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Abstract

Objective: Continuous glucose monitoring (CGM) enables prediction of the future glucose
concentration (GC) trajectory for making informed diabetes management decisions. The glucose
concentration values are affected by various physiological and metabolic variations, such as
physical activity (PA) and acute psychological stress (APS), in addition to meals and insulin. In
this work, we extend our adaptive glucose modeling framework to incorporate the effects of PA
and APS on the GC predictions.

Methods: A wristband conducive of use by free-living ambulatory people is used. The measured
physiological variables are analyzed to generate new quantifiable input features for PA and APS.
Machine learning techniques estimate the type and intensity of the PA and APS when they occur
individually and concurrently. Variables quantifying the characteristics of both PA and APS are
integrated as exogenous inputs in an adaptive system identification technique for enhancing the
accuracy of GC predictions. Data from clinical experiments illustrate the improvement in GC
prediction accuracy.

Results: The average mean absolute error (MAE) of one-hour-ahead GC predictions with testing
data decreases from 35.1 to 31.9 mg/dL (p-value=0.01) with the inclusion of PA information, and
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it decreases from 16.9 to 14.2 mg/dL (p-value=0.006) with the inclusion of PA and APS
information.

Conclusion: The first-ever glucose prediction model is developed that incorporates measures of
physical activity and acute psychological stress to improve GC prediction accuracy.

Significance: Modeling the effects of physical activity and acute psychological stress on glucose
concentration values will improve diabetes management and enable informed meal, activity and
insulin dosing decisions.

Index Terms—

Glucose Concentration Prediction; Physical Activity; Acute Psychological Stress; Machine
Learning; Diabetes

. Introduction

FREQUENT measurement of glucose concentration (GC) is necessary to monitor and
prevent diabetes-related complications [1-7]. Continuous glucose monitoring (CGM)
provides information unattainable by intermittent self-monitoring of blood glucose, such as
frequent (5-minute sampling time) GC information and its rate of change, proactive alerts
and alarms for actual or impending glycemic excursions, and feedback for therapeutic
decisions [5-14]. Accurate predictions of the future GC trajectory offer important
information for making meal, activity and insulin dosing decisions [9-18]. Although
accurate predictions of the future GC dynamics are important for effective diabetes
management, maintaining a high level of GC prediction accuracy is challenging, particularly
in free-living conditions, since future GC dynamics are affected by scheduled or
spontaneous physiological and metabolic variations, caused by physical activity (PA) and
acute psychological stress (APS), in addition to meals and insulin levels. Modeling the GC
data enabled characterization of the effects of meals, insulin and exercise on future GC
trajectory afterthese events have affected GCs and CGM readings [19-21]. Further
improvement of GC control in people with Type 1 diabetes (T1D) necessitates the estimation
of the characteristics of glycemic disturbances such as PA [22] and APS by using real-time
data from convenient wearable devices, and the subsequent integration of the variables
quantifying these disturbances in GC prediction models [13, 23, 24]. The models that use
information about such disturbances have the advantage of estimating future GC variations
before the effects of these disturbances start appearing in CGM values, consequently
improving the accuracy of the predicted future GCs, and proactively suggesting insulin dose
decisions that are cognizant of these PA [13, 25, 26] and APS events. Based on signals from
a wristband device at high frequency, this paper reports the first results of incorporating the
effects of PA and APS on GC predictions for people with T1D.

Recent publications have underlined the value of incorporating PA information in GC
prediction models [27, 28], using signals that indicate the start of PA to adjust insulin
infusions [29, 30] and employing variables computed based on armband signals in
estimation of GC during exercise to modify control decisions on automated insulin delivery
[13, 23, 26]. The use of readily measurable biosignals such as heart rate or accelerometer
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readings have been considered to indicate exercise [29, 30]. In our experience, additional
biosignals and the variables derived from them enable more accurate GC predictions during
PA [13, 23, 26]. The diversity in PA makes it difficult to predict glycemic excursions for
different PA [31, 32]. The GC response to exercise is dependent on the type and intensity of
the PA [31, 32]. While moderate-intensity PA can reduce GC due to increased glucose
utilization, high-intensity PA can lead to elevated GC due to increased hepatic glucose
production [31, 33]. The varied response to different types and intensities of spontaneous PA
such as running to catch a bus or activities of daily living need to be characterized to
improve GC regulation in diverse free-living conditions.

Little attention has been paid to incorporating APS to GC predictions [34] and using such
information in insulin dosing decisions in T1D. Episodes of APS activate the hypothalamic-
pituitary-adrenal axis and the sympathetic nervous system, resulting in the release of stress
hormones, like adrenalin, noradrenalin, cortisol, glucagon and growth hormone, that affect
glucose metabolism [35]. Various papers in psychology and neuroscience literature have
reported APS detection in clinical environments by analyzing hormone samples or with
sophisticated equipment for collecting physiological signals such as eye movement, skin
conductivity, skin temperature, and heart rate variability [36—39]. Sensors for rapid and
accurate measurement of these hormones in free living are not yet available. Hence,
biosignals from wearable devices that can be used during daily free-living offer an attractive
alternative for assessing the presence, type and intensity of APS.

