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Prefrontal Cortical Neurons Are Selective for Non-Local
Hippocampal Representations during Replay and Behavior
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Diverse functions such as decision-making and memory consolidation may depend on communication between neurons in
the hippocampus (HP) and prefrontal cortex (PFC). HP replay is a candidate mechanism to facilitate this communication,
however details remain largely unknown because of the technical challenges of recording sufficient numbers of HP neurons
for replay while also recording PFC neurons. Here, we implanted male rats with 40-tetrode drives, split between HP and
PFC, during learning of a Y-maze spatial memory task. Surprisingly, we found that in contrast to their non-selectivity for
maze arm during movement, a portion of PFC neurons were highly selective for HP replay of different arms. Moreover, PFC
neurons’ selectivity to HP non-local arm representation during running tended to match their replay arm selectivity and was
predictive of future choice. Thus, PFC activity that is tuned to HP activity is best explained by non-local HP position repre-
sentations rather than HP representation of actual position, providing a new potential mechanism of HP-PFC coordination
during HP replay.
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Significance Statement

The hippocampus (HP) is implicated in spatial learning while the prefrontal cortex (PFC) is implicated in decision-making.
The question of how the two areas interact has been of great interest. A specific activity type in HP called replay is particularly
interesting because it resembles internal exploration of non-local experiences, but is technically challenging to study, requir-
ing recordings from large numbers of HP neurons simultaneously. Here, we combined replay recordings from HP with pre-
frontal recordings, to reveal a surprising degree of selectivity for replay, and a pattern of coordination that supports some
conceptions of hippocampocortical interaction and challenges others.

Introduction
Neurons in the hippocampus (HP) represent an animal’s loca-
tion while it traverses space (O’Keefe, 1976). During rest periods,
sharp-wave ripples (SWRs; 150–250 Hz) in the HP local field
potential (LFP) occur concurrently with patterns across popula-
tions of HP neurons that depict trajectories through explored
space, termed “replay” (Nádasdy et al., 1999; Foster and Wilson,
2006; Karlsson and Frank, 2009; Foster, 2017). Replay trajectories
are non-local, and can explore space in ways the animal never
did (Foster and Wilson, 2006; Gupta et al., 2010). Additionally,
SWR disruption causes spatial memory deficits (Ego-Stengel and
Wilson, 2010; Jadhav et al., 2012). Therefore, SWRs and

associated replay have been suggested to support complex proc-
esses such as memory-guided decision-making (Singer et al.,
2013) and systems memory consolidation (Buzsáki, 1996;
Sutherland and McNaughton, 2000; Teyler and Rudy, 2007).
However, mechanistic insights into how HP replay supports
these functions has been lacking.

SWRs are substantial spiking events that broadly engage
neocortical areas (Logothetis et al., 2012) One of these, the pre-
frontal cortex (PFC), has been implicated in memory consolida-
tion and decision-making (Miller and Cohen, 2001; Vertes,
2006). Individual PFC neurons are modulated by SWRs (Jadhav
et al., 2016; Tang et al., 2017), and more so during tasks than in
subsequent rest, and more during initial phases of learning
(Jadhav et al., 2016; Tang et al., 2017). Furthermore, PFC neu-
rons that are engaged in a task and locked to HP theta are more
likely to be activated by SWRs (Jadhav et al., 2016). PFC neurons
are modulated more to SWRs co-occurring with the reactivation
of movement-related places than immobility-associated places
(Yu et al., 2017). Similarly, coherence of co-activity between the
two areas during SWRs tends to be stronger for SWRs that reflect
the path the animal will take or has taken than those that reflect
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a not-taken path (Shin et al., 2019). These studies suggest that
both awake replay and PFC activity are involved in processing
place information related to the current task. Further, HP-PFC
neuron pairs that have more correlated firing patterns across an
entire environment are more likely to fire together during SWRs
(Peyrache et al., 2009; Jadhav et al., 2016). However, without the
ability to separate the representation of different places within
SWRs, it remains unclear whether PFC neurons are selective for
places represented in the HP population, and under what condi-
tions. We hypothesized that by deploying sufficient numbers of
tetrodes into HP to resolve the place content of HP replay, in a
Y-maze environment already shown to produce clearly seg-
mented replay of different “arms” of the track, we could leverage
the robust place representation in HP to identify the relationship
of concurrently recorded PFC units to HP replay information
content.

