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Abstract

Objective: Continuous glucose monitoring (CGM) enables prediction of the future glucose 

concentration (GC) trajectory for making informed diabetes management decisions. The glucose 

concentration values are affected by various physiological and metabolic variations, such as 

physical activity (PA) and acute psychological stress (APS), in addition to meals and insulin. In 

this work, we extend our adaptive glucose modeling framework to incorporate the effects of PA 

and APS on the GC predictions.

Methods: A wristband conducive of use by free-living ambulatory people is used. The measured 

physiological variables are analyzed to generate new quantifiable input features for PA and APS. 

Machine learning techniques estimate the type and intensity of the PA and APS when they occur 

individually and concurrently. Variables quantifying the characteristics of both PA and APS are 

integrated as exogenous inputs in an adaptive system identification technique for enhancing the 

accuracy of GC predictions. Data from clinical experiments illustrate the improvement in GC 

prediction accuracy.

Results: The average mean absolute error (MAE) of one-hour-ahead GC predictions with testing 

data decreases from 35.1 to 31.9 mg/dL (p-value=0.01) with the inclusion of PA information, and 
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it decreases from 16.9 to 14.2 mg/dL (p-value=0.006) with the inclusion of PA and APS 

information.

Conclusion: The first-ever glucose prediction model is developed that incorporates measures of 

physical activity and acute psychological stress to improve GC prediction accuracy.

Significance: Modeling the effects of physical activity and acute psychological stress on glucose 

concentration values will improve diabetes management and enable informed meal, activity and 

insulin dosing decisions.

Index Terms—

Glucose Concentration Prediction; Physical Activity; Acute Psychological Stress; Machine 
Learning; Diabetes

I. Introduction

FREQUENT measurement of glucose concentration (GC) is necessary to monitor and 

prevent diabetes-related complications [1–7]. Continuous glucose monitoring (CGM) 

provides information unattainable by intermittent self-monitoring of blood glucose, such as 

frequent (5-minute sampling time) GC information and its rate of change, proactive alerts 

and alarms for actual or impending glycemic excursions, and feedback for therapeutic 

decisions [5–14]. Accurate predictions of the future GC trajectory offer important 

information for making meal, activity and insulin dosing decisions [9–18]. Although 

accurate predictions of the future GC dynamics are important for effective diabetes 

management, maintaining a high level of GC prediction accuracy is challenging, particularly 

in free-living conditions, since future GC dynamics are affected by scheduled or 

spontaneous physiological and metabolic variations, caused by physical activity (PA) and 

acute psychological stress (APS), in addition to meals and insulin levels. Modeling the GC 

data enabled characterization of the effects of meals, insulin and exercise on future GC 

trajectory after these events have affected GCs and CGM readings [19–21]. Further 

improvement of GC control in people with Type 1 diabetes (T1D) necessitates the estimation 

of the characteristics of glycemic disturbances such as PA [22] and APS by using real-time 

data from convenient wearable devices, and the subsequent integration of the variables 

quantifying these disturbances in GC prediction models [13, 23, 24]. The models that use 

information about such disturbances have the advantage of estimating future GC variations 

before the effects of these disturbances start appearing in CGM values, consequently 

improving the accuracy of the predicted future GCs, and proactively suggesting insulin dose 

decisions that are cognizant of these PA [13, 25, 26] and APS events. Based on signals from 

a wristband device at high frequency, this paper reports the first results of incorporating the 

effects of PA and APS on GC predictions for people with T1D.

Recent publications have underlined the value of incorporating PA information in GC 

prediction models [27, 28], using signals that indicate the start of PA to adjust insulin 

infusions [29, 30] and employing variables computed based on armband signals in 

estimation of GC during exercise to modify control decisions on automated insulin delivery 

[13, 23, 26]. The use of readily measurable biosignals such as heart rate or accelerometer 
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readings have been considered to indicate exercise [29, 30]. In our experience, additional 

biosignals and the variables derived from them enable more accurate GC predictions during 

PA [13, 23, 26]. The diversity in PA makes it difficult to predict glycemic excursions for 

different PA [31, 32]. The GC response to exercise is dependent on the type and intensity of 

the PA [31, 32]. While moderate-intensity PA can reduce GC due to increased glucose 

utilization, high-intensity PA can lead to elevated GC due to increased hepatic glucose 

production [31, 33]. The varied response to different types and intensities of spontaneous PA 

such as running to catch a bus or activities of daily living need to be characterized to 

improve GC regulation in diverse free-living conditions.