The APS-induced transient increase in GC can be misconstrued as carbohydrate intake in
automated insulin delivery systems, resulting in a bolus insulin infusion. However, the
transitory increase in GC due to APS may be short-term, and a prompt recovery to the
normal glucoregulatory state may leave excess insulin in the bloodstream, with a relatively
longer duration of effect [40, 41]. This increases the risk of hypoglycemia as a result of an
over-correction for the APS-induced increase in GC. The risk of incorrect insulin dosing
must be overcome for automated insulin dosing algorithms to increase the time spent in the
target euglycemic range, particularly in free-living scenarios where myriad disturbances can
cause the dysregulation of GC [40, 41]. Further complicating the modeling of APS in GC
prediction models is the lack of conveniently measurable biosignals that are indicative of the
presence of APS. Hence, features based on physiological measurements such as heart rate
and electrodermal activity need to be defined to detect, classify and quantify the level of
various APS occurrences. The possibility of concurrent PA and APS provides additional
challenges in detecting, discriminating and quantifying the PA and APS events. For example,
the glycemic effects of PA during training and competition events are different, with the
divergent responses caused by the presence of APS. Running to catch a bus, driving during
rush hour, or receiving an alarm while performing house chores could also initiate
concurrent PA and APS.

The exclusive reliance on CGM data is insufficient to resolve the multitude of disturbances
affecting the GC and make appropriate corrective actions. Moreover, the use of only a
limited set of biosignals may also confound the physiological effects of PA with the
response to APS. Considering the use of this information in automated insulin delivery by an
artificial pancreas generates additional constraints in the selection of physiological variables
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that can be used and wearable devices that can be worn continuously under daily free-living
conditions. Various accurate sensor systems are appropriate in clinical environments, but a
wristband is one of the few current choices for daily use. It overcomes the limitations of
intrusive and invasive sampling techniques, which are not feasible for long-term use in
diverse free-living conditions. Unfortunately, wristbands provide additional challenges such
as high noise levels and artifacts in signals [24, 42].

Our previous work has used physiological measurements from a wristband to generate
features and automatically detect the type and quantify the intensity of PA [24]. We also
leveraged this information to discriminate different types of APS. Recently, we integrated
these findings to enable the immediate evaluation of concurrent PA and APS, and to
incorporate an estimate of the perceived APS level [34, 40].

Advances in classifying the type and estimating the intensity of PA and APS, and evaluating
their concurrent presence, can enable personalized precision medicine by integrating the
refined physiological assessments with GC information for more effective treatment of T1D.
However, the mathematical relations between the physiological assessments and the glucose-
insulin dynamics are complex and time-varying. Adaptive modeling can help identify the
current relationships between the GC data and the quantifiable metrics of PA and APS [24,
34, 40].

Motivated by the above considerations, in this work we integrate adaptive GC prediction
models with new features and metrics derived from biosignals to compute the effects of
diverse PA and APS disturbances on GC predictions [24, 34, 40]. We conducted 34
experiments involving 12 people with T1D under various types of PA and APS inducements.
The participants wore an Empatica E4 wristband that is convenient for use in free-living
ambulatory conditions. The multiple physiological variables measured by Empatica E4 [43]
capture the effects of PA and APS. A similar Empatica device, the Embrace? is the only
FDA-cleared wrist-worn wearable in epilepsy to predict seizures [44] and to evaluate stress
and emotion. The biosignals from Empatica E4 include blood volume pulse, electrodermal
activity, skin temperature and accelerometer. Blood volume pulse signals are used to
estimate the heart rate values in the E4. We use these measurements to generate new
quantifiable input features for PA and APS. Machine learning techniques are used with these
variables and features to estimate the type and intensity of the PA and/or APS, and the
possibly simultaneous presence of AP and APS [24, 34, 40]. The refined features and
variables for PA and APS are integrated as exogenous inputs in an adaptive system
identification technique to improve the accuracy of the predicted future GC trajectories. Data
from the clinical experiments involving PA and APS are used to illustrate the improvement
in GC prediction accuracy.

Preliminaries

A. Glucose Concentration Prediction Model

The GC modeling approach used in this work is the recursive version of the prediction-based
subspace identification (rPBSID) algorithm [45, 46]. The approach identifies a state-space
model in innovation form as
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where x; € R”, y, € R®), i, € R and ¢, € R denote the state, output, input and

innovation term variables, respectively, and A, B, Cand D are system matrices with
appropriate dimensions, and K'is the Kalman filter gain.

In the modeling approach, we define stacked inputs and outputs as
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where fand p are user-defined parameters for the future and past horizons, respectively.
Similarly, we formulate the stacked vectors u\”, ¢/, u{P) and {?, and the Hankel matrices
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By iterating the system equations, we can write the system using the Hankel matrices as
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and I'(7 is the extended observability matrix, A/ and G are two lower triangular Toeplitz
matrices defined as

. ~ 7T
= [CT CAT (CAI 1) ]
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CB D

H'=| CAB CB
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T 0 0

CK I

Gi=| CAK CK
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with A = A; — K, Cy, and B = B, — K; Dy.. Furthermore, the state evolution can also be
expressed as

X, = APX _ ,+ 1P ZP 5)

where z(?) = [Y(p)T U(p)T]T. For a sufficiently large ‘&', we can consider A” ~ 0 and

X~ LPZP (6)
This leads to
YY) — HOUY — GOy x L0 ZP 4 gD @

The rPBSID approach works by estimating matrices A9 and G by using a vector
autoregressive with exogenous (VARX) inputs model. The VARX model parameters are then
used to construct estimates for the A% and G matrices and subsequently obtain estimates
for the system matrices [46-48].

Clinical Experiments

A. Data Collection

Clinical experiments involving 12 subjects with T1D (Table I) are conducted at the College
of Nursing, University of Illinois at Chicago. The experiments were approved by the
Institutional Review Board. Dexcom G5 CGM System [49] and E4 wristband are used in
experiments. The E4 wristband has four sensors: electrodermal activity-sensor to measure
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the skin conductance (galvanic skin response), photoplethysmogram to measure the blood
volume pulse, temperature sensor to measure skin temperature, and a three-axis
accelerometer to measure movements [43]. The blood volume pulse data is used to derive
heart rate and heart rate variability. The data collection activity in the experiments is divided
into two subcategories: experiments for PA and APS (with APS inducement either alone or
concurrent with PA). All experiments were open-loop, with subjects regulating their GC by
manually adjusting their insulin infusions.

