
Unveiling the Neuroimaging-Genetic Intersections in the Human 
Brain

Ibai Diez1,2, Jorge Sepulcre1,2,&

1Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, 
Boston MA.

2Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard 
Medical School, Charlestown, MA

Abstract

Purpose of review: The prevalence of new public datasets of brain-wide and single cell 

transcriptome data have created new opportunities to link neuroimaging findings with genetic data. 

The aim of this study is to present the different methodological approaches that have been used to 

combine this data.

Recent findings: Drawing from various sources of open access data, several studies have been 

able to correlate neuroimaging maps with spatial distribution of brain expression. These efforts 

have enabled researchers to identify functional annotations of related genes, identify specific cell 

types related to brain phenotypes, study the expression of genes across life span and highlight the 

importance of selected brain genes in disease genetic networks.

Summary: New transcriptome datasets and methodological approaches compliment current 

neuroimaging work and will be crucial to improve our understanding of the biological mechanism 

which underlie many neurological conditions.
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INTRODUCTION

In recent years, key developments on the integration of neuroimaging and gene expression 

data have led to a revolution in how we uncover and investigate the underpinnings of the 

human brain. This nascent neuroimaging discipline, the so-called neuroimaging-genetics, 

has enabled us to more precisely characterize the association between idiosyncratic imaging 

patterns and specific neurobiological hallmarks in multiple neurological diseases [1]. The 

field has seen marked improvement not only of imaging techniques defining large-scale 

brain networks breakdown, but also in the creation of stereotactic gene expression datasets. 
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These publicly available data have provided unprecedented interest to close the gap between 

in vivo neuroimaging and its underlying molecular basis [2–7].

Investigations of how genes contribute to alterations in the structure and function of the 

human brain are not new. In the past, researchers focused on the selection of participant 

samples or cohorts with specific genetic variations to identify genetically associated 

neuroimaging patterns. These approaches require strong hypotheses on the genetic traits of 

interest. With the growing accessibility to perform Genome Wide Association Studies 

(GWAS) in large populations, this technique has become popular to link neuroimaging 

findings with genetic variants derived from this approach. GWAS is particularly effective to 

associate genetic SNP variations with neurodegenerative and neuropsychiatric disorders. 

While this strategy allows for a more data-driven identification of brain–genetic 

relationships, it requires large numbers of individuals. Moreover, the combination of 

neuroimaging and GWAS data is still insufficient to interpret how the molecular mechanistic 

of genetic variants impact the actual brain tissue at the in situ level (as the genetic 

information usually comes from blood or saliva samples).

The advent of brain-wide atlases, in addition to measurements of the expression of 

thousands of genes from different brain locations (using microarray and/or RNA-seq 

techniques from post-mortem brain tissue) has led to a recent scientific breakthrough in the 

neuroimaging-genetic field [1]. While previous methods focus on how genetics alter brain 

phenotypes indirectly, mainly by comparing genetically affected groups, the integration of 

Image Derived Phenotypes (IDPs) with gene expression atlases allow us to study their fine 

spatial intersections throughout the brain. In this review, we provide specific hints, 

orientations and resources about the recent methodological approaches used to study the 

transcriptomic delineations with neuroimaging patterns.

Considerations on Available Brain Transcriptomic Datasets, and Gene/Sample Filtering

To successfully design and perform the spatial integration of neuroimaging and genetic data, 

one must become familiar with the various publicly available brain atlases and with their 

spatial quantification of gene expression across multiple brain regions [2]. Table 1 shows the 

most significant human transcriptome datasets currently available [3–6], among which the 

Allen Human Brain Atlas (AHBA) [7] is the most popular, due to its high spatial resolution 

covering all cortical and subcortical regions (Fig. 1A). AHBA was built by collecting brain 

samples from healthy donors (Table 1). Other atlases covering several neurodegenerative 

disorders are included -although at lesser spatial resolution- among the resources of the 

