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Introduction

Approximately 80% of newborns worldwide have some degree of hyperbilirubinemia and 

jaundice.1 Severe cases of hyperbilirubinemia can progress to kernicterus, leading to 

permanent developmental disorders. Several risk factors contribute to hyperbilirubinemia 

and kernicterus, including G6PD deficiency, which is one of the most common human 

enzymopathies. In the developing world, lack of access to common treatments for 

hyperbilirubinemia, along with a high rate of G6PD deficiency, leads to high incidence of 

kernicterus. Below, we highlight the need for a novel therapy to prevent kernicterus, and 

discuss the pharmacological activation of G6PD as a promising therapeutic strategy.

Hyberbilirubinemia and kernicterus

Hyperbilirubinemia results from increased bilirubin production coupled with inefficient 

bilirubin excretion. Hemolysis and subsequent heme breakdown produces bilirubin, which 

can be conjugated and excreted in the liver. However, lower liver function in newborns leads 

to reduced bilirubin removal and increased levels of serum bilirubin.

Low to moderate levels of serum bilirubin (<20 mg/dL) are non-toxic and can be reduced by 

non-invasive treatment such as phototherapy, which uses light in a narrow wavelength band 

with a peak around 460-490 nm to break down bilirubin into excretable byproducts. In cases 

of severe hyperbilirubinemia, exchange transfusion is used to reduce bilirubin concentration 

in the blood. Other therapies, less commonly used, include intravenous immune globulin 

(mechanism of action unknown) and pharmacologic therapies to reduce bilirubin production 

or increase bilirubin conjugation.2
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If severe hyperbilirubinemia is left untreated, bilirubin that crosses the blood-brain barrier 

can rise to toxic levels in the brain, leading to acute bilirubin encephalopathy (kernicterus). 

Kernicterus is characterized by lethargy, decreased feeding, high-pitched cry, fever, seizures, 

and even death. Up to 84% of infants with kernicterus will develop chronic bilirubin 

encephalopathy, characterized by permanent movement disorders, mental retardation, and 

hearing loss.3

The incidence of kernicterus is difficult to estimate due to delayed diagnosis, an error in the 

diagnosis code, under-reporting, or lack of reporting in third-world countries.4 The 

prevalence of severe hyperbilirubinemia is estimated to be 2-45 per 100,000 births, and of 

kernicterus 0.4-2.7 per 100,000 births in developed countries.5 The incidence of kernicterus 

in developing countries is higher due to a variety of factors, such as genetic differences, 

prematurity, low birth weight, underfeeding, and sepsis.5,6

Glucose-6-phosphate dehydrogenase (G6PD) deficiency

G6PD deficiency is one of the most common human enzymopathies, estimated to affect 400 

million people worldwide.7 The deficiency is caused by single nucleotide polymorphisms 

(SNPs) leading to single amino acid changes in the protein glucose-6-phosphate 

dehydrogenase (G6PD). Over 400 SNPs, responsible for 160 different amino acid changes, 

have been observed in G6PD deficiency.8,9 These mutations can cause deficiency of varying 

severity, and are classified into four clinical categories (Table 1). The majority of G6PD 

deficiency can be accounted for by a few common and relatively mild (Class II or III) 

mutations, while severe (Class I) mutations are more rare.10 As G6PD is X-linked, 

heterozygous females can carry severe mutations and remain symptomless, whereas 

hemizygous males with Class I mutations suffer from chronic nonspherocytic hemolytic 

anemia (CNSHA).11,12 Class II and III mutations lead to episodes of hemolytic anemia after 

stressors such as ingestion of fava beans (favism), ingestion of certain prescription drugs, or 

infection.

Recent completion of the 1000 Genomes Project13 has allowed us to update the estimation 

of the prevalence of G6PD deficiency (Fig 1). The 1000 Genomes Project sequenced the 

entire genomes of ~3,500 individuals from five main human populations, revealing the 

presence of 22 single mutations and 5 double mutations in the G6PD protein. The majority 

of mutations were Class III, with few Class II and no known Class I mutations observed. 

