmotic avoidance abnormal (osm) mutants [65]. While wild type animals 

crawl away from hypertonic stimuli, osm mutants fail to avoid these stimuli. Hypertonic 

avoidance behavior depends on the ciliated ASH sensory neurons [66]. There are three 

classes of osm genes that differ based on their effects on the ASH neuron. The first and 

second class of osm genes function cell autonomously in the ASH neurons to regulate cilia 

formation and cell signaling respectively [67, 68]. In contrast, the third class of osm genes, 

which includes osm-7, -8, and -11, is not expressed in the ASH neurons. Instead, these three 

osm genes are expressed in the hypodermis, where they also function to inhibit the 

expression of gpdh-1 and glycerol accumulation [53, 62]. The hypodermal expression of 

these class three osm genes suggests that unidentified paracrine factors signal from the 

hypodermis to the ASH neurons during HTS to modulate behavior. One possibility is that 

this paracrine factor is glycerol itself because glycerol could blunt amphid neuron volume 

changes upon hypertonic exposure when present at high levels. In addition, there is some 

evidence that the ASH neurons signal to osmosensitive tissues to modify the HTSR. The 

class two osm gene, osm-9, encodes a transient receptor potential channel, TRPV, that is 
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expressed in ASH neurons to facilitate ASH-dependent signaling [67]. Surprisingly, osm-9 
mutants are not only behaviorally osm, but they also constitutively upregulate the 

osmotically regulated gene aqp-8 in osmosensitive tissues and have improved acute survival 

during HTS due to decreased protein damage [69, 70]. Therefore, unidentified paracrine 

factors signal from the ASH neurons to the osmosensitive tissues of osm-9 mutants to 

modulate cellular physiology. The osm paradigm provides a unique opportunity to 

investigate how hypodermis – based physiological information is integrated to modulate 

neuronal – based behavior and vice versa. It also highlights the importance of investigating 

the HTSR at the organismal level, where behavior and physiology can be studied together.

The class three gene osm-8 has been studied in significant molecular detail to understand its 

role in the HTSR. osm-8 encodes a small hypodermally – secreted mucin protein. Like the 

other class three osm mutants, osm-8 mutants constitutively induce osmotically regulated 

genes, including gpdh-1, accumulate large amounts of glycerol during control conditions, 

and are resistant to normally lethal levels of HTS [53]. To identify genes that may function 

downstream of the secreted osm-8 gene to transduce signals from outside the cell to the 

nucleus, we performed an unbiased RNAi screen for suppressors of osm-8 mutants. 

Inhibition of the multi-pass transmembrane patched – related protein 23 (ptr-23) completely 

suppressed many osm-8 phenotypes, including constitutive gpdh-1 induction, glycerol 

accumulation, and the osr phenotype. However, ptr-23 did not suppress the induction of all 

osmotically regulated genes, since many innate immunity genes upregulated in osm-8 
mutants were similarly upregulated in osm-8; ptr-23 double mutants. Therefore, a subset of 

osmotically regulated genes must be regulated in a ptr-23 – independent manner. 

Furthermore, ptr-23;osm-8 double mutants still induce the gpdh-1 transcriptional reporter 

during HTS, suggesting that the HTSR does not exclusively require ptr-23 [53]. These two 

observations indicate that there are multiple redundant pathways regulating the HTSR and at 

least one of them is independent of ptr-23 (Figure 1).

While unbiased genetic screens have revealed valuable information about the HTSR, the 

specific signaling pathways that control upregulation of gpdh-1 and/or other osmotically 

regulated genes have not yet been identified. In yeast and mammals, MAPK – dependent 

signaling pathways are known to regulate HTS – dependent transcription (Table 1). The p38 

MAPK activates hypertonic induction of the mammalian transcription factor TonEBP/