Little attention has been paid to incorporating APS to GC predictions [34] and using such 

information in insulin dosing decisions in T1D. Episodes of APS activate the hypothalamic-

pituitary-adrenal axis and the sympathetic nervous system, resulting in the release of stress 

hormones, like adrenalin, noradrenalin, cortisol, glucagon and growth hormone, that affect 

glucose metabolism [35]. Various papers in psychology and neuroscience literature have 

reported APS detection in clinical environments by analyzing hormone samples or with 

sophisticated equipment for collecting physiological signals such as eye movement, skin 

conductivity, skin temperature, and heart rate variability [36–39]. Sensors for rapid and 

accurate measurement of these hormones in free living are not yet available. Hence, 

biosignals from wearable devices that can be used during daily free-living offer an attractive 

alternative for assessing the presence, type and intensity of APS.

The APS-induced transient increase in GC can be misconstrued as carbohydrate intake in 

automated insulin delivery systems, resulting in a bolus insulin infusion. However, the 

transitory increase in GC due to APS may be short-term, and a prompt recovery to the 

normal glucoregulatory state may leave excess insulin in the bloodstream, with a relatively 

longer duration of effect [40, 41]. This increases the risk of hypoglycemia as a result of an 

over-correction for the APS-induced increase in GC. The risk of incorrect insulin dosing 

must be overcome for automated insulin dosing algorithms to increase the time spent in the 

target euglycemic range, particularly in free-living scenarios where myriad disturbances can 

cause the dysregulation of GC [40, 41]. Further complicating the modeling of APS in GC 

prediction models is the lack of conveniently measurable biosignals that are indicative of the 

presence of APS. Hence, features based on physiological measurements such as heart rate 

and electrodermal activity need to be defined to detect, classify and quantify the level of 

various APS occurrences. The possibility of concurrent PA and APS provides additional 

challenges in detecting, discriminating and quantifying the PA and APS events. For example, 

the glycemic effects of PA during training and competition events are different, with the 

divergent responses caused by the presence of APS. Running to catch a bus, driving during 

rush hour, or receiving an alarm while performing house chores could also initiate 

concurrent PA and APS.

The exclusive reliance on CGM data is insufficient to resolve the multitude of disturbances 

affecting the GC and make appropriate corrective actions. Moreover, the use of only a 

limited set of biosignals may also confound the physiological effects of PA with the 

response to APS. Considering the use of this information in automated insulin delivery by an 

artificial pancreas generates additional constraints in the selection of physiological variables 
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that can be used and wearable devices that can be worn continuously under daily free-living 

conditions. Various accurate sensor systems are appropriate in clinical environments, but a 

wristband is one of the few current choices for daily use. It overcomes the limitations of 

intrusive and invasive sampling techniques, which are not feasible for long-term use in 

diverse free-living conditions. Unfortunately, wristbands provide additional challenges such 

as high noise levels and artifacts in signals [24, 42].

Our previous work has used physiological measurements from a wristband to generate 

features and automatically detect the type and quantify the intensity of PA [24]. We also 

leveraged this information to discriminate different types of APS. Recently, we integrated 

these findings to enable the immediate evaluation of concurrent PA and APS, and to 

incorporate an estimate of the perceived APS level [34, 40].

Advances in classifying the type and estimating the intensity of PA and APS, and evaluating 

their concurrent presence, can enable personalized precision medicine by integrating the 

refined physiological assessments with GC information for more effective treatment of T1D. 

However, the mathematical relations between the physiological assessments and the glucose-

insulin dynamics are complex and time-varying. Adaptive modeling can help identify the 

current relationships between the GC data and the quantifiable metrics of PA and APS [24, 

34, 40].

Motivated by the above considerations, in this work we integrate adaptive GC prediction 

models with new features and metrics derived from biosignals to compute the effects of 

diverse PA and APS disturbances on GC predictions [24, 34, 40]. We conducted 34 

experiments involving 12 people with T1D under various types of PA and APS inducements. 

The participants wore an Empatica E4 wristband that is convenient for use in free-living 

ambulatory conditions. The multiple physiological variables measured by Empatica E4 [43] 

capture the effects of PA and APS. A similar Empatica device, the Embrace2 is the only 

FDA-cleared wrist-worn wearable in epilepsy to predict seizures [44] and to evaluate stress 

and emotion. The biosignals from Empatica E4 include blood volume pulse, electrodermal 

activity, skin temperature and accelerometer. Blood volume pulse signals are used to 

estimate the heart rate values in the E4. We use these measurements to generate new 

quantifiable input features for PA and APS. Machine learning techniques are used with these 

variables and features to estimate the type and intensity of the PA and/or APS, and the 

possibly simultaneous presence of AP and APS [24, 34, 40]. The refined features and 

variables for PA and APS are integrated as exogenous inputs in an adaptive system 

identification technique to improve the accuracy of the predicted future GC trajectories. Data 

from the clinical experiments involving PA and APS are used to illustrate the improvement 

in GC prediction accuracy.