1) Physical Activity Experiments (PA Exp.): Twenty-four PA experiments involving
12 subjects with T1D are conducted (Table I). The duration of the experiments ranges
between 6 to 9 hours. The experiments include at least one exercise session: treadmill run,
stationary bicycle and resistance exercise. The exercise sessions are conducted more than
one hour before or more than two hours after meal consumption. The GC measurements
(CGM and self-monitoring of blood glucose during exercise), insulin administered, meal and
snack information, PA information, and demographic information are recorded (Table I).
The duration of treadmill and stationary bicycle exercises are fixed to 30 minutes. In
addition to the structured exercise, subjects spent time sitting, reading books and watching
videos. The experiments also involved activities of daily living through simulated household
chores like doing laundry, cleaning or vacuuming. The treadmill exercise is conducted at
various speeds in the range of 3.0 to 6.0 mph, which is calculated based on the 60 to 70% of
maximum VO?2 test, in addition to warm up and cool down periods (treadmill speeds below
1.7 mph). The stationary bicycle exercise is conducted with intensities in the range of 50 to
150 W. The intensity of treadmill and stationary bicycle exercises is determined for each
individual subject according to the VO2 reserve method. After determining the maximum
VO2 through the Bruce protocol treadmill test [50], the target intensities of the treadmill and
stationary bicycle exercises are set between 60% to 70% of the maximum VO2. The
resistance exercise sessions begin with a warm-up activity involving running on the treadmill
at low speeds, followed by four sets of eight repetitions of dumbbell chest press, lateral pull
down, seated row, dumbbell shoulder press, leg extension or leg curl. The subjects rest
between sets for approximately one minute. The duration of the resistance exercise ranges
between 30 to 120 minutes.

2) Acute Psychological Stress Experiments (APS Exp.): Ten APS experiments
with eight subjects with T1D (Table I) are conducted. There are several types of APS with
varying impact on GC, ranging from the trauma of a traffic accident or news of job
termination to taking exams, public speaking, and playing videogames. We focused on two
types of APS: mental stress (MS) and emotional anxiety stress (EAS). CGM and self-
monitoring of blood glucose data, insulin dosing, meal and snack information, and
demographic information are recorded (Table I). The APS experiments are conducted at
least two hours before or after any meals. Five different types of APS inducement are
considered after consulting with psychologists and medical experts and conducting an
exhaustive literature review for APS inducements techniques. MS inducement involves
subjects solving mental arithmetic tests during a half-hour period, such as the multiplication
or subtraction of numbers [51-53]. This is the only MS inducement used in our study, and
the other four types are used for EAS inducement. Video games are one form of stress
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inducement method for EAS, with subjects playing video games for a half-hour period
during the experiments [54, 55]. Trier social stress test is used for APS inducement, which
involves public speaking and mental arithmetic lasting about 20 mins [56-58]. Stressor
experiments induce APS and frustrate subjects by hindering or obstructing the completion of
routine tasks by posing nuanced obstacles. The stressor experiments are conducted during
sedentary state, daily activities or resistance exercise activities. Most APS inducements in
this work, including video games, mental arithmetic and stressor, are conducted during
structured exercise, such as playing computer games during treadmill exercise or mental
arithmetic during stationary bicycle exercise, which augments the experiments with cases
where the effects of PA and APS are confounded.

IV. Physical and Psychological Stress Assessment Algorithms

The PA experiments are used to classify the physical state (PS) and estimate the energy
expenditure (EE), which are then incorporated into an adaptive GC prediction model (Fig.
1). The computations include the personalized plasma insulin concentration (P1C) estimation
[59, 60] and meal effect estimation by using CGM and PIC values [19]. The APS
experiments are used to derive an APS index and incorporate it in the GC prediction model
(Fig. 1). The additional inputs for PA and APS are derived from the biosignals of E4 [43].

A. Physical Activity

The collected biosignals are preprocessed by using various filtering and artifact removal
algorithms to improve the signal quality and remove artifacts and noise [24, 30]. The
cleaned and preprocessed biosignals are used to generate feature variables that enhance the
accuracy of the machine learning algorithms [24, 34, 40]. The feature variables are derived
by using mathematical or statistical computations with the cleaned data. The feature
variables are used with various supervised machine learning algorithms to classify the PS
and estimate the EE. We consider k-nearest neighbors, linear discriminant analysis, decision
trees, ensemble learning, support vector machines, Gaussian process regression, and deep
neural networks with long short-term memory [24, 34, 40]. Since both PA and APS can be
present, the use of heart rate or accelerometer alone may not provide accurate results. A
computed variable such as EE and various feature variables are more effective in detecting,
discriminating and characterising PA and APS. Equations that relate the measured variables
to EE are developed using data collected simultaneously through the gold standard indirect
calorimetry method with VO2 mask [61] and wristband data. The mean absolute error
(MAE) values are calculated for the estimated EE compared to the indirect calorimeter
measurements for the different machine learning algorithms for the testing dataset [24]. The
deep neural networks with long short-term memory performed better than the other
algorithms with an MAE of 0.25 MET [24]. PS classification accuracy is evaluated with
different algorithms and deep neural networks with long short-term memory achieved a
94.8% with best testing classification accuracy [24].