Extrapolation of these numbers using data from the 2015 Population Reference Bureau14 

estimates that 7.6% of the world population, or 560 million people, carries a mutated G6PD 

allele. On average, weighted by the world population distribution, 5.3% of males have G6PD 

deficiency.

G6PD deficiency increases the risk of neonatal hyperbilirubinemia and kernicterus

Infants with G6PD deficiency are significantly more likely to develop hyperbilirubinemia;15 

a recent meta-analysis of five studies including over 20,000 subjects found that G6PD-

deficient infants are almost four times more likely to develop hyperbilirubinemia and three 

times more likely to receive phototherapy compared to G6PD-normal infants.16
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Moreover, G6PD-deficient infants are more likely to develop kernicterus. In the United 

States, 20% of infants who develop kernicterus have G6PD deficiency, compared to an 

estimated 4-7% prevalence of G6PD deficiency in the average population.17,18 Of infants 

with kernicterus, 15% of those with G6PD-deficiency died, compared to 1% mortality rate in 

the G6PD-normal infants.18 A summary of kernicterus and G6PD deficiency in other 

countries is summarized in Table 2. Enrichment of G6PD deficiency in kernicterus is seen in 

almost all cases.

Interestingly, African-American neonates exhibit lower peak levels of serum bilirubin 

compared to Caucasian neonates, yet are more likely to develop kernicterus after discharge 

from the hospital, accounting for 25% of all the kernicterus cases in the USA.19 As G6PD 

deficiency is highly common in African-Americans (up to 21% of males in certain regions), 

this suggests that G6PD-deficient neonates develop signs of kernicterus at lower levels of 

serum bilirubin than G6PD-normal neonates.

In many Asian, African, Mediterranean, and Middle Eastern countries, where G6PD 

deficiency is common, all newborns are screened for G6PD deficiency. This has been 

associated with reduction of the instance of severe hyperbilirubinemia and kernicterus in 

several countries. In regions where G6PD deficiency is historically less common, an increase 

in global population movement has raised the question of whether G6PD deficiency 

screening should be implemented everywhere.17

How does G6PD deficiency contribute to kernicterus?

G6PD is the rate-limiting enzyme in the pentose phosphate pathway, catalyzing the 

oxidation of glucose-6-phosphate to 6-phospho-gluconate while reducing NADP+ to 

NADPH. NADPH then fuels the regeneration of reduced glutathione (GSH), which in turn 

neutralizes reactive oxygen species (ROS) (Fig. 2). G6PD is a major source of NADPH, 

along with mitochondrial enzymes isocitrate dehydrogenase and malic enzyme.20 However, 

in erythrocytes, which lack mitochondria, G6PD is the sole source of NADPH and therefore 

plays a critical role in protection against ROS. Indeed, Class I G6PD mutations cause 

CNSHA due to lack of protection against ROS in red blood cells. Similarly, G6PD 

deficiency in infants leads to an increase in hemolysis and subsequent rise in serum bilirubin 

levels from heme breakdown, and partially explains the higher prevalence of 

hyperbilirubinema in G6PD-deficient babies.

The mechanism by which G6PD deficiency contributes to kernicterus is less well 

understood.21 Unconjugated bilirubin accumulates in the brain, specifically in neurons, 

neuronal processes, and microglia.22 A high rate of hemolysis may cause serum bilirubin to 

be produced more quickly than it can be conjugated or diffuse into skin and other body 

tissues; during this spike in which serum bilirubin concentrations are higher than the 

diffusion threshold, bilirubin penetrates the blood-brain barrier and enters brain cells.23 

Furthermore, because bilirubin is lipophilic, it preferentially accumulates in fatty tissue and 

therefore does not diffuse out of the brain even at high concentrations.