Allen Institute for Brain Science. Additional brain datasets provide complementary 

information about the human brain transcriptome, such as temporal information throughout 

life span and increases in sample size obtained from the harmonization of combined datasets 

in 534 brain donors (0–102 yo) [8]. These datasets allow us to understand how the 

expression trajectories of particular genes are modeled in development throughout the 

lifespan[8–11]. More recently, Single-Cell RNA sequencing approaches have led to the 

creation of genome-wide expression profiles from brain cells [12–16], expanding the 

neuroimaging-genetic assessments toward specific cellular typologies rather than diluted 

brain data [17–20]. Using cell-type-specific gene markers and the HomoloGene database, 
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Shin et al. [21] have been able to differentiate the contributions of 9 human-like neural cell-

types. The 9 major cell type classes include: S1 pyramidal neurons, CA1 pyramidal neurons, 

interneurons, astrocytes, microglia, oligodendrocytes, ependymal cells, endothelial cells, and 

mural cells (Fig. 1B). Now, AHBA transcriptomic data can be used to search for cell-type 

profiles associated with neuroimaging data. For researchers interested in evolutionary 

analysis, the PsychENCODE dataset stands out to provide gene expression data of 11 

comparable cortical regions in the human, chimpanzee and macaque brains [22,23].

Not all the genes measured in transcriptome atlases are consistent across donors, and several 

studies have proposed to reduce the dimensionality of the data by removing highly variable 

genes[21,24]. For instance, a 2-stage filtering based on spearman correlations between 

individual data and the median expression of all AHBA donors, as well as the BrainSpan 

Atlas, has been proposed to filter all inconsistent gene expression patterns, that is genes with 

high variability in their regional expression profiles between donors [21]. This strategy 

obtained 2,511 highly reliable genes from the original 20,737 [21]. Other research groups 

have recommended to only include genes that display brain organ-specific expression 

relative to other tissues from the Human Protein Atlas (HPA; https://www.proteinatlas.org). 

A 4-fold gene expression level higher than other organs has been suggested as a selection 

criterion- obtaining a total of 2,587 brain specific genes[25]. However, alternative 

approaches based on the inclusion of brain tissue specificity or neuro-related genes from 

functional annotation systems (e.g. AmiGo) has yielded different criteria (such as 7,971 

genes [20] or 3,719 genes [26]). Finally, other options have filtered the genetic data using 

potential candidate genes from GWAS studies [27].

Not all samples from transcriptome atlases are equally used in neuroimaging-genetic studies. 

Taking AHBA as a paradigmatic example, there are disparate gene expression levels 

between cortical and subcortical regions that have forced most researchers to focus on the 

cortical samples alone. Only a few exceptions have been reported which employ subcortical 

[28,29], or cortical and subcortical samples [30] with an ad hoc normalization strategy. 

Moreover, it is important to note that only two out of six donors have right hemisphere 

samples in the AHBA dataset (Table 1). This fact has inclined some researchers to use only 

the left hemisphere samples, only the samples of the two subjects that cover both 

hemispheres [31], or the whole dataset w/o applying sample normalization approaches [26]. 

Finally, due to the potential bias of autocorrelation between nearby samples -locations close 

to each other can exhibit similar expression values compared to the ones further apart- there 

have been recent efforts to create specific strategies that account for the spatial relationship 

between samples. For instance, Altmann et al. have used spatial eigenvectors and linear 

models to obtain residual data less impacted by spatial autocorrelations[32]. Although there 

is still needed to reach a consensus and establish a common approach to gene and sample 

filtering.

Spatial Associations between Image Derived Phenotypes and Genetics

Alzheimer’s disease (AD) and Parkinson disease (PD), among other neurological disorders, 

display characteristic phenotypes on neuroimaging that have been consistently replicated 

over decades of research. These disorders produce distinctive cortical and subcortical spatial 
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signatures that transversally affect brain systems; an idea that has been captured in the past 

with an extended version of the old Hebbian principle (“not only do Neurons that ‘fire 

together, wire together’ but also Neurons that ‘wire together, die together’”). The ability to 

produce these highly replicable IDPs have made neurodegenerative disorders an ideal 

framework to investigate the spatial similarity between neuroimaging and gene expression 

data. For instance, previous research has effectively identified specific neurobiological traits 

associated to the vulnerability of neuronal circuits in AD [26,33].

Magnetic Resonance Imaging (MRI) is the prominent method to map in vivo, functional and 

structural properties of the brain associated with a wide variety of neurodegenerative 

disorders, as well as normal organizational properties of the human brain. Different MRI 

sequences allow us to identify spatial fingerprints across both locally and distantly 

connected cerebral areas. Among the most popular IDPs for neuroimaging-genetic studies 

are: i) T1-weighted-image-related: cortical thickness, or voxel based volumetric information; 

ii) Functional or BOLD-imaging-related: connectivity properties or activation maps in task 

functional imaging (in this regard, the Neurosynth brain activation maps dataset -meta-

analytic dataset of 14,371 fMRI studies- has inspired several works to identify associations 

between brain activation states and gene expression maps) [34–36] iii) Diffusion-image-

related: diffusion microstructural properties or structural connectivity profiles of brain 

regions that are connected by white matter tracts. Apart from MRI, other types of IDPs have 

been successfully used in neuroimaging-genetic studies, such as lesion probability maps 

[37], and positron emission tomography images [28,38,39].