The posterior probabilities (score values), denoted by A(sk Xx) for the PA class s given the
data xy, obtained by the PS classification algorithm are used to determine the additional
input variable to the GC model. The posterior probabilities are not suitable for direct use as
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an input variable in the GC model because diverse PA affect glycemia to different degrees.
Therefore, the posterior probabilities need to be integrated with a framework that recognizes
the relative magnitude of glycemia effects for the various PA. A fuzzy logic algorithm
comprised of fuzzification, rule-table design, and defuzzification stages is used to translate
the posterior probabilities to the input variable [62]. The posterior probabilities are fuzzified
using triangle fuzzy membership functions. The fuzzy membership functions are separated
into five equal intervals to represent the different magnitudes of the glycemic effects for
various PA, including very low [0, 0.2], low [0.2, 0.4], medium [0.4, 0.6], high [0.6, 0.8],
and very high [0.8, 1] glycemic effects.

The rule-table is established through knowledge of the glycemic effects of the classified PA
[25, 31-33] (Table 11). The treadmill and stationary bicycle exercises are associated with the
high output rule, as the moderate-intensity aerobic activity causes a decrease in GC. A high
posterior probability of daily activities is associated with the medium output rule, which
indicates a slight decrease in GC. High probabilities for resistance exercise and sedentary
state are set to the low output rule, which indicate no significant changes in the GC.
Therefore, the rules translate the highest posterior probability of the PS to the corresponding
effect on GC, with the high effect rule associated with a rapid decrease in GC and a low
effect rule associated with a small variation or steady GC value. The weighted average
defuzzification method is used to determine the final fuzzy model output to the expected GC
trajectory (Fig. 2) [62].

The fuzzy PS effect model enables the GC model to characterize the varying glycemic
effects of the different PA. This is necessary since EE can be relatively high during both
resistance exercise and aerobic PA, like treadmill and stationary bicycle, yet the glycemic
effects are different. Relying solely on EE can result in less accurate predictions of GC. The
fuzzy model converts the five PA class posterior probabilities by multiplying the
probabilities by the associated rule system. The output of the fuzzy model is normalized and
multiplied by the estimated EE, which is incorporated into the GC prediction model (Fig. 1).
This enables the GC model to consider both the PS and the PA intensity in determining the
glycemic effects of the PA.

The inputs to the GC prediction model are based on two groups of cases (Table 11): (1)
nominal model that considers only meal and insulin information (Nom.); and (2) meal,
insulin and PA information, including EE and PS classification (Nom. + PA information)
(Fig. 1). The insulin information incorporated as PIC estimates (Fig. 1) [60]. Demographic
information is used to personalize the model (Fig. 1). A delay is incorporated in some of the
GC model inputs to better represent the physiological time delay in the effect of PA on GC,
with a delay of 25 mins (for 1-hour prediction) (five sampling times) (Table V) considered
for the EE and PS information. The output is the predicted GC value. Insulin and meal effect
sensitivity and delay parameters computed in previous work [23, 60] are used (Table IV). PA
sensitivity and delay parameters are determined by a genetic algorithm using a random set of
selected experiments (training set). Optimized values are fixed and used for measuring the
performance of the algorithms with the testing data set (Table 1V).
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B. Acute Psychological Stress

The E4 [43] is used to detect, classify and quantify the level of APS experienced by a
subject. We consider two types of APS, MS and EAS, for analyzing the effects of PA and
APS, and we determine posterior probabilities for these two types of stress [34, 40]. We
compute the score value for the type of APS (MS and EAS) during simultaneous PA
(sedentary state, treadmill run exercise, and stationary bike exercise), which yields a total of
six scenarios. The score value associated with likeliest PA type is used to find the
accompanying MS and EAS score values, denoted A(my, | X) as the probability of MS or
EAS my given the data x. Prior research [34, 40, 41, 63-65] indicates that EAS increases the
GC, though intense MS can result in increased glucose consumption due to the mental
burden of the tasks. To handle the differences in GC trajectories caused by the type of APS,
we consider the difference in the score values between MS and EAS. The difference, dj =
Am | X)—-Amy | X) is used as an additional input to the GC prediction model.

The incorporation of the APS in the GC prediction model is evaluated by using four cases
(Table 11): (1) nominal model without any APS or PA estimates as additional inputs (Nom.);
(2) with PA estimates as additional inputs but without any APS estimates (Nom. + PA
information); and (3) with PA and APS estimates as additional inputs (Nom. + PA + APS
information) (Fig. 1). Retrospective data from the 10 open-loop experiments are used to
assess the efficacy of the APS input to prediction accuracy of the GC model. The delay in
the glycemic response to APS is optimized and found to be 3 sampling times, or 15 mins
(Table 1V), which pertains to the additional input indicating APS (d)). APS sensitivity and
delay parameters are determined by a genetic algorithm using randomly selected training
experiments. The PA delay and sensitivity parameters optimized for the Nom. + PA Info
model are retained and used. Insulin and meal effect sensitivity and delay parameters are
also kept the same (Table 1V) [23, 24, 59, 60].

V. Results

In this section, we first report the efficacy of including the PA information in the GC
prediction model. Then, we report the efficacy of including the APS information to the GC
model by using the experiments that involve APS inducement with concurrent PA, which
yields a GC prediction model with PS, EE, and APS estimates as additional inputs.

A. GC Predictions with Physical Activity Information

The PA clinical experiments are analyzed for three types of PA (sedentary state, treadmill
run exercise, and stationary bike exercise) and the results are reported as the mean absolute
error (MAE) for three different type of prediction horizons: 1-hour, 1.5-hour, and 2-hour
prediction horizons (Table V). We compare the results of the nominal model, which predicts
the future glucose with only glucose and insulin information, to the nominal model + PA
information, which incorporates an additional input representing the type and intensity of the
PA.