II. Preliminaries

A. Glucose Concentration Prediction Model

The GC modeling approach used in this work is the recursive version of the prediction-based 

subspace identification (rPBSID) algorithm [45, 46]. The approach identifies a state-space 

model in innovation form as
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xk + 1 = Akxk + Bkuk + Kkek (1)

yk = Ckxk + Dkuk + ek (2)

where xk ∈ ℝn, yk ∈ ℝ(p), uk ∈ ℝm and ek ∈ ℝ(p) denote the state, output, input and 

innovation term variables, respectively, and A, B, C and D are system matrices with 

appropriate dimensions, and K is the Kalman filter gain.

In the modeling approach, we define stacked inputs and outputs as

yk
(f) = yk

Tyk + 1
T ⋯yk + f − 1

T T

yk
(p) = yk − p

T yk − p + 1
T ⋯yk − 1

T T

Y (f) = yk
(f)yk + 1

(f) ⋯yk + N − 1
(f) T

Y (p) = yk
(p)yk + 1

(p) ⋯yk + N − 1
(p) T

where f and p are user-defined parameters for the future and past horizons, respectively. 

Similarly, we formulate the stacked vectors uk
(f), ek

(f), uk
(p) and ek

(p), and the Hankel matrices 

U(f), U(p), E(f) and E(p).

By iterating the system equations, we can write the system using the Hankel matrices as

Y k
(f) = Γ (f)Xk + H(f)Uk

(f) + G(f)Ek
(f)

(3)

Y k
(p) = Γ (p)Xk − p + H(p)Uk

(p) + G(p)Ek
(p)

(4)

where

Xk = xkxk + 1⋯xk + N − 1
T

Xk − p = xk − pxk − p + 1⋯xk − p + N − 1
T
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and Γ(f) is the extended observability matrix, H(f) and G(f) are two lower triangular Toeplitz 

matrices defined as

Γi = CT CAT ⋯ CAi − 1 T T

Hi =

D 0 ⋯ 0
CB D ⋯ 0

CAB CB ⋯ 0
⋮ ⋮ ⋱ ⋮

CAi − 2B CAi − 3B ⋯ D

Gi =

I 0 ⋯ 0
CK I ⋯ 0

CAK CK ⋯ 0
⋮ ⋮ ⋱ ⋮

CAi − 2K CAi − 3K ⋯ I

with A = Ak − KkCk and B = Bk − KkDk. Furthermore, the state evolution can also be 

expressed as

Xk = ApXk − p + L(p)Zk
(p) (5)

where Z p = Y p T
U p T T

. For a sufficiently large ‘p’, we can consider Ap ≈ 0 and

Xk ≈ L(p)Zk
(p)

(6)

This leads to

Y k
(f) − H(f)Uk

(f) − G(f)Y k
(f) ≈ Γ (f)L(p)Zk

(p) + Ek
(f)

(7)

The rPBSID approach works by estimating matrices H(f) and G(f) by using a vector 

autoregressive with exogenous (VARX) inputs model. The VARX model parameters are then 

used to construct estimates for the H(f) and G(f) matrices and subsequently obtain estimates 

for the system matrices [46–48].

III. Clinical Experiments

A. Data Collection

Clinical experiments involving 12 subjects with T1D (Table I) are conducted at the College 

of Nursing, University of Illinois at Chicago. The experiments were approved by the 

Institutional Review Board. Dexcom G5 CGM System [49] and E4 wristband are used in 

experiments. The E4 wristband has four sensors: electrodermal activity-sensor to measure 
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the skin conductance (galvanic skin response), photoplethysmogram to measure the blood 

volume pulse, temperature sensor to measure skin temperature, and a three-axis 

accelerometer to measure movements [43]. The blood volume pulse data is used to derive 

heart rate and heart rate variability. The data collection activity in the experiments is divided 

into two subcategories: experiments for PA and APS (with APS inducement either alone or 

concurrent with PA). All experiments were open-loop, with subjects regulating their GC by 

manually adjusting their insulin infusions.

1) Physical Activity Experiments (PA Exp.): Twenty-four PA experiments involving 

12 subjects with T1D are conducted (Table I). The duration of the experiments ranges 

between 6 to 9 hours. The experiments include at least one exercise session: treadmill run, 

stationary bicycle and resistance exercise. The exercise sessions are conducted more than 

one hour before or more than two hours after meal consumption. The GC measurements 

(CGM and self-monitoring of blood glucose during exercise), insulin administered, meal and 

snack information, PA information, and demographic information are recorded (Table I). 