Bilirubin toxicity begins at the cell membranes, as bilirubin is lipophilic and is highly 

concentrated in membrane compartments.24 This bridges membrane permeability, leads to 
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lipid peroxidation, and inhibits the functions of membrane-bound proteins, such as ATPases.
25 Similarly, bilirubin also targets mitochondrial membranes, leading to disruption of the 

electron transport chain and membrane-bound proteins, which in turn results in 

mitochondrial swelling, membrane permeability, depolarization, cytochrome c release and 

cell death by apoptosis and necrosis.26–30

Bilirubin itself has antioxidant properties, yet generation of ROS is a hallmark of bilirubin 

toxicity in the brain.30–32 At high bilirubin concentrations, increased production of 

superoxide radical anion,33 depletion of reduced glutathione (GSH), and increase in the 

oxidized disulfide form of glutathione (GSSG) are observed.34 High concentrations of ROS 

lead to protein oxidation, lipid peroxidation, and DNA damage, which activates pathways 

signaling for neuroinflammation, cell cycle arrest and apoptosis.21,35 In G6PD-deficient 

infants, kernicterus and increased bilirubin-induced neurotoxicity can be partially attributed 

to the lack of GSH regeneration due to decreased G6PD activity.

In general, the brain is sensitive to damage from increased ROS because of its high 

utilization of oxygen and high concentration of oxidizable polyunsaturated fatty acids.36 

Additionally, infants (especially pre-term) have lower levels of antioxidant enzymes and 

scavengers such as vitamin E.37–39 Furthermore, the developing brain exhibits very low 

mitochondrial antioxidant activity and relies primarily on cytoplasmic enzymes (such as 

G6PD) to maintain redox homeostasis.36

Although the mechanism of bilirubin-induced neurotoxicity is not completely understood, it 

is clear that G6PD deficiency contributes to kernicterus via at least two mechanisms: 

initially, through increased hemolysis-induced spike in serum bilirubin levels and subsequent 

accumulation of bilirubin in the brain, and secondly, by reduced buffering capacity against 

bilirubin-induced ROS (Fig. 3). This second mechanism may explain why G6PD-deficient 

infants develop kernicterus even at lower levels of serum bilirubin.

How do we prevent kernicterus?

The incidence of kernicterus has risen in recent years due to a variety of factors.5,40,41 

Infants are often discharged from the hospital within 24-48 hours of birth, whereas bilirubin 

levels often peak four to five days after birth; lack of proper monitoring at home allows the 

development of kernicterus, which might have otherwise been prevented if the infant were to 

remain at the hospital.42 Increasing popularity of breastfeeding has also contributed to 

hyperbilirubinemia and kernicterus.40,43

In developing regions, access to phototherapy and exchange transfusions is often limited.44 

Even in developed nations, despite these simple and accessible treatments, up to 6.6% of 

G6PD-deficient babies will develop kernicterus45 and 12-50% of G6PD-deficient infants 

with kernicterus will die.46 Especially in cases where an acute hemolytic event in G6PD-

deficient infants triggers rapid rise of bilirubin concentration in the brain, kernicterus may be 

impossible to prevent by conventional treatments.47 Furthermore, exchange transfusion leads 

to adverse events in 5% of infants, and death in 0.4% of infants.48
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There is a clear need for a novel therapy to prevent kernicterus and its complications, 

especially in G6PD-deficient newborns. Below, we propose possible approaches to treat or 

prevent kernicterus.