NFAT5 and the p38 MAPK homolog, HOG1, regulates the transcription of osmotically 

regulated genes during HTS in yeast [18, 19, 71]. Despite the roles of MAPK signaling in 

the yeast and mammalian HTSR, there is little evidence that MAPK signaling is involved in 

the C. elegans HTSR. MAPK signaling components have thus far not been isolated in 

genetic screens for regulators of the HTSR, although we note that such screens have not yet 

reached saturation. Moreover, knockdown of p38 signaling pathway components in osm-7 
and osm-11 mutants has no effect on acute or chronic OSR [62]. Similarly, p38 MAPK 

signaling is not involved in induction of the osmotically regulated gene, nlp-29, by HTS 

despite being required for induction of nlp-29 during fungal infection [72]. However, MAPK 

signaling is involved in the chronic survival of osr-1 mutants during HTS and the survival of 

wild type animals during desiccation [64, 73]. Therefore, MAPKs may be involved in the C. 
elegans HTSR, but they are unlikely to be a major contributor to the transcriptional 

upregulation of osmotically regulated genes during HTS.
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In mammals, the rel family transcription factor TonEBP / NFAT5 is directly responsible for 

the transcriptional upregulation of many genes by HTS [14]. However, the C. elegans 
genome does not contain rel family transcription factors. While the tonicity-responsive 

transcription factor in C. elegans is currently unknown, promoter analysis of C. elegans 
osmotically regulated genes has provided some candidates. The promoters of C. elegans 
osmotically regulated genes are highly enriched for GATA-type transcription factors [46]. 

RNAi screening identified the GATA erythroid-like factors elt-2 and elt-3 as being required 

for HTS-induced upregulation of a gpdh-1 transcriptional reporter [46]. elt-2 is expressed in 

the intestine and mediates intestinal upregulation of gpdh-1, while elt-3 is expressed in the 

hypodermis and is required for hypodermal gpdh-1 upregulation. Both of these transcription 

factors function downstream of the extracellular proteins that negatively regulate the HTSR, 

but it is unknown if they are required for all HTSR pathways [46]. An alternative hypothesis 

is that elt-2 and elt-3 are required for intestinal and hypodermal differentiation and 

development but are not the physiological targets of the HTSR [74, 75]. Future studies using 

CRISPR/Cas9 to tag native alleles of elt-2 and elt-3 followed by cell biological and 

biochemical analysis in the presence and absence of HTS are needed to determine if HTS 

leads to changes in the localization and/or activity of elt-2/-3, as has been shown for other 

stress-responsive transcription factors [76, 77].

In conclusion, the maintenance of protein homeostasis and extracellular proteins inhibit 

HTSR-induced transcriptional responses. There is conflicting evidence as to whether these 

HTSR regulators function in distinct tissues or pathways. osm-7 and osm-8 mutants suppress 

HTS and age induced protein aggregation in the intestine, whereas osm-11 mutants do not 

suppress either age or HTS induced protein aggregation in muscle cells [54, 56]. OSM-8 

functions through PTR-23 and the GATA transcription factors ELT-2 and ELT-3. While it is 

tempting to speculate that increased protein damage functions as the illusive “osmosensor” 

during HTS, it is unlikely to be the primary way cells sense HTS because it is prominent 

only at extremely high levels of HTS [54, 55]. Another hypothesis is that cells sense HTS 

through changes in ECM structure. The annular furrow in the ECM has been linked to the 

HTSR, but it remains unknown if changes in its structure during HTS trigger the HTSR [52]. 

Finally, in addition to understanding how cells sense HTS, a transcription factor(s) specific 

to osmotically regulated gene induction remains to be identified. ELT-2 and ELT-3 are 

required for intestinal and hypodermal osmotically regulated gene induction respectively. 

However, since they are also generally required for transcription in these tissues, it is 

unknown whether they themselves are activated in a specific way by HTS or function with 

other HTS – specific factors [74, 75]. Continued unbiased genetic screening efforts, which is 

the greatest strength of the C. elegans model system, should help to identify HTSR relevant 

transcription factors, signaling pathways, and other proteins involved in signaling the 

transcriptional response to HTS.

Post-transcriptional regulation of the C. elegans HTSR

Another surprising discovery that has emerged from unbiased forward genetic screening for 

regulators of the C. elegans HTSR is that this pathway is also under post-transcriptional 

regulation (Figure 1). In an unbiased forward genetic screen for mutants with no induction 

of osmolyte biosynthesis gene expression (nio mutants), we discovered two alleles of the 
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gene nio-2 that block hypertonic GPDH-1 protein induction and acclimation to HTS [34]. 