The duration of treadmill and stationary bicycle exercises are fixed to 30 minutes. In 

addition to the structured exercise, subjects spent time sitting, reading books and watching 

videos. The experiments also involved activities of daily living through simulated household 

chores like doing laundry, cleaning or vacuuming. The treadmill exercise is conducted at 

various speeds in the range of 3.0 to 6.0 mph, which is calculated based on the 60 to 70% of 

maximum VO2 test, in addition to warm up and cool down periods (treadmill speeds below 

1.7 mph). The stationary bicycle exercise is conducted with intensities in the range of 50 to 

150 W. The intensity of treadmill and stationary bicycle exercises is determined for each 

individual subject according to the VO2 reserve method. After determining the maximum 

VO2 through the Bruce protocol treadmill test [50], the target intensities of the treadmill and 

stationary bicycle exercises are set between 60% to 70% of the maximum VO2. The 

resistance exercise sessions begin with a warm-up activity involving running on the treadmill 

at low speeds, followed by four sets of eight repetitions of dumbbell chest press, lateral pull 

down, seated row, dumbbell shoulder press, leg extension or leg curl. The subjects rest 

between sets for approximately one minute. The duration of the resistance exercise ranges 

between 30 to 120 minutes.

2) Acute Psychological Stress Experiments (APS Exp.): Ten APS experiments 

with eight subjects with T1D (Table I) are conducted. There are several types of APS with 

varying impact on GC, ranging from the trauma of a traffic accident or news of job 

termination to taking exams, public speaking, and playing videogames. We focused on two 

types of APS: mental stress (MS) and emotional anxiety stress (EAS). CGM and self-

monitoring of blood glucose data, insulin dosing, meal and snack information, and 

demographic information are recorded (Table I). The APS experiments are conducted at 

least two hours before or after any meals. Five different types of APS inducement are 

considered after consulting with psychologists and medical experts and conducting an 

exhaustive literature review for APS inducements techniques. MS inducement involves 

subjects solving mental arithmetic tests during a half-hour period, such as the multiplication 

or subtraction of numbers [51–53]. This is the only MS inducement used in our study, and 

the other four types are used for EAS inducement. Video games are one form of stress 
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inducement method for EAS, with subjects playing video games for a half-hour period 

during the experiments [54, 55]. Trier social stress test is used for APS inducement, which 

involves public speaking and mental arithmetic lasting about 20 mins [56–58]. Stressor 

experiments induce APS and frustrate subjects by hindering or obstructing the completion of 

routine tasks by posing nuanced obstacles. The stressor experiments are conducted during 

sedentary state, daily activities or resistance exercise activities. Most APS inducements in 

this work, including video games, mental arithmetic and stressor, are conducted during 

structured exercise, such as playing computer games during treadmill exercise or mental 

arithmetic during stationary bicycle exercise, which augments the experiments with cases 

where the effects of PA and APS are confounded.

IV. Physical and Psychological Stress Assessment Algorithms

The PA experiments are used to classify the physical state (PS) and estimate the energy 

expenditure (EE), which are then incorporated into an adaptive GC prediction model (Fig. 

1). The computations include the personalized plasma insulin concentration (PIC) estimation 

[59, 60] and meal effect estimation by using CGM and PIC values [19]. The APS 

experiments are used to derive an APS index and incorporate it in the GC prediction model 

(Fig. 1). The additional inputs for PA and APS are derived from the biosignals of E4 [43].

A. Physical Activity

The collected biosignals are preprocessed by using various filtering and artifact removal 

algorithms to improve the signal quality and remove artifacts and noise [24, 30]. The 

cleaned and preprocessed biosignals are used to generate feature variables that enhance the 

accuracy of the machine learning algorithms [24, 34, 40]. The feature variables are derived 

by using mathematical or statistical computations with the cleaned data. The feature 

variables are used with various supervised machine learning algorithms to classify the PS 

and estimate the EE. We consider k-nearest neighbors, linear discriminant analysis, decision 

trees, ensemble learning, support vector machines, Gaussian process regression, and deep 

neural networks with long short-term memory [24, 34, 40]. Since both PA and APS can be 

present, the use of heart rate or accelerometer alone may not provide accurate results. A 

computed variable such as EE and various feature variables are more effective in detecting, 

discriminating and characterising PA and APS. Equations that relate the measured variables 

to EE are developed using data collected simultaneously through the gold standard indirect 

calorimetry method with VO2 mask [61] and wristband data. The mean absolute error 

(MAE) values are calculated for the estimated EE compared to the indirect calorimeter 

measurements for the different machine learning algorithms for the testing dataset [24]. The 

deep neural networks with long short-term memory performed better than the other 

algorithms with an MAE of 0.25 MET [24]. PS classification accuracy is evaluated with 

different algorithms and deep neural networks with long short-term memory achieved a 

94.8% with best testing classification accuracy [24].

The posterior probabilities (score values), denoted by P(sk,xk) for the PA class sk given the 

data xk, obtained by the PS classification algorithm are used to determine the additional 

input variable to the GC model. The posterior probabilities are not suitable for direct use as 
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an input variable in the GC model because diverse PA affect glycemia to different degrees. 