1) 1-Hour-Ahead GC Prediction: The nominal model (without incorporating PA
information) has the worst performance in 21 of the 24 experiments (12 training and 12
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testing experiments), while the nominal model + PA information (with information of the
type and intensity of PA incorporated in the GC predictions) has the best performance in 21
experiments (Table V). The average MAE of 12-step-ahead (one-hour-ahead) CGM
prediction results for testing data improves from 35.1 mg/dL for the nominal model to 31.9
mg/dL for the nominal model + PA information. Across all the PA experiments (PA Exp.),
incorporating PS and EE estimates (hominal model + PA information) improves the CGM
prediction accuracy for training and testing by 28.5% and 10.3%, respectively. We evaluate
the statistical significance of the results. Kurtosis and skewness analysis show that data are
not normally distributed. The Wilcoxon test is used to compare the GC prediction results
[66], and the improvement in prediction accuracy is found to be statistically significant for
both training and testing data at the 95% confidence interval, with p-values of 0.001 and
0.01, respectively.

2) 1.5-Hours-Ahead GC Prediction: The nominal model has the worst performance in
18 of the 24 experiments, while the nominal model + PA information has the best
performance in 18 experiments (Table V). The average MAE of 16-steps-ahead CGM
predictions for testing data (Te) improves from 51.8 mg/dL for the nominal model to 49.5
mg/dL for the nominal + PA model. Across all the PA experiments (PA Exp.), incorporating
PS and EE estimates (nominal + PA information) improves the CGM prediction accuracy for
training and testing by 19.2% and 1.8%, respectively. The improvement in the prediction
accuracy is found to be statistically significant for the training data (p-value: 0.02), though
the improvement using the testing data results is not statistically different (p-value: 0.4).

3) 2-Hours-Ahead GC Prediction: The nominal model has the worst performance in
15 of the 24 experiments, while the nominal model + PA information has the best
performance in 15 experiments (Table V). The average MAE of 24-steps-ahead CGM
prediction results for testing data improves from 125.2 mg/dL for nominal model to 120.7
mg/dL for nominal + PA model. Across all the PA experiments (PA Exp.), incorporating PS
and EE estimates improves the CGM prediction accuracy for training and testing by 8.3%
and 3.4%, respectively. The improvement in the prediction accuracy is found to be
statistically significant for the training (p-value: 0.01), though the improvement using the
testing data set is not statistically different (p-value: 0.6).

4) 4-Hours-Ahead GC Prediction: There is no improvement in the prediction
accuracy for the nominal model + PA information relative to the nominal model possibly due
to the use of the time-varying recursively identified model. The time-varying linear model
updates the model parameters at each sampling time to increase the accuracy of short-term
predictions for making insulin dosing decisions. Although a linear time-invariant model
would have some improvement with the addition of PA information, it would not have good
predictions without meal information being provided by users, while our proposed
recursively identified models do not require any announcements from users for meals.

B. GC Predictions with Physical and Psychological Stress Information

The 10 clinical experiments with APS inducement are analyzed by considering three cases:
the nominal model, the nominal model + PA information, and the nominal model + PA &
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APS information. The statistical details of the GC prediction results are presented as APS
experiments in Table V.

1) 1-Hour GC Prediction: The nominal model + PA & APS information case has better
GC prediction accuracy compared to the nominal model, with 8 experiments showing an
improvement in GC prediction accuracy out of the 10 experiments. The proposed method
yields GC prediction accuracy (average MAE) with testing data of 14.2 mg/dL for the
nominal model + PA & APS information, compared to 16.9 mg/dL for the nominal model,
which is an improvement of 15.7% in prediction accuracy.

Since the CGM prediction results are not normally distributed based on skewness and
kurtosis criteria, a we used Friedman’s statistical test for the comparison of three matched
groups [66]. The case of the nominal model + PA & APS information results in a slight
improvement in GC prediction accuracy relative to the nominal model + PA information.
Both nominal model + PA information and nominal model + PA & APS information have a
statistically significant improvement relative to the base nominal model (training data set)
with a p-value of 0.006 (Table V). Training data set results are not statistically significant,
with the p-value as 0.09, which is slightly greater than the significance threshold (0.05),
although there is 11.9% improvement in the MAE.

2) 1.5-Hours-Ahead GC Prediction: The nominal model + PA & APS information
case has better GC prediction accuracy compared to the nominal model, with 8 experiments
showing an improvement in GC prediction accuracy out of the 10 experiments. The
proposed method yields GC prediction accuracy (average MAE) with testing data of 23.8
mg/dL for nominal model + PA & APS information, compared to 25.1 mg/dL for the
nominal model, which is an improvement of 3.5% in prediction accuracy. Both testing and
training data set results are not statistically significant, with the p-values as 0.07 and 0.2,
which are slightly greater than the significance threshold (0.05), although there is 3.5%
improvement in the MAE.

3) 2-Hour GC Prediction: The nominal model + PA & APS information case has better
GC prediction accuracy compared to the nominal model, with 8 experiments showing an
improvement in GC prediction accuracy out of the 10 experiments. The proposed method
yields GC prediction accuracy (average MAE) with testing data of 44.0 mg/dL for nominal
model + PA & APS information, compared to 43.7 mg/dL for the nominal model, which
equates to no improvement in prediction accuracy.

4) 4-Hours-Ahead GC Prediction: The nominal model + PA & APS information case
did not have better GC prediction accuracy compared to the nominal model for 4-hour-ahead
GC predictions. This is again due possibly to the use of recursively identified models that
prioritize accurate short-term predictions, the benefits of which overlap with the
improvements due to the additional inputs at longer prediction horizons.