Both nio-2 alleles encode nonsense mutations in the highly conserved O-GlcNAc transferase 

ogt-1 (nio-2 is subsequently referred to as ogt-1). ogt-1 null mutants are defective in their 

ability to upregulate GPDH-1 protein. However, gpdh-1 mRNA (as well as several other 

osmotically regulated mRNAs) continue to be upregulated to wild type levels by HTS. In 

addition to their post-transcriptional effects on osmotically regulated gene expression, ogt-1 
mutants also exhibit defects in acute and chronic HTS acclimation and are thus unable to 

propagate in even mildly hypertonic environments (250 mM NaCl). ogt-1 is required in the 

hypodermis to mediate these phenotypes and functions downstream of extracellular proteins 

such as osm-8 and osm-11 [34]. Therefore, ogt-1 acts in the same tissue as extracellular 

proteins, the transmembrane protein PTR-23, and the GATA transcription factor ELT-3 to 

regulate the HTSR. Together, these data suggest that the hypodermis is where HTS is sensed 

and signaled in C. elegans and that ogt-1 plays a critical role in this pathway.

OGT is a highly conserved enzyme found exclusively in metazoans and expressed 

ubiquitously in somatic tissue and localized primarily to the nucleus [34, 78]. Structurally, 

OGT-1 is made up of three primary domains; 1) an N-terminal tetratricopeptide repeat 

(TPR) domain that is involved in substrate recognition and binding, 2) a nuclear localization 

signal, and 3) a C-terminal catalytic domain [79–81]. OGT is known to have at least three 

distinct functions. The major known biochemical function of OGT is to catalyze post-

translational O-GlcNAcylation of serine and threonine residues of nucleocytoplasmic 

proteins [82–84]. OGT can also proteolytically cleave and activate host cell factor 1 (HCF-1) 

in mammals [85, 86]. Finally, OGT can function through a non-catalytic mechanism to 

assemble multiprotein complexes in in both nuclear and non-nuclear locations [87–89]. 

Through its three known functions, OGT is involved in diverse aspects of cell physiology, 

including stress response pathways.

Surprisingly, the most well studied function of OGT, post-translational O-GlcNAcylation, is 

not required for the C. elegans HTSR [34]. In contrast, C. elegans expressing OGT-1 without 

a TPR domain have defective GPDH-1 induction and acclimation to HTS. This non-catalytic 

function of OGT-1 is clearly important since the HTSR phenotype of C. elegans ogt-1 
mutants can be partially rescued by expression of either wild type or catalytically inhibited 

human OGT. The TPR domain is known to be involved in other O-GlcNAcylation-

independent functions of OGT, although its precise role in this respect is unknown [89]. One 

possibility is that the OGT-1 TPR domain acts as a scaffolding protein to assemble signaling 

complexes that respond to HTS. Consistent with an acute role in signaling, inhibition of 

OGT-1 after the completion of development, but just prior to exposure to HTS, is sufficient 

to block gpdh-1 reporter induction [34]. In other paradigms, mammalian OGT is known to 

regulate the activity of the transcriptional regulator mSin3A through a non-catalytic 

mechanism requiring the TPR domain of OGT [89]. Whether or not C. elegans OGT-1 

functions via regulation of a mSin3A-like mechanism or another pathway is a critical 

hypothesis to address in order to gain a better understanding of the non-catalytic OGT-1 

function(s), which are very poorly understood.

OGT is an essential gene in all animals except for C. elegans [90, 91]. In mammalian 

systems, OGT knockout cells are not viable because they are unable to divide [92]. 
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Therefore, it is not possible to identify genes like OGT in screens for regulators of the 

mammalian HTSR, even using the most sophisticated and state-of-the-art CRISPR/Cas9 

based screening methods. Identification of ogt-1 as a regulator of the HTSR was only 

possible in C. elegans due to its unique biology. Furthermore, there are likely many other 

Nio genes involved in the HTSR that can only be identified through forward genetic screens 

in C. elegans. For example, the null phenotype for thousands of genes is lethal or sterile, 

which would prevent the recovery of such alleles in most screens. However, mutagenesis 

screens, such as the Nio screen we performed to identify ogt-1, also generate unusual non-

null missense alleles that allow the essential requirements of the gene to be fulfilled but 

disrupt other more specific physiological roles. Such examples demonstrate the power of 

using genetic approaches in C. elegans to dissect apart cellular pathways in ways that can 

significantly complement and extend our understanding of conserved cell physiological 

pathways such as the HTSR.