The integration of IDPs and gene expression data requires the use of spatial association 

approaches that intersect the two stereotactic maps (Fig. 1A,C,D). First, there are several 

strategies that have been proposed to match IDPs and gene expression data: i) one can use 

the phenotype-related imaging values from the exact locations where the brain tissue 

samples were extracted for genetic assessments; ii) use a brain atlas to define broad regions 

of anatomical or functional hallmarks, and employ it to compute the average gene 

expression values and average IDP-related values corresponding to the atlas regions; or iii) 

perform a voxel-based interpolation within the spatial domain of the genetic data to cover all 

IDPs space and match them [40]. A detailed pipeline of the steps to process transcriptome 

and map to an atlas can be found in [24]. Second, a comparison between the two metrics 

(IDPs and gene expression) overlapping within the same brain regions has to be made (Fig. 

1D). While some studies focus on a priori hypotheses and specific regions of interest[41], 

others compute spatial similarity indexes from the entire cerebral distribution of IDPs and 

gene expression values using Pearson (Fig. 1C,D) or Spearman correlations [26,42,43], or 

Euclidean distances [44]. Then, top ranked genes that are highly similar to the imaging 

phenotype of interest are further studied.

Gene co-expression analysis allows us to detect a group of genes that are jointly expressed in 

same regions across the brain (Fig. 1A). The most popular gene co-expression approach is 

the Weighted Gene Co-expression Network Analysis (WGCNA). It uses a similarity value 

(usually a correlation value) between the expression of all pairs of genes to derive a gene x 

gene matrix. Using clustering approaches this co-expression matrix provide modules of 

highly interconnected genes, in which the first principal component of each group of genes 
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is called eigengene. Similarly, Partial Least Squares (PLS) Regression is a multivariate 

method that explains a set of observed variables (the IDP) as a linear combination of a set of 

predictor variables (expression of genes) where the maximum variance of the observed 

variables is explained. PLS is also well suited for highly collinear data as in the brain 

transcriptome. Rather than finding a similarity value between a specific gene with the IDPs, 

PLS finds several linear combinations of genes (components) that explains most of the 

variance of the IDPs. In neuroimaging-genetic studies, both the eigengenes and PLS scores 

can be correlated with IDPs to identify genes associated with the regional pattern of the 

phenotype of interest. In virtual histology, kernel density estimation is used to assess the 

significance of each cell type with the IDPs [21,45–47]. For each cell type, the distribution 

with the similarity values between the genes related with the cell type and the IDPs is 

computed and tested for significance. A linear regression model using the IDPs as dependent 

variables and the average expression profiles for the statistically significant cell types as 

independent variables are used to estimate the percent of variation explained by each cell 

type. Finally, in recent years, researchers have turned their attention toward the combination 

of transcriptome data and connectivity data of human brain [26,48]. The incorporation of 

spatial gene expression data to the spreading prediction of neurodegenerative processes in 

brain networks have opened fascinating opportunities to investigate the intimate network 

nature of AD or PD pathogenesis [49–52].

Post-Processing of Neuroimaging-Related Genes

One of the most important aspects of studies that investigate the spatial relationship between 

IDPs and gene expression is the interpretation of the resulting genetic findings. Researchers 

with a strong hypothesis for a particular gene of interest can search for high IDPs-genetic 

similarity across the transcriptomic data. They can build null hypothesis distributions in a 

variety of ways to determine if a targeted gene is among the resulting output of genes. This 

aprioristic approach has shown positive results in AD, PD and stuttering population studies 

[44,51,52]. Additionally, data-driven approaches using functional genetic annotations, such 

as gene-set enrichment analysis, can be performed by using all the ranked list of genes that 

display high similarity with the IDPs (e.g., red area in histogram of Fig. 1C) [26,53,54]. 