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2022 July 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Page 13

Discussion

Incorporation of PA assessment information using PS and EE estimates for one-hour-ahead
prediction horizon improves GC prediction accuracy for both the training and testing
experiments during the periods of induced APS (APS Exp.), by 15.7% and 12.4%,
respectively. These experiments also contain concurrent stress inducements. Incorporation of
both PA and APS estimates yields a modest 3.3% improvement in GC prediction accuracy in
comparison to the model incorporating only PA. The main reason for this marginal
improvement, which reduces as the prediction horizon increases, is the low intensity of the
APS inducements permitted by the IRB in clinical experiments. The resulting magnitude of
the maximum change in GC is not very high and the duration of the change is short.
Consequently, Their effects are not sustained in the glucose metabolism for 1.5 or 2 hours.
Hence, the improvement in GC prediction is reduced as the prediction horizon is increased.
Moreover, the subjects involved in APS inducement experiments are generally aware of the
controlled laboratory conditions under which the experiments are conducted, and this may
reduce the response of some subjects to the stress inducements. More significant APS such
as getting hit by a car or participating in highly competitive races have more significant GC
variations [33, 67], though the latter is also influenced by the high-intensity of the PA. A
fellow researcher reported being hit by a car violating traffic rules, and the incident resulted
in a large increase in GC. The GC was about 150 mg/dL before the accident, and the GC
values increased to the 290-300 mg/dL range after the accident, even though there was no
food consumption during this period. Olympic swimmer Gary Hall, Jr. has T1D and he
reported that his blood glucose can spike from 100 mg/dL to 300 mg/dL in the 21 seconds of
a 50 meter race [67].

The results illustrate that PA effect on GC is significant and relatively more influential than
APS (for the APS inducements in our clinical experiments), and consideration of APS
improves prediction accuracy. The experiments also show the more pronounced effects of
PA are easier to capture in the GC prediction models relative to the effects of APS. The PA
effects are typically more pronounced and longer in duration, as glucose is depleted and
long-term effects of changes in insulin sensitivity result in prolonged decrease in CGM
values. Under more stressful scenarios encountered in extremely traumatic or stressful
situations, the glycemic effects of APS will be more significant and the model is anticipated
to perform better.

The results of one experiment from APS Exp., testing data set is illustrated in Fig. 3. It
allows the comparison of contributions of both PA and APS effects on GC prediction
accuracy. The red (dashed line) curve (nominal model) has the poorest performance with
MAE for predictions of 38.0 mg/dL, which could not track the blue curve (real CGM data,
solid line) especially during APS inducement and PA. The purple curve (dotted line) has the
best performance, taking into account both APS and PA information, which reduces the
MAE to 12.9 mg/dL.

We leveraged the convenience and practicality of a wristband device that measures multiple
physiological variables to detect and discriminate among the individual or simultaneous
concurrent incidences of PA and APS [24, 25]. We chose a wristband because it is a device
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accepted by most people for use in free-living conditions and during diverse ambulatory
activities. The additional information on the type and intensity of PA and APS is
incorporated in GC prediction models to improve the prediction accuracy relative to
conventional models that do not incorporate PA and APS information as additional inputs in
making future GC predictions. The multiple physiological measurements are used to train
machine learning models that generate informative signals on the type and intensity of PA
and APS. Signal processing algorithms are used to remove the noise and motion artifacts
from the measured physiological measurements before developing the models. The signal
processing algorithms are also implemented on-line to process the measurements before
using signals with the developed models to estimate the PA and APS information throughout
daily life. We evaluated the effects of signal processing on improving the accuracy of the
machine learning algorithms with testing data sets. The best accuracies with the raw signals
are 98.6% and 96.2% for the classification of PS and APS, respectively. The classification
accuracies improve to 99.3% and 98.3%, respectively, when the filtered signals are used.

Improving GC control in people with T1D is essential to realize numerous health benefits,
yet achieving tight glycemic control is challenging because of the myriad disturbances
affecting glycemia. Various disturbances like meals, PA, and APS need to be considered
when making insulin dosing decisions. The performance of automated insulin delivery
systems can be suboptimal if the various disturbances are not considered in estimating GC
and computing the insulin doses. Advanced ML algorithms are needed to ensure that the
disturbances are automatically evaluated and used for making insulin dosing decisions. To
achieve a higher level of automation without requiring subjects to manually announce meal
information, meal detection and carbohydrate estimation algorithms from CGM and insulin
information is gaining popularity. However, insulin dose adjustments for structured exercise
is often done manually, and spontaneous PA and effects of APS are usually not considered.
The work reported in this paper provides a strong argument on the feasibility of using easy-
to-measure biosignals to extract valuable and accurate information about the presence and
characteristics of PA, APS and their concurrent occurrence, and using this information in
improving the GC prediction accuracy.

Our work uses wristband biosignals to automatically detect and discriminate PA types, and
evaluate the intensity of the PA, and predict the future glycemic effects of the PA [58-60].
APS is another glycemic disturbance that is not typically directly considered in automated
insulin dosing decisions. We developed an approach to automatically assess the presence of
APS, and the possible simultaneous concurrent PA, and subsequently incorporate the PA and
APS information in making future GC predictions. The proposed algorithms will enable
automated insulin dosing algorithms to explicitly consider psychological and physiological
states in the insulin dose calculations without requiring users to manually provide
information on the disturbances. The proposed algorithms will yield tighter glycemic control
in people with T1D as they go about their diverse daily activities by simultaneously
considering PA and APS in the future GC predictions. The proposed approach will also
enable athletes with T1D participating in training or competitive events to better manage
their glucose levels through simultaneously considering the effects of both PA and APS on
the future GC values.
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VIl. Conclusions

The biosignals collected from a convenient-to-use wristband can generate new quantifiable
input features for PA and APS. Machine learning algorithms can estimate the type and
intensity of the PA, the presence and characteristics of APS, and the concurrent presence of
PA and APS. The information determined for PA and APS can be integrated as exogenous
inputs in an adaptive system identification technique to enhance GC estimation accuracy.
Data from clinical experiments are used to demonstrate the improvement in GC prediction
accuracy when explicitly considering PA and APS information in making GC predictions.
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TABLE Il