Conclusion

Intracellular compatible osmolyte accumulation is the primary mechanism by which all cells 

maintain appropriate cell volume during HTS. Compatible osmolytes are accumulated via 

the transcriptional upregulation of biosynthetic enzymes or transporter proteins. These 

compatible osmolyte accumulation genes are part of a larger group of osmotically regulated 

genes that are transcriptionally upregulated during the HTSR. C. elegans synthesizes the 

compatible osmolyte glycerol in hypodermal and intestinal cells during HTS by upregulating 

the biosynthetic enzyme GPDH-1. Glycerol accumulation facilitates the survival and 

acclimation of C. elegans in hypertonic environments.

Study of the HTSR in C. elegans, primarily through unbiased genetic screens, has revealed 

both transcriptional and post-transcriptional regulation of osmosensitive gene expression 

(Figure 1). Transcriptionally, the HTSR is under strong negative regulation. Regulation of 

protein homeostasis genes, which oppose protein damage and synthesis, negatively regulate 

the HTSR transcriptional response through gcn-1/-2 and gck-3/wnk-1 signaling pathways. 

Extracellular proteins inhibit gpdh-1 transcriptional induction under isotonic conditions 

through a pathway involving a transmembrane protein and GATA-type transcription factors. 

Additional independent pathways also regulate the transcription of other osmotically 

regulated genes. The HTSR is also regulated post-transcriptionally through the enzyme 

OGT. Therefore, genetic screens performed to date have revealed the existence of at least 

three basic HTSR pathways in C. elegans (Figure 1).

One notable finding from these studies of the C. elegans HTSR is that the genes and 

mechanisms identified in this relatively simple organism are not ‘worm-specific’. Rather, 

they are ancient and highly conserved cellular pathways that impinge on critical aspects of 

cell physiology such as protein synthesis and folding, extracellular matrices, and novel 

functions of highly conserved proteins, such as OGT-1. However, much remains unknown 

about these HTSR regulatory pathways. The mechanisms by which cells sense HTS have yet 

to be described. Furthermore, in the transcriptional pathways, a transcription factor specific 

to the HTSR has not been identified and the signaling mechanism(s) by which this 

transcription factor becomes activated is unknown. One possibility is that HTS is sensed by 
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the cell through the ECM. This paradigm occurs in the yeast Sho1 branch of the high 

osmolarity glycerol (HOG) pathway, where the OSM-8 – like, extracellular mucin domain – 

containing proteins, Msb2 and Hkr1 sense HTS to ultimately activate the master regulator of 

the yeast HTSR, Hog1 (Table 1) [93].

The post-transcriptional pathway through which OGT-1 functions to regulate the HTSR is 

also uncharacterized. OGT-1 could regulate GPDH-1 protein expression through mRNA 

cleavage, 3’ UTR usage, mRNA export, initiation factor interactions or ribosomal 

elongation. While the TPR domain, and not catalytic activity, of OGT-1 is required to 

regulate GPDH-1 protein expression, the mechanism(s) by which this domain regulates the 

HTSR is currently unknown. Continued unbiased genetic screens, complemented by targeted 

biochemical and cell biological studies, will be instrumental towards further defining the 

cellular pathways regulating the C. elegans HTSR. The success of the genetic screening 

approaches used to characterize the role of extracellular proteins, PTR-23, protein 

homeostasis, and OGT-1 in the HTSR indicate that such approaches are well suited to study 

this cellular stress response. Capturing unique missense alleles, identifying new genes, and 

describing new loss of function phenotypes through forward genetic screens in C. elegans 
will not only provide insight into the protein functions and cellular pathways regulating the 

HTSR, but will also reveal novel cell signaling paradigms that can be applied to other 

aspects of cellular physiology.
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Main Insights

• C. elegans accumulate the compatible osmolyte glycerol during hypertonic 

stress by upregulating glycerol-3-phosphate dehydrogenase (gpdh-1) in 

hypodermal and intestinal epithelial cells.

• In addition to gpdh-1, hypertonic stress differentially regulates 324 genes, 

including many antimicrobial peptides normally induced by pathogenic 

infection.

• At least three separate pathways regulate osmosensitive gene expression 

during hypertonic stress in C. elegans.

1. Extracellular proteins, including several structural collagens and osm 
genes, inhibit the transcriptional induction of a subset of 

osmosensitive genes, including gpdh-1, in isotonic conditions.