GeneOntology (GO) enrichment analysis facilitates the biological interpretation of a set of 

high scoring genes (graph bars in Fig. 1C), as it statistically tests annotation categories 

related to three main domains: cellular components, molecular function and biological 

process. Other domains from alternative resources are also useful in many cases. For 

example, the DisGeNET platform [57], a popular tool to compute disease related gene-set 

enrichment including associations between 17,549 genes and 24,166 disease traits, can be 

used to perform sex-chromosome gene-set enrichment[55] and disease related gene-set 

enrichment [19,56] analyses. Moreover, the most common tools for performing cell-type 

gene-set enrichment analysis are: i) expression-weighted cell type enrichment (EWCE)[58]; 

and ii) cell type specific expression analysis (CSEA; http://genetics[45]tl.edu/jdlab/csea-

tool-2/)[59]. Importantly, it has been suggested that gene-set enrichment for brain 

transcriptome data might be affected by statistical bias leading to false positives introduced 

by gene-to-gene co-expression and spatial autocorrelation. Specific methods to ensure the 

statistical validity of the enrichment results from transcriptome data are currently being 

developed [60–62].
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A solid neuroimaging-genetic study should incorporate specific approaches that 

independently confirm the genetic findings. We have found that genetic interactome analysis 

can provide an additional layer of validity to a discovered gene set. Given that these gene 

sets come from brain samples and brain IDPs associations, it is optimal if converging results 

can be obtained from large independent datasets of non-brain genetic interactions, such as 

co-expression, co-localization, shared pathways or protein domain (Genemania [63]). Today, 

using graph theory approaches we can test if brain-related gene sets obtained from the IDPs 

analysis interact in a coordinated and functional genetic manner within a more generalized 

framework (Fig. 1F). In our experience, an interactome confirmation is essential to 

understand if a given gene plays a central role in the disease, or condition-related genetic 

network [43,44,64,65].

Recent Advances on Connectomic-Genetics of Neurodegenerative Diseases

Current views of neurodegenerative disease, such as AD, PD or ALS, characterize their 

pathological progression as a spreading phenomenon across the cerebral tissue (e.g., 

accumulation of amyloid and tau in AD). Network organization of neuronal circuits and 

underlying genetic factors have enabled methodologies to more precisely describe the 

pathological propagations of neurodegenerative diseases. There is an immediate and intense 

interest to understand the genetic vulnerability of specific brain networks targeted by 

neurodegenerative diseases through application of neuroimaging, connectomic and genetic 

integration techniques. For instance, Sepulcre et al. described the longitudinal tau- and Aβ-

related cortical pathways in AD, as well as their spatial associations with transcriptomic 

profiles [52]. They found that lipid metabolic genes, particularly APOE, played a central 

role in the overall propagation patterns [52]. Gene set enrichment analysis also classified the 

tau-imaging-genetic profile as being axon related, while the Aβ-imaging-genetic profile 

were dendrite related. In PD, the addition of regional expression data from strategic genes, 

such as GBA, SNCA, and LRRK2 as determinants of α-synuclein synthesis, clearance 

and/or degradation rate, improved the predictive power of disease spreading models [49,50]. 

Notably, Basaia et al. used neuroimaging connectivity data to characterize the α-synuclein 

propagation pathways of PD from the brainstem [51]. They also utilized the whole AHBA 

transcriptome to search for biological fingerprints of the progression along cerebral 

spreading pathways. They discovered that SNCA gene expression, as well as α-synuclein 

histological levels, display high spatial similarities with the cortical distribution of 

connectivity propagation pathways, in which the transcriptomic profiles associated to the PD 

cortical spreading showed key linkages to the regulation of dopamine secretion and 

microtubule neuronal architecture [51].

CONCLUSION

Recent studies linking transcriptome data to image-derived phenotypes have led to a better 

understanding of the putative biological mechanism underlying normal and 

neurodegenerative processes, compared to studies just using neuroimaging data. New 

technical developments are pushing forward the creation of new transcriptome databases 

that, combined with new methodological approaches, allow a deeper understanding of brain 

organization. More work is needed to expand the available transcriptome data: more donors, 
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single cell data covering whole brain, and transcriptome data of the brain with specific 

diseases. This new data will be translated into new opportunities that, complemented by 

computational methods, will expand our current knowledge of the human brain and 

eventually provide important clues to create disease modifying treatments in 

neurodegenerative disorders.
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KEY POINTS