Page 23

Rule-Table for Fuzzy Logic Algorithm (Samples of Some Important Rules) (SS: Sedentary State, DA: Daily

Activities, RE: Resistance Exercise, TR: Treadmill Exercise, BK: Stationary Bike)

SS DA RE TR BK Output Rule Indication of the GC Effect
High Low Low Low Low Low Steady/Slight Variation

Low Low High Low Low Low Steady/Slight Decrease

Low High Low Low Low Medium Steady/Slight Variation

Low Low Low High Low High Sharp Decrease

Low Low Low Low High High Sharp Decrease
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Data Collection and Separation

TABLE Il

Inducements v - present, & - absent

Information used in Addition to CGM and Insulin Pump

Case Meal PA APS PS EE APS
PA Exp. with Nom. v v X X X x
PA Exp. with Nom. + PA v v x v v x
APS Exp. with Nom. v v v X X x
APS Exp. with Nom. + PA v v v v v x
APS Exp. Nom. + PA + APS v v v v v v

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2022 July 01.

Page 24



Page 25

Sevil et al.

S9seD ||B J0) S18S Iep BuIise) sy} J0j pasn pue uoneziwndo Ja)e paxiy aie sisjeweled |1y
*

€99'T [ 6660 1 L0020 € uIw 08 (SdV + Vd + ‘WoN) Bulures| “dx3 Sdv
— — 6660 T L0020 € ulw 08 (vd + "woN) Buturel] "dx3 sdv
— — — — L0020 € ulw 08 (‘woN) Buturel] "dx3 Sdv
— — 090T°0 S L0020 € ulw 08 (vd + "woN) Butures) “dx3 vd
— — — — L0020 € ulw 08 (‘woN) Bururel) "dx3 vd
— — — — 10020 € uIw 08 [09 ‘65 ‘¥z ‘€] Uoieasay snoinsid

uoIIpeId 09 Inoy-g

vIET € 162T°0 g 10020 € uIw 08 (SdV + Vd + ‘WoN) Buiures| “dx3 Sdv
— — L6210 [ L0020 € ulw 08 (vd + "woN) Buturel) “dx3 Sdv
— — — — L0020 € ulw 08 (‘woN) Bururel] "dx3 Sdv
— — S6ET'0 z 10020 € uIw 08 (Vd + ‘woN) Butures] “dx3 vd
- — — - 10020 € ulw 08 (‘woN) Buutel) dx3 vd
— — — — L0020 € uIw 08 [09 ‘65 ‘¥z ‘€] uoIeasay snoinaid

uoIIPaId 09 INOY-GT

vIET € L6210 S L0020 € ulw 08 (SdV + Wd + ‘WoN) Buurel] 'dx3 Sdv
— — 162T°0 g 10020 € uIw 08 (Vd + "WwoN) Bulurel] “dx3 Sdv
— — — — L0020 € uIw 08 (‘wonN) Buturel] dx3 Sdv
— — G2ST0 S L0020 € ulw 08 (vd + "woN) Bururel "dx3 vd
- — - - 10020 € ulw 08 (‘woN) Buutel) “dx3 vd
— — — — L0020 € uIw 08 [09 ‘65 ‘vz ‘e2] yoseasay snotnaid

(w1 Buydures) il Aunnsues (w1 Bulidures)
Aunnswes sdv fepasdv Aunnswes vd - Buidwes) Aepd vd - 19943 [BOIN pUB D1d MOPUIM Sed polad uolreldepy aseD pudx3 vd

uoIRIPBId D9 INOY-T

Author Manuscript

Al ' 31aVL

Author Manuscript

Author Manuscript

san|eA Jalawreled paziwndo

Author Manuscript

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2022 July 01.



Page 26

Sevil et al.

‘dwj oN ‘dwj oN — %L'T %20 — %b'E %E'S woushosdwl,

S S 4 A syuswiLadx3 Jo 'ON

It zZIT Tle Tle zIT zIt LElL A Lcl8 81,2 asen1siom | 1598 40 'ON

OLFOVWY  VIFTW  VLIFLEY GTITFGEIT GOTTFLYITY 'OTTFTSIT OT9F.02T G6S5F2SZT 8VSFGGOT T2S T IIl "ASPIS F UBDIN

ozzloty  ozzleey  81zZITTY 1951€29 €.510€9 G/516'99 6YYTI9¥OT 2COSTI8ETT 99211968  9E€T|T'GH [eJoL | uelpain

gevlgee T8vlgee  T8Yl06E 6'/ST| LSy g.sTlT8y  6.6TI89y  vesTlos.  89sTle6.  €9zTlvoL  ZOETIZoL a|1enQ isg | 1sT

esslgle  vvsleLe  LsGlvoe gLoeloer gloelsoy  gloellsy  coscless zoselosy  96ezloes  96ezlges XeI | Ul
uoIRIPRId D9 INoy-g

(351 UBWIPBLI) 2°0 (3sa1 vewpalig) 200 (381 UOX02IIM) 70 (381 UOX02IM) 20°0 anjen-d

%S'E %T'9 — %S'CT %201 — %8'T %261 wawanoiduw,

g g A 4 sjuswiLRdX3 JO "ON

Tly TlT elo oly 110 vlt vl8 8ly zlot 0T|z 8seD1siop |1s9g JO 'ON

90TF8€Z 98F0¢ 8IIFISC 9'95 ¥ 9'95 8/GF8LS 0T9FVEY GTCFG6r GECFQIS 6ETF6VC CSTFIEE "ASPIS F UBDIN

6TTIT0E  OTTI¥6T  G2Tl0'8e €8z 10'6¢ 68z 10°0¢ LielLee €65l €Ly 12915y 66¢151¢C eov | T'ge [eJoL | uelpain

vIel2er  GoelT9T  LvElGET 2981TTC /811712 9'¢6 | T've 6'0L11'8¢ 6891 TvE 6'€€19°9T Tvl0€e a|1uenQ isg | 1sT

geelLor  gTeElTTT  L8elgTT 6'TSTIG VT 06STI8ST  ¥69Tl6Tc  2s8l98T  T68l€TL eeslos L0slez9 Xel | Ul
uoIIpe.d 09 INoY-GT