Therefore, the posterior probabilities need to be integrated with a framework that recognizes 

the relative magnitude of glycemia effects for the various PA. A fuzzy logic algorithm 

comprised of fuzzification, rule-table design, and defuzzification stages is used to translate 

the posterior probabilities to the input variable [62]. The posterior probabilities are fuzzified 

using triangle fuzzy membership functions. The fuzzy membership functions are separated 

into five equal intervals to represent the different magnitudes of the glycemic effects for 

various PA, including very low [0, 0.2], low [0.2, 0.4], medium [0.4, 0.6], high [0.6, 0.8], 

and very high [0.8, 1] glycemic effects.

The rule-table is established through knowledge of the glycemic effects of the classified PA 

[25, 31–33] (Table II). The treadmill and stationary bicycle exercises are associated with the 

high output rule, as the moderate-intensity aerobic activity causes a decrease in GC. A high 

posterior probability of daily activities is associated with the medium output rule, which 

indicates a slight decrease in GC. High probabilities for resistance exercise and sedentary 

state are set to the low output rule, which indicate no significant changes in the GC. 

Therefore, the rules translate the highest posterior probability of the PS to the corresponding 

effect on GC, with the high effect rule associated with a rapid decrease in GC and a low 

effect rule associated with a small variation or steady GC value. The weighted average 

defuzzification method is used to determine the final fuzzy model output to the expected GC 

trajectory (Fig. 2) [62].

The fuzzy PS effect model enables the GC model to characterize the varying glycemic 

effects of the different PA. This is necessary since EE can be relatively high during both 

resistance exercise and aerobic PA, like treadmill and stationary bicycle, yet the glycemic 

effects are different. Relying solely on EE can result in less accurate predictions of GC. The 

fuzzy model converts the five PA class posterior probabilities by multiplying the 

probabilities by the associated rule system. The output of the fuzzy model is normalized and 

multiplied by the estimated EE, which is incorporated into the GC prediction model (Fig. 1). 

This enables the GC model to consider both the PS and the PA intensity in determining the 

glycemic effects of the PA.

The inputs to the GC prediction model are based on two groups of cases (Table III): (1) 

nominal model that considers only meal and insulin information (Nom.); and (2) meal, 

insulin and PA information, including EE and PS classification (Nom. + PA information) 

(Fig. 1). The insulin information incorporated as PIC estimates (Fig. 1) [60]. Demographic 

information is used to personalize the model (Fig. 1). A delay is incorporated in some of the 

GC model inputs to better represent the physiological time delay in the effect of PA on GC, 

with a delay of 25 mins (for 1-hour prediction) (five sampling times) (Table IV) considered 

for the EE and PS information. The output is the predicted GC value. Insulin and meal effect 

sensitivity and delay parameters computed in previous work [23, 60] are used (Table IV). PA 

sensitivity and delay parameters are determined by a genetic algorithm using a random set of 

selected experiments (training set). Optimized values are fixed and used for measuring the 

performance of the algorithms with the testing data set (Table IV).
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B. Acute Psychological Stress

The E4 [43] is used to detect, classify and quantify the level of APS experienced by a 

subject. We consider two types of APS, MS and EAS, for analyzing the effects of PA and 

APS, and we determine posterior probabilities for these two types of stress [34, 40]. We 

compute the score value for the type of APS (MS and EAS) during simultaneous PA 

(sedentary state, treadmill run exercise, and stationary bike exercise), which yields a total of 

six scenarios. The score value associated with likeliest PA type is used to find the 

accompanying MS and EAS score values, denoted P(mk ∣ x) as the probability of MS or 

EAS mk given the data x. Prior research [34, 40, 41, 63–65] indicates that EAS increases the 

GC, though intense MS can result in increased glucose consumption due to the mental 

burden of the tasks. To handle the differences in GC trajectories caused by the type of APS, 

we consider the difference in the score values between MS and EAS. The difference, dk = 

P(m1 ∣ x)−P(m2 ∣ x) is used as an additional input to the GC prediction model.

The incorporation of the APS in the GC prediction model is evaluated by using four cases 

(Table III): (1) nominal model without any APS or PA estimates as additional inputs (Nom.); 

(2) with PA estimates as additional inputs but without any APS estimates (Nom. + PA 

information); and (3) with PA and APS estimates as additional inputs (Nom. + PA + APS 

information) (Fig. 1). Retrospective data from the 10 open-loop experiments are used to 

assess the efficacy of the APS input to prediction accuracy of the GC model. The delay in 

the glycemic response to APS is optimized and found to be 3 sampling times, or 15 mins 

(Table IV), which pertains to the additional input indicating APS (dk). APS sensitivity and 

delay parameters are determined by a genetic algorithm using randomly selected training 

experiments. The PA delay and sensitivity parameters optimized for the Nom. + PA Info 

model are retained and used. Insulin and meal effect sensitivity and delay parameters are 

also kept the same (Table IV) [23, 24, 59, 60].