Strategies to reduce serum bilirubin levels—One approach is to reduce the amount 

of circulating bilirubin by increasing bilirubin conjugation, increasing the binding capacity 

of albumin for serum bilirubin, or by binding bilirubin with an exogenous therapeutic agent 

before it can cross the blood-brain barrier. Phenobarbital increases expression of UGT1A1, 

which enhances bilirubin conjugation in the liver, and has been shown to reduce peak serum 

bilirubin levels. However, the use of phenobarbital is no longer recommended due to its slow 

onset of effect, long duration of effect, and ineffectiveness when given in the first 12 hours 

of life.49

Previously, therapeutic attempts to increase binding of bilirubin by albumin via a small 

molecule have been unsuccessful.50,51 The normal range of bilirubin concentration in the 

blood is 6 mg/dL (102 uM), and at least 25 mg/dL (427 uM) in cases of severe 

hyperbilirubinemia.42 With this extremely high concentration of circulating bilirubin, a 

therapeutic bilirubin-binding agent would need to reach an unreasonably high concentration 

in the blood in order to have a physiologically significant effect.

Treatment with antioxidants—Major bilirubin toxicity stems from GSH depletion and 

imbalanced redox equilibrium. Although bilirubin induces upregulation of genes involved in 

GSH homeostasis, NADPH homeostasis, and antioxidant defense,52,53 the temporal delay in 

upregulation still allows ample time for spikes in bilirubin-related ROS to exert neuronal 

damage. Studies have shown that levels of antioxidant vitamins A, C, and E are reduced in 

hyperbilirubinemic infants;54 however, a clinical study showed that treating infants with 

hyperbilirubinemia with the antioxidant vitamin E was unsuccessful.55

A more recent study showed that total antioxidant capacity remains unchanged or may 

increase in hyperbilirubinemia, possibly due to the antioxidant activity of bilirubin.56 This 

interplay between antioxidant activity and ROS is characteristic of other ROS-related 

diseases, and although bilirubin-induced ROS is a main driver of kernicterus, the use of 

antioxidants to prevent kernicterus is likely to be ineffective. Antioxidant treatment has 

proven ineffective in many other ROS-related diseases,57,58 possibly because these 

antioxidants may be scavenging both ‘good’ and ‘bad’ ROS.59 Further, the transient, spike-

like nature of bilirubin-induced ROS is difficult to pinpoint, and administration of 

antioxidants too early or too late will not be effective.

Therefore, restoring redox equilibrium by improving endogenous antioxidant defense 

represents a more promising treatment for kernicterus and ROS-related diseases in general.

Restoring endogenous GSH: activating G6PD—Specifically, GSH depletion and 

increase in GSSG are hallmarks of bilirubin toxicity; a therapy directed at restoring the 

GSH/GSSG balance may be more helpful than general treatment with antioxidants. For 

example, pre-treatment with N-acetylcysteine (NAC), a GSH precursor, reduced bilirubin 

toxicity in rat neuronal cells in culture.34,52 NAC has been administered to preterm infants 
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with no ill effects, but its effect on development of hyperbilirubinemia and/or kernicterus has 

not been reported.60 However, supplementing with GSH or GSH precursors does not bypass 

the issue of timing, and sudden increase in GSH may have unwanted impacts on glucose 

and/or iron metabolism.58,61 Moreover, GSH does not efficiently cross the blood-brain 

barrier,62 and it us unknown whether NAC can cross the blood-brain barrier.63 Rather, a 

therapy directed at maintaining endogenous control of the GSH/GSSG balance is desirable.

G6PD is the rate-limiting producer of cytoplasmic NADPH, which in turn converts GSSG to 

GSH (Fig. 2). As discussed above, in the developing brain mitochondrial production of 

NADPH is low, and is made even lower by the toxic effect of bilirubin on the mitochondrial 

membrane. Therefore, G6PD is the main driver of GSH regeneration. The loss of this major 

source of GSH in G6PD deficiency explains why higher rates and worse outcomes of 

kernicterus are observed in G6PD-deficient babies. Therefore, we propose a small-molecule 

activator or chaperone of G6PD as a novel treatment for kernicterus. Discovery of molecular 

chaperones and activators is uncommon compared to the discovery of small-molecule 

enzyme inhibitors, but a few small-molecule chaperones have been used successfully.