(1saL uewpanid) 900°0 (saL uewpalid) 60°0 (1saL uoxo9|IM) TO'0 (saL uoxo9|IM) TOO'0 anfen-d

%L'ST %P2l — %6'TT %6'TT — %E 0T %582 woushosdwl,

S S 4 rA SsjuswIadx3 Jo ‘oN

ols olo slo ole Tlt vlt zlot otle Tl1T TTIT 9seD1siom |1sed Jo 'ON

69FZYT  OLFLYT  8LF69T 9'vE F 80V GEEFGOr TLEF8GY GGIFETE GOTFTIGE  T8FELT  ¥OTFESE "NIPIS T UBDIN

1Ll8°72T eLlovT v810vT v0z | v'1e cozloee 6eeleve e lvie oz |89z Lozlest voel €9z [eoL | uerpain

L'6Tle8 zoclve  LTelger €651 16T 1'8518'61 6'291871¢ 187 | ¥'8T v'8v19ce L'vels6 6'€clz8er ajuend pig | 1sT

o0velgL razAky T6cl€8 7'66|1'LT 6'9618'GT  2L0T|L02Z 0's51€eeT 1691987 g8elvy rivloL Xe | UIN

SdV + vd + "WN Yd + "WON ‘WON SdV + vd + 'WN Vd + ‘WON ‘WON Yd + ‘WON ‘WON Yd + "WON ‘WON So.njea [ealsiels

uoIPIps Id 09 INoY-T

Bunss] dx3SdV

Buiures] rdx3sdv Bunss] rdx3 vd Buiures] dx3 vd

Author Manuscript

(Ip/Bw) uomewIojul SV PUE d INOUHM PuB YIM S)NSaY UOIDIPaId D9 J0 IVIA JO Arewwins [eansiels
A3FTavL
Author Manuscript

Author Manuscript Author Manuscript

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2022 July 01.



Page 27

Sevil et al.

(Juswiddnpuy ssas 2a160J0YIASH Yum sjuswiiadx3

(A9einaoe Jenba aney sased g)

FHKK

(50°0 > d :pjoysaiy L souedIUBIS [eONSIEIS)

FHK

((T aseD 01 aAIIR[a4 paledwod sjuswanosdw )

((9%) 3dVIN J0 abelane uo paseq pare|nafe))
KK

(Aoeanaoe [enba aney sased g)
*

0x3 Sdv) (Sa1iAnoY [ealsAud ynm suswiladx3 dx3 vd)

(381 Uewpald) T (3sa1 vewpalId) 60°0 (381 UOXOIIIM) £G°0 (381 UOX0IIIM) T anjea-d

‘dwi oN ‘dwy oN — %S€0 %820 — %800 ‘dwy oN Juawanoldw,

v v 07 0T sjuswiiadx3 Jo 'oN

zlz zlz Tle zlz zlz Tle «El9 9L,& L TIT  Tl,T asenisiowm|iseg jo oN

2z F 15T 9z 7 05T 9z 7 05T ZeFeeT ZeFELT e FYET LT FS2T LT FS2T € 7 95T v ¥ 99T "ASPIS F Uea|Al

L091Z'TST  20912TST  T09|€TST Ges | TLET GeslLeT  LeS182€T  6GeTI6'€CT  092T|0¥ZT  89STI8'6YT  89ST|8'6YT [ejoL | ueipain

L9T | 9eT 89T lcer 89T leer esTletT €sTlEeTT vST I vTT TeTl€TT TET|€TT 102 | 92T 102 | 92T anIend 1s¢ | 1sT

6.T 152t 18T | 8TT 18T | 1T 69T | T6 69T | 6 0LT |16 89T | 90T 89T | 90T o€z | v0T1 o€z | v01 Xe | UlN
uoIRIPId D9 Inoy-y

(391 UeWpaLd) 50 (asaL uewpalid) 20 (3531 UOX0IJIM) 9°0 (3531 UOX03|IM) TO'0 anjen-d

SdV + Vd + WN  Vd + "WON "WON  SdV + Vd + "WN Vd + "WON WON  Vd + 'WoN WON  Vd + 'WON “WoN Seunjes [EOISIRIS
uoIIPS1d J9 INoY-T

Bunsa] rdx3Sdv Buiuresy dx3sdv Bunsa] rdx3 vd BuiuresL dx3 vd

Author Manuscript

Author Manuscript

Author Manuscript

Author Manuscript

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2022 July 01.



	Abstract
	Introduction
	Preliminaries
	Glucose Concentration Prediction Model

	Clinical Experiments
	Data Collection
	Physical Activity Experiments (PA Exp.):
	Acute Psychological Stress Experiments (APS Exp.):


	Physical and Psychological Stress Assessment Algorithms
	Physical Activity
	Acute Psychological Stress

	Results
	GC Predictions with Physical Activity Information
	1-Hour-Ahead GC Prediction:
	1.5-Hours-Ahead GC Prediction:
	2-Hours-Ahead GC Prediction:
	4-Hours-Ahead GC Prediction:

	GC Predictions with Physical and Psychological Stress Information
	1-Hour GC Prediction:
	1.5-Hours-Ahead GC Prediction:
	2-Hour GC Prediction:
	4-Hours-Ahead GC Prediction:


	Discussion
	Conclusions
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	TABLE I
	TABLE II
	TABLE III
	TABLE IV
	TABLE V