V. Results

In this section, we first report the efficacy of including the PA information in the GC 

prediction model. Then, we report the efficacy of including the APS information to the GC 

model by using the experiments that involve APS inducement with concurrent PA, which 

yields a GC prediction model with PS, EE, and APS estimates as additional inputs.

A. GC Predictions with Physical Activity Information

The PA clinical experiments are analyzed for three types of PA (sedentary state, treadmill 

run exercise, and stationary bike exercise) and the results are reported as the mean absolute 

error (MAE) for three different type of prediction horizons: 1-hour, 1.5-hour, and 2-hour 

prediction horizons (Table V). We compare the results of the nominal model, which predicts 

the future glucose with only glucose and insulin information, to the nominal model + PA 

information, which incorporates an additional input representing the type and intensity of the 

PA.

1) 1-Hour-Ahead GC Prediction: The nominal model (without incorporating PA 

information) has the worst performance in 21 of the 24 experiments (12 training and 12 
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testing experiments), while the nominal model + PA information (with information of the 

type and intensity of PA incorporated in the GC predictions) has the best performance in 21 

experiments (Table V). The average MAE of 12-step-ahead (one-hour-ahead) CGM 

prediction results for testing data improves from 35.1 mg/dL for the nominal model to 31.9 

mg/dL for the nominal model + PA information. Across all the PA experiments (PA Exp.), 

incorporating PS and EE estimates (nominal model + PA information) improves the CGM 

prediction accuracy for training and testing by 28.5% and 10.3%, respectively. We evaluate 

the statistical significance of the results. Kurtosis and skewness analysis show that data are 

not normally distributed. The Wilcoxon test is used to compare the GC prediction results 

[66], and the improvement in prediction accuracy is found to be statistically significant for 

both training and testing data at the 95% confidence interval, with p-values of 0.001 and 

0.01, respectively.

2) 1.5-Hours-Ahead GC Prediction: The nominal model has the worst performance in 

18 of the 24 experiments, while the nominal model + PA information has the best 

performance in 18 experiments (Table V). The average MAE of 16-steps-ahead CGM 

predictions for testing data (Te) improves from 51.8 mg/dL for the nominal model to 49.5 

mg/dL for the nominal + PA model. Across all the PA experiments (PA Exp.), incorporating 

PS and EE estimates (nominal + PA information) improves the CGM prediction accuracy for 

training and testing by 19.2% and 1.8%, respectively. The improvement in the prediction 

accuracy is found to be statistically significant for the training data (p-value: 0.02), though 

the improvement using the testing data results is not statistically different (p-value: 0.4).

3) 2-Hours-Ahead GC Prediction: The nominal model has the worst performance in 

15 of the 24 experiments, while the nominal model + PA information has the best 

performance in 15 experiments (Table V). The average MAE of 24-steps-ahead CGM 

prediction results for testing data improves from 125.2 mg/dL for nominal model to 120.7 

mg/dL for nominal + PA model. Across all the PA experiments (PA Exp.), incorporating PS 

and EE estimates improves the CGM prediction accuracy for training and testing by 8.3% 

and 3.4%, respectively. The improvement in the prediction accuracy is found to be 

statistically significant for the training (p-value: 0.01), though the improvement using the 

testing data set is not statistically different (p-value: 0.6).

4) 4-Hours-Ahead GC Prediction: There is no improvement in the prediction 

accuracy for the nominal model + PA information relative to the nominal model possibly due 

to the use of the time-varying recursively identified model. The time-varying linear model 

updates the model parameters at each sampling time to increase the accuracy of short-term 

predictions for making insulin dosing decisions. Although a linear time-invariant model 

would have some improvement with the addition of PA information, it would not have good 

predictions without meal information being provided by users, while our proposed 

recursively identified models do not require any announcements from users for meals.

B. GC Predictions with Physical and Psychological Stress Information

The 10 clinical experiments with APS inducement are analyzed by considering three cases: 

the nominal model, the nominal model + PA information, and the nominal model + PA & 
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APS information. The statistical details of the GC prediction results are presented as APS 

experiments in Table V.

1) 1-Hour GC Prediction: The nominal model + PA & APS information case has better 

GC prediction accuracy compared to the nominal model, with 8 experiments showing an 

improvement in GC prediction accuracy out of the 10 experiments. The proposed method 

yields GC prediction accuracy (average MAE) with testing data of 14.2 mg/dL for the 

nominal model + PA & APS information, compared to 16.9 mg/dL for the nominal model, 

which is an improvement of 15.7% in prediction accuracy.

Since the CGM prediction results are not normally distributed based on skewness and 

kurtosis criteria, a we used Friedman’s statistical test for the comparison of three matched 

groups [66]. The case of the nominal model + PA & APS information results in a slight 

improvement in GC prediction accuracy relative to the nominal model + PA information. 