One example is a pharmacological chaperone therapy for Gaucher disease, a lysosomal 

storage disease. The disease is caused by mutations in acid β-glucosidase leading to 

significant protein misfolding and subsequent degradation of the protein before it can be 

transported to the lysosome. Interestingly, binding of small-molecule inhibitors to the 

mutated protein rescues protein folding and allows the protein to be transported to the 

lysosome; these inhibitors have been termed “pharmacological chaperones”. The 

pharmacological chaperone is competitively replaced by the highly concentrated substrate in 

the lysosome, leading to a net gain in acid β-glucosidase activity. Pharmacological 

chaperones have entered Phase II clinical trials to treat Gaucher disease in humans.64

Several common G6PD variants, such as G6PD A-, which is present in up to 45% of the 

population in some regions of Africa,7 and G6PD Mediterranean, which is the most common 

G6PD mutation in Caucasians,65 have been found to exhibit misfolding66,67 and reduced 

half-life in erythrocytes.68 Moreover, many Class I G6PD mutations exhibit highly 

decreased thermostability69 and inefficient protein folding.70 A pharmacological chaperone 

similar to the one found for Gaucher disease may be an effective strategy for correcting 

these types of G6PD mutations (Fig. 4a).

Another example of a small-molecule activator is Alda-1, an activator of aldehyde 

dehydrogenase 2 (ALDH2). A common ALDH2 variant, referred to as ALDH2*2, shows 

disordered folding in a small region of the protein caused by a single amino acid mutation. 

The ALDH2*2 variant remains viable, but exhibits <5% activity of ALDH2. Alda-1 

increases the activity of ALDH2*2 by 11-fold and allosterically restores folding to the 

disordered region as demonstrated by a co-crystal structure.71,72 Moreover, Alda-1 also 

increases the activity of wild-type ALDH2 by two-fold. Crystallography shows that Alda-1 

binds near the active site, increasing productive encounters between the substrate and 

catalytic residues.71
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Most G6PD mutants have not been crystallized, but if mutations induce disordered regions 

similar to ALDH2*2, they could potentially be corrected allosterically by a small molecule 

in a mechanism similar to Alda-1 (Fig. 4b). Canton G6PD, the most common mutation in 

East Asia, has been crystallized but shows no gross structural differences compared to wild-

type G6PD.73,74 In this case, a small molecule activator could be identified that binds in the 

catalytic site of G6PD and facilitates substrate and/or cofactor binding (Fig. 4c). Such a 

small molecule could also potentially activate wild-type G6PD in the same fashion; this 

activator could serve as a treatment to prevent kernicterus even in G6PD-normal infants with 

hyperbilirubinemia.
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Best Practices Box

What is the current practice?

• Jaundiced infants with serum bilirubin level above 20 mg/dL are subjected to 

phototherapy, and generally are given exchange transfusion at serum bilirubin 

level above 25 mg/dL.

• Phototherapy and exchange transfusion may not be available in developing 

nations where G6PD deficiency is most common.

What changes in current practice are likely to improve outcomes?

• We propose development of a novel treatment to prevent kernicterus in 

addition to current practice.

• A G6PD activator or pharmacological chaperone may reduce hemolysis and 

increase protection against bilirubin-induced ROS in the developing brain.

• Screening for G6PD deficiency even in regions where G6PD deficiency is 

uncommon may help identify infants at higher risk for developing kernicterus.

Summary Statement

Preventable kernicterus and the subsequent sequelae still occur with a regular frequency 

in both developed and developing nations. We propose activation of G6PD as a novel 

treatment for kernicterus in both G6PD-deficient and G6PD-normal infants.
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KEY POINTS

• G6PD deficiency increases the risk of kernicterus in jaundiced newborns.

• G6PD is a major source of protection against bilirubin-induced oxidative 

stress in the developing brain.

• There is need both in developed and developing nations for a novel treatment 

for kernicterus, especially in regions with a high rate of G6PD deficiency.