Here, we recorded from neurons in prelimbic and infralimbic
PFC areas in rats on novel tracks during early learning, while
simultaneously recording enough HP neurons to resolve trajec-
tories depicted during HP replay events and HP theta sequences.
We found that although PFC neurons were relatively non-selec-
tive for spatial position during behavior, they were surprisingly
selective for different parts of the environment during HP replay.
These data are the first to our knowledge to find that individual
PFC neurons can be selective to replay of different spatial
trajectories within an environment (here, arms in a Y-maze).
Furthermore, during active behavior, when the HP was rep-
resenting non-local information, individual PFC neurons
exhibited the same spatial selectivity as during HP replay.
Thus, PFC neurons’ lack of spatial selectivity was a conse-
quence of selectivity to non-local place representation in HP,
which is, by definition, unrelated to the current location of
the animal. These findings support the idea that PFC neu-
rons’ responses to HP replay are important for ongoing
behavior in early learning. Moreover, they introduce the
notion of consistent tuning of PFC responses to internally
generated, non-local representations, with ramifications for
our understanding of the function of HP-PFC interactions.

Materials and Methods
Data from four of the 11 sessions analyzed here were also used in a pre-
vious study (Wu and Foster, 2014). The recording and preprocessing
methods in this paper are identical to that study and are re-stated here.

Experimental design and statistical analysis
Four male Long–Evans rats, 3.5–4.5months in age, were pretrained
under moderate food deprivation to run back and forth on a linear track
for chocolate milk reward available at both track ends. Custom-designed
micro-drives consisting of 40 independently adjustable tetrodes were
then implanted with half the tetrodes targeting the right dorsal CA1 area
of the HP (�3.6, �2.2 mm from bregma), and the other half targeting
the right medial PFC (13.2, �0.8 mm from bregma). Tetrodes were
gradually moved into the CA1 pyramidal cell layer with one tetrode left
in the white matter above the cell layer to provide a reference signal to
all other tetrodes. Once all tetrodes were in position, rats were exposed
to a modified Y-maze for the first time, in a novel room with distal visual
cues in the form of shapes on the walls and equipment around the room,
and recording began. The Y-maze was composed of one long arm
(161 cm) and two short arms (81 cm), all of which were separated by
120°. One short arm was chosen to be the central (C) arm; the other two
arms [right (R); left (L)] were termed “alternating arms.” The rat was
placed at the baited end of the central arm, and was allowed to freely
explore the Y-maze. The rat was rewarded according to the following
alternation rule: the first arrival at an alternating arm was rewarded;
thereafter, returns to the central arm were rewarded while visits to the

alternating arms were rewarded only if the arm identity was different
from the last alternating arm rewarded. Alternation accuracy is defined
as the percent of correct trials out of all trials where the rats left the cen-
ter arm (and chose one of the two alternating arms). Spiking activities
and LFP signals were recorded (Neuralynx) and digitally filtered in dif-
ferent frequency bands (600–6000Hz for spikes and 0.1–500Hz for
LFP). Rats’ positions were signaled by red and green LEDs attached to
the drive, and were recorded from an overhead camera. Recording ses-
sions occurred each day and lasted 30min to 2 h. There were no specific
criteria for ending each session. The rats explored all three arms in each
day and performed an average of 68.7 passes (reward to reward) on the
track each day and an average of 6.6 correct trials (center, right, center,
left). Recordings were terminated when HP neuron yield became poor
after 6–8 d. Eleven sessions