Both nominal model + PA information and nominal model + PA & APS information have a 

statistically significant improvement relative to the base nominal model (training data set) 

with a p-value of 0.006 (Table V). Training data set results are not statistically significant, 

with the p-value as 0.09, which is slightly greater than the significance threshold (0.05), 

although there is 11.9% improvement in the MAE.

2) 1.5-Hours-Ahead GC Prediction: The nominal model + PA & APS information 

case has better GC prediction accuracy compared to the nominal model, with 8 experiments 

showing an improvement in GC prediction accuracy out of the 10 experiments. The 

proposed method yields GC prediction accuracy (average MAE) with testing data of 23.8 

mg/dL for nominal model + PA & APS information, compared to 25.1 mg/dL for the 

nominal model, which is an improvement of 3.5% in prediction accuracy. Both testing and 

training data set results are not statistically significant, with the p-values as 0.07 and 0.2, 

which are slightly greater than the significance threshold (0.05), although there is 3.5% 

improvement in the MAE.

3) 2-Hour GC Prediction: The nominal model + PA & APS information case has better 

GC prediction accuracy compared to the nominal model, with 8 experiments showing an 

improvement in GC prediction accuracy out of the 10 experiments. The proposed method 

yields GC prediction accuracy (average MAE) with testing data of 44.0 mg/dL for nominal 

model + PA & APS information, compared to 43.7 mg/dL for the nominal model, which 

equates to no improvement in prediction accuracy.

4) 4-Hours-Ahead GC Prediction: The nominal model + PA & APS information case 

did not have better GC prediction accuracy compared to the nominal model for 4-hour-ahead 

GC predictions. This is again due possibly to the use of recursively identified models that 

prioritize accurate short-term predictions, the benefits of which overlap with the 

improvements due to the additional inputs at longer prediction horizons.

Sevil et al. Page 12

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



VI. Discussion

Incorporation of PA assessment information using PS and EE estimates for one-hour-ahead 

prediction horizon improves GC prediction accuracy for both the training and testing 

experiments during the periods of induced APS (APS Exp.), by 15.7% and 12.4%, 

respectively. These experiments also contain concurrent stress inducements. Incorporation of 

both PA and APS estimates yields a modest 3.3% improvement in GC prediction accuracy in 

comparison to the model incorporating only PA. The main reason for this marginal 

improvement, which reduces as the prediction horizon increases, is the low intensity of the 

APS inducements permitted by the IRB in clinical experiments. The resulting magnitude of 

the maximum change in GC is not very high and the duration of the change is short. 

Consequently, Their effects are not sustained in the glucose metabolism for 1.5 or 2 hours. 

Hence, the improvement in GC prediction is reduced as the prediction horizon is increased. 

Moreover, the subjects involved in APS inducement experiments are generally aware of the 

controlled laboratory conditions under which the experiments are conducted, and this may 

reduce the response of some subjects to the stress inducements. More significant APS such 

as getting hit by a car or participating in highly competitive races have more significant GC 

variations [33, 67], though the latter is also influenced by the high-intensity of the PA. A 

fellow researcher reported being hit by a car violating traffic rules, and the incident resulted 

in a large increase in GC. The GC was about 150 mg/dL before the accident, and the GC 

values increased to the 290–300 mg/dL range after the accident, even though there was no 

food consumption during this period. Olympic swimmer Gary Hall, Jr. has T1D and he 

reported that his blood glucose can spike from 100 mg/dL to 300 mg/dL in the 21 seconds of 

a 50 meter race [67].

The results illustrate that PA effect on GC is significant and relatively more influential than 

APS (for the APS inducements in our clinical experiments), and consideration of APS 

improves prediction accuracy. The experiments also show the more pronounced effects of 

PA are easier to capture in the GC prediction models relative to the effects of APS. The PA 

effects are typically more pronounced and longer in duration, as glucose is depleted and 

long-term effects of changes in insulin sensitivity result in prolonged decrease in CGM 

values. Under more stressful scenarios encountered in extremely traumatic or stressful 

situations, the glycemic effects of APS will be more significant and the model is anticipated 

to perform better.

The results of one experiment from APS Exp., testing data set is illustrated in Fig. 3. It 

allows the comparison of contributions of both PA and APS effects on GC prediction 

accuracy. The red (dashed line) curve (nominal model) has the poorest performance with 

MAE for predictions of 38.0 mg/dL, which could not track the blue curve (real CGM data, 

solid line) especially during APS inducement and PA. The purple curve (dotted line) has the 

best performance, taking into account both APS and PA information, which reduces the 

MAE to 12.9 mg/dL.

