Skip to main content
. 2021 Jul 5;9:e11702. doi: 10.7717/peerj.11702

Table 2. Summary statistics of 136 Torenia accessions from 17 lines/populations evaluated with seven iPBS primers.

Populations N Na Ne I He uHe Polymorphic loci %
A 8 0.7500 ± 0.0598 1.1101 ± 0.0223 0.0928 ± 0.0178 0.0629 ± 0.0123 0.0671 ± 0.0131 16.89%
B 8 0.6757 ± 0.0518 1.0514 ± 0.0153 0.0458 ± 0.0127 0.0305 ± 0.0087 0.0325 ± 0.0093 8.78%
C 8 0.6351 ± 0.0481 1.0302 ± 0.0121 0.0269 ± 0.0099 0.0178 ± 0.0067 0.0190 ± 0.0072 5.41%
D 8 0.6892 ± 0.0524 1.0567 ± 0.0168 0.0486 ± 0.0132 0.0325 ±0.0091 0.0346 ± 0.0097 9.46%
E 8 0.7568 ± 0.0564 1.0894 ± 0.0202 0.0770 ± 0.0163 0.0518 ± 0.0112 0.0553 ± 0.0119 14.19%
F 8 0.7365 ± 0.0609 1.1196 ± 0.0236 0.0990 ± 0.0184 0.0675 ± 0.0128 0.0720 ± 0.0136 17.57%
G 8 0.7027 ± 0.0595 1.0973 ± 0.0208 0.0842 ± 0.0169 0.0566 ± 0.0116 0.0604 ± 0.0124 15.54%
H 8 0.7365 ± 0.0609 1.1305 ±0.0248 0.1047 ± 0.0192 0.0723 ± 0.0134 0.0772 ± 0.0143 17.57%
I 8 0.5338 ± 0.0493 1.0309 ± 0.0122 0.0274 ± 0.0100 0.0182 ± 0.0069 0.0194 ± 0.0073 5.41%
J 8 0.4865 ± 0.0465 1.0243 ± 0.0112 0.0200 ± 0.0090 0.0138 ± 0.0062 0.0147 ± 0.0066 3.38%
K 8 0.5473 ± 0.0528 1.0464 ± 0.0149 0.0409 ± 0.0121 0.0271 ± 0.0083 0.0290 ± 0.0088 8.11%
L 8 0.6216 ± 0.0562 1.0600 ± 0.0164 0.0549 ± 0.0135 0.0360 ± 0.0092 0.0383 ± 0.0098 11.49%
M 8 0.6081 ± 0.0611 1.1151 ± 0.0234 0.0934 ± 0.0182 0.0644 ± 0.0127 0.0686 ± 0.0135 15.54%
N 8 0.4932 ± 0.0530 1.0609 ± 0.0186 0.0472 ± 0.0137 0.0327 ± 0.0097 0.0349 ± 0.0103 8.11%
P 8 0.6284 ± 0.0616 1.1111 ± 0.0232 0.0908 ± 0.0178 0.0620 ± 0.0125 0.0662 ± 0.0133 16.22%
Q 8 0.6014 ± 0.0619 1.1067 ± 0.0222 0.0900 ± 0.0175 0.0609 ± 0.0121 0.0650 ± 0.0129 16.22%
R 8 0.9932 ± 0.0788 1.2885 ±0.0309 0.2453 ± 0.0239 0.1655 ± 0.0167 0.1766 ± 0.0178 45.27%
Mean 8 0.6586 ± 0.0141 1.0899 ± 0.0050 0.0758 ± 0.0039 0.0513 ± 0.0027 0.0547 ± 0.0029 13.83% ± 2.28%

Notes:

N, number of sample size; Na, number of different alleles; Ne, number of effective alleles = 1/(p ^ 2 + q ^ 2); I, Shannon’s information index = −1* (p * Ln (p) + q * Ln(q)); He, expected heterozygosity = 2 * p * q; uHe, unbiased expected heterozygosity = (2N/(2N − 1))* He. Where for diploid binary data and assuming Hardy-Weinberg Equilibrium, q = (1 − Band Freq.) ^ 0.5 and p = 1 − q.

A, Duchess Pink; B, Duchess Burgundy; C, Duchess Deep Blue; D, Kauai Burgundy; E, Kauai Rose; F, Kauai Deep Blue; G, Kauai Blue and White; H, Kauai Magenta; I, Kauai Lemon Drop; J, Kauai White; K, Little Kiss White; L, Little Kiss Burgundy; M, Little Kiss Blue and White; N, Little Kiss Rose Picotee; P, Little Kiss Blue; Q, Lipu; R, Xichou.