• Brain-wide transcriptome atlases are a powerful tool to link neuroimage 

phenotypes with genetic information

• Gene set enrichment analysis allow a better interpretation of biological 

mechanism behind

• Changes of expression in different age ranges can be computed using datasets 

including samples from individual across lifespan

• Single cell transcriptome dataset provides new insight into specific cells types 

linked to our phenotype

• Gene to gene relationship and central genes can be computed with 

Interactome tools
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Figure 1. Main methods applied to study the spatial association of Image Derived Phenotypes 
and genetic information.
Transcriptome data is obtained from postmortem brain tissue from different brain regions 

across the cortex (A, AHBA example). The transcriptome matrix (brain samples x genes) 

contains the expression of all the measured genes for each sample of the brain. Computing 

the similarity of the spatial expression of each pair of genes in the brain the gene-

coexpression matrix is obtained, which identifies groups of genes with similar spatial 

patterns. Single cell transcriptome data allow to classify each gene into a cell type (B). This 

information allows us to compute the distribution of the spatial similarity of the IDP with the 

genes pertaining to each cell type. The spatial similarity of the whole transcriptome can be 

computed with the IDPs to obtain a distribution of similarity values (C has been adapted 
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from [26], and C-F shows the significant fold enrichment on Positive Regulation of Synapse 
Assembly as a case example). The top ranked genes (most similar to the IDPs) can be used 

in a gene-set enrichment analysis to find significantly associated functional annotations with 

the genes (C). The functional annotations or genes of interest can be further explored to 

obtain the correlation value with IDP, project their values onto the brain surface and compute 

the temporal trajectory along the lifespan (D-E). This top ranked list can also be used to find 

relationships with other genes and find the importance of our candidate genes in the obtained 

interactomic gene network (F). The position of each node in the network is plotted as a 

function of the hubness of each gene (or degree centrality, the number of connections to 

other genes of the network) in the bars figure in F.
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Table 1.

Key publicly available human brain transcriptome datasets

Human Transcriptome databases

Database Subjects Number 
of 
Samples

Number of 
genes

Spatial 
distribution

Temporal 
distribution

URL

Allen Human Brain 
Atlas (AHBA)[7]

6 3,702 20,737 Whole brain 24–57 years http://human.brain-map.org

Human Brain 
Transcriptome[9]

57 1,340 17,565 16 brain regions 5.7wpc–82 years https://hbatlas.org/

Brain Cloud[10] 269 269 ~14,500 Dorsolateral 
prefrontal 
cortex 
(BA46/9)

14wpc->80 years https://www.ncbi.nlm.nih.gov/
projects/gap/cgi-bin/study.cgi?
study_id=phs000417.v2.p1

Developmental 
Transcriptome
(BrainSpan)

35 492 17,604 16 brain regions 8wpc–40 years http://www.brainspan.org/rnaseq/
search/index.html

Human Prenatal Brain 
Development 
(BrainSpan) [11]

4 1,203 29,180 ~25 areas (9 
layers per area)

15wpc-21wpc http://www.brainspan.org/lcm

Genotype-Tissue 
Expression project 
(GTEx)[12]

399 3,326 19,670 13 brain regions 20 years -71 
years

https://www.gtexportal.org/

Single Cell Transcriptome databases

Database Subjects Number 
of single 
nuclei

Samples Years URL

Allen Cell Type 
Database:
M1 – 10x genomics

2 76,533 Primary motor cortex 50,60 years https://celltypes.brain-map.org/

Allen Cell Type 
Database:
Multiple Cortical 
Areas

50 49,495 Middle temporal gyrus, 
anterior cingulate cortex, 
primary visual cortex, primary 
motor cortex, primary 
somatosensory cortex, primary 
auditory cortex

18–83years https://celltypes.brain-map.org/

single-cell analysis of 
transcriptional and 
epigenetic states in 
the human adult brain 
[13]

6 >60,000 Visual cortex, frontal cortex, 
and cerebellum

20 years – 49 
years

https://
www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE97942

Genotype-Tissue 
Expression project – 
Single Cell data[14]

5 14,963 Hippocampus, frontal cortex 40 years – 65 
years

https://gtexportal.org/home/
datasets

human brain 
transcriptome 
diversity at the single 
cell level[15]

8 adults
4 fetal

466 Temporal lobe 21 years – 63 
years
16–18w

https://
www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE67835

PsychENCODE - 
Human Brain 
Development
[16]

3 adults
9 prenatal

17,093 Dorsolateral frontal cortex 18 years -64 
years
5pcw-20pcw

http://
development.psychencode.org/

RNA-Seq of human 
astrocytes
[17]

14 adult
6 fetal

Temporal lobe 8 years – 63 
years
17–20 pcw

https://
www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE73721
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