• We propose a small-molecule activator or pharmacological chaperone for 

G6PD as a therapy for kernicterus in both G6PD-deficient and G6PD-normal 

infants with hyperbilirubinemia.
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SYNOPSIS

Hyperbilirubinemia occurs frequently in newborns, and in severe cases can progress to 

kernicterus and permanent developmental disorders. G6PD deficiency, one of the most 

common human enzymopathies, is a major risk factor for hyperbilirubinemia and greatly 

increases the risk of kernicterus even in the developed world. Lack of access to common 

treatments for hyperbilirubinemia, coupled with a high rate of G6PD deficiency, leads to 

high incidence of kernicterus in the developing world. Therefore, a novel treatment for 

kernicterus is needed, especially for G6PD-deficient newborns. Oxidative stress is a 

hallmark of bilirubin toxicity in the brain. We propose activation of G6PD via a small-

molecule chaperone as a strategy to increase endogenous defense against bilirubin-

induced oxidative stress and prevent kernicterus.
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Figure 1: 
Percent of females (F) and males (M) from the 1000 Genomes Project carrying a G6PD 

mutation. No Class I mutations were observed. AFR: African; AMR: Mixed American; 

EAS: East Asian; EUR: European; SAS: South Asian; NR: not reported.
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Figure 2: 
Scheme of G6PD activity.
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Figure 3: 
Contribution of G6PD deficiency to bilirubin-induced neurotoxicity. (a) Neonatal jaundice 

results from production of bilirubin (shown as yellow hexagons) following hemolysis. In 

G6PD-normal infants, GSH levels are properly maintained and low levels of bilirubin-

induced oxidative stress are safely neutralized. (b) In G6PD-deficient infants, higher levels 

of hemolysis lead to higher concentration of bilirubin in the brain, which inhibits 

mitochondrial activity (indicated by yellowed mitochondria). Reduced G6PD activity leads 

to low NADPH levels, and GSH is depleted in favor of GSSG. Buildup of ROS leads to 

neuroinflammation, cell death, and kernicterus. BBB; blood-brain-barrier
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Figure 4. 
Mechanisms of pharmacological chaperone or small-molecule activator. (a) A 

pharmacological chaperone rescues misfolding. In the case of pharmacological chaperones 

for acid β-glucosidase, the chaperone is competitively replaced by substrate. (b) A small-

molecule activator correcting a disordered region allosterically. (c) A small-molecule 

activator binding in the active site, increasing productive interaction between substrate and 

catalytic residues.
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Table 1:

Clinical classification of G6PD mutations. (adapted from [10])

Classification of G6PD mutations Clinical outcome

Class I < 10% activity Severe; CNSHA

Class II < 10% activity Severe episodes of hemolytic anemia

Class III 10 - 60% activity Mild episodes of hemolytic anemia

Class IV 60 - 150% activity Asymptomatic
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Table 2:

Kernicterus is over seven fold more likely to occur in G6PD deficient newborns worldwide.

Summary of known kernicterus and G6PD deficiency rates in various countries

Country
Incidence of 
kernicterus (per 
100,000)

% G6PD deficiency in 
infants with 
kernicterus

Expected % G6PD 
deficiency, based on 
general population

Fold over-representation of 
G6PD deficiency in infants 
with kernicterus

Ref

Canada 2.3 - 7.9 39 - 58 0 - 3 30 X 7,75–77

Cuba 4.6 5 2 - 4 1.6 X 78,79

Denmark 1.8 - 9 2 0 - 3 1 X 7,80,81

Hong Kong 269 55 3 - 6 12 X 82

Nigeria 800 - 1600 61 - 80 15 4.7 X 83–86

Oman 346 70 18 3.9 X 87

Singapore N/A 43 2 22 X 88

Turkey N/A 18 13 1.4 X 89

USA 1.5 20 1 - 7 5.6 X 7,18,90

UK/Ireland 0.9 21 0 - 3 13 X 7,91

Average 7.5 X
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