We leveraged the convenience and practicality of a wristband device that measures multiple 

physiological variables to detect and discriminate among the individual or simultaneous 

concurrent incidences of PA and APS [24, 25]. We chose a wristband because it is a device 
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accepted by most people for use in free-living conditions and during diverse ambulatory 

activities. The additional information on the type and intensity of PA and APS is 

incorporated in GC prediction models to improve the prediction accuracy relative to 

conventional models that do not incorporate PA and APS information as additional inputs in 

making future GC predictions. The multiple physiological measurements are used to train 

machine learning models that generate informative signals on the type and intensity of PA 

and APS. Signal processing algorithms are used to remove the noise and motion artifacts 

from the measured physiological measurements before developing the models. The signal 

processing algorithms are also implemented on-line to process the measurements before 

using signals with the developed models to estimate the PA and APS information throughout 

daily life. We evaluated the effects of signal processing on improving the accuracy of the 

machine learning algorithms with testing data sets. The best accuracies with the raw signals 

are 98.6% and 96.2% for the classification of PS and APS, respectively. The classification 

accuracies improve to 99.3% and 98.3%, respectively, when the filtered signals are used.

Improving GC control in people with T1D is essential to realize numerous health benefits, 

yet achieving tight glycemic control is challenging because of the myriad disturbances 

affecting glycemia. Various disturbances like meals, PA, and APS need to be considered 

when making insulin dosing decisions. The performance of automated insulin delivery 

systems can be suboptimal if the various disturbances are not considered in estimating GC 

and computing the insulin doses. Advanced ML algorithms are needed to ensure that the 

disturbances are automatically evaluated and used for making insulin dosing decisions. To 

achieve a higher level of automation without requiring subjects to manually announce meal 

information, meal detection and carbohydrate estimation algorithms from CGM and insulin 

information is gaining popularity. However, insulin dose adjustments for structured exercise 

is often done manually, and spontaneous PA and effects of APS are usually not considered. 

The work reported in this paper provides a strong argument on the feasibility of using easy-

to-measure biosignals to extract valuable and accurate information about the presence and 

characteristics of PA, APS and their concurrent occurrence, and using this information in 

improving the GC prediction accuracy.

Our work uses wristband biosignals to automatically detect and discriminate PA types, and 

evaluate the intensity of the PA, and predict the future glycemic effects of the PA [58–60]. 

APS is another glycemic disturbance that is not typically directly considered in automated 

insulin dosing decisions. We developed an approach to automatically assess the presence of 

APS, and the possible simultaneous concurrent PA, and subsequently incorporate the PA and 

APS information in making future GC predictions. The proposed algorithms will enable 

automated insulin dosing algorithms to explicitly consider psychological and physiological 

states in the insulin dose calculations without requiring users to manually provide 

information on the disturbances. The proposed algorithms will yield tighter glycemic control 

in people with T1D as they go about their diverse daily activities by simultaneously 

considering PA and APS in the future GC predictions. The proposed approach will also 

enable athletes with T1D participating in training or competitive events to better manage 

their glucose levels through simultaneously considering the effects of both PA and APS on 

the future GC values.

Sevil et al. Page 14

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



VII. Conclusions

The biosignals collected from a convenient-to-use wristband can generate new quantifiable 

input features for PA and APS. Machine learning algorithms can estimate the type and 

intensity of the PA, the presence and characteristics of APS, and the concurrent presence of 

PA and APS. The information determined for PA and APS can be integrated as exogenous 

inputs in an adaptive system identification technique to enhance GC estimation accuracy. 

Data from clinical experiments are used to demonstrate the improvement in GC prediction 

accuracy when explicitly considering PA and APS information in making GC predictions.
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Fig. 1. 
Incorporation of Psychological and Physiological State Estimates to GC Prediction Model
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Fig. 2. 
Physical State (PS) Effect Estimation
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Fig. 3. 
Illustration of GC Prediction Improvement by Using PA and APS Information (APS Exp.: 

Testing Data) (1-hour GC Prediction)
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TABLE II

Rule-Table for Fuzzy Logic Algorithm (Samples of Some Important Rules) (SS: Sedentary State, DA: Daily 

Activities, RE: Resistance Exercise, TR: Treadmill Exercise, BK: Stationary Bike)

SS DA RE TR BK Output Rule Indication of the GC Effect

High Low Low Low Low Low Steady/Slight Variation

Low Low High Low Low Low Steady/Slight Decrease

Low High Low Low Low Medium Steady/Slight Variation

Low Low Low High Low High Sharp Decrease

Low Low Low Low High High Sharp Decrease
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TABLE III

Data Collection and Separation

Inducements ✔ - present, ✘ - absent Information used in Addition to CGM and Insulin Pump

Case Meal PA APS PS EE APS

PA Exp. with Nom. ✔ ✔ ✘ ✘ ✘ ✘

PA Exp. with Nom. + PA ✔ ✔ ✘ ✔ ✔ ✘

APS Exp. with Nom. ✔ ✔ ✔ ✘ ✘ ✘

APS Exp. with Nom. + PA ✔ ✔ ✔ ✔ ✔ ✘

APS Exp. Nom. + PA + APS ✔ ✔ ✔ ✔ ✔ ✔
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