2. Protein damage triggered by inhibition of protein translation and/or 

protein folding genes activates the transcription of gpdh-1.

3. The O-GlcNAc transferase OGT-1 acutely activates the hypertonic 

induction of GPDH-1 protein through a O-GlcNAc-independent, 

post-transcriptional mechanism.
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Figure 1. Hypertonic stress response pathways in C. elegans.
The induction of osmotically regulated genes, such as gpdh-1, during hypertonic stress 

(HTS) is regulated through both transcriptional (blue) and post-transcriptional (red) 

mechanisms. At least three pathways regulate the transcriptional induction of gpdh-1. First, 

inhibition of proteins that maintain protein folding and new protein synthesis activate gpdh-1 
expression. HTS-induced decreases in protein translation lead to increased gpdh-1 
transcription through a gcn-1/2 and wnk-1/gck-3 dependent pathway. Additionally, while 

significant work shows that HTS causes unique types of protein damage and inhibition of 

protein homeostasis genes activates the HTSR, the specific signaling mechanisms linking 

HTS-induced protein damage to gpdh-1 mRNA upregulation are not known. Second, the 

HTSR transcriptional response is negatively regulated by extracellular proteins that function 

upstream of the transmembrane protein PTR-23/patched-related protein 23, and the GATA 

erythroid-like transcription factors ELT-2 and ELT-3. However, ptr-23 is not required for all 

osmotically regulated gene expression and as such at least one ptr-23 independent pathway 

must exist. It is unknown if this ptr-23 independent pathway functions through the GATA 
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transcription factors. It also remains unknown if HTS itself can activate ELT-2/-3 through an 

extracellular protein and PTR-23 independent pathway. Finally, the O-GlcNAc transferase 

OGT-1 regulates GPDH-1 protein translation through a post-transcriptional pathway. ogt-1 is 

required for osm-8 and osm-11 phenotypes, suggesting there is some crosstalk between the 

extracellular protein transcriptional pathway and the ogt-1 post-transcriptional pathway. The 

precise mechanism by which ogt-1 induces GPDH-1 protein expression is unknown, but it 

could include regulation of mRNA cleavage, 3’ UTR usage, mRNA export, initiation factor 

interactions or ribosomal elongation. The output of both the transcriptional and post-

transcriptional pathways are two-fold. First, they mediate acclimation that enable animals to 

survive and reproduce in hypertonic environments. Second, these pathways may also 

modulate the function of osmosensory neurons such that once acclimation has occurred, 

behavioral avoidance to hypertonic stimuli is no longer necessary.
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Table 1.
Comparison of the hypertonic stress response in eukaryotic organisms.

The compatible osmolytes and mechanisms of transcriptional induction, post-transcriptional induction, and the 

transcriptional repression of the hypertonic stress response (HSTR) are compared among S. cerevisiae, C. 
elegans, and mammals.

Characteristic of hypertonic 
stress response S. cerevisiae C. elegans Mammals

Compatible osmolytes Glycerol, trehalose Glycerol
Sorbitol, myo-inositol, betaine, 
glycerophosphocholine (GPC), 

taurine

Osmolyte accumulation 
proteins GPD1, GPD2, TPS1, TPS2 GPDH-1,-2 Aldose reductase, SMIT, BGS1, 

GPC1, TAUT

Transcriptional upregulation? Yes (MAP kinase dependent) Yes (MAP kinase independent) Yes (partially MAP kinase 
dependent)

Transcription factors Hog1, Sko1, Hot1, others GATA factors
• elt-2,-3

Rel-type factors

• NFAT5/TonEBP

Post-transcriptional 
upregulation? Unknown Yes (OGT-1 dependent) Unknown

Extracellular proteins required 
for transcriptional inhibition

Mucins

• Hkr2, Msb1

Mucin-like

• osm-8

Collagens

• dpy-7,-8,-9,-10

Others

• osm-7,-11, osr-1

Unknown

Dependence of transcriptional 
inhibition on canonical 
induction pathways?

Yes

• Hog1

Yes

• elt-2/-3, ogt-1 Unknown

Activation of osmolyte 
accumulation by inhibition of 

protein translation?
Unknown

Yes

• gcn-1/-2, gck-3, wnk-1 Unknown

Induction of protein misfolding 
by HTS? Unknown Yes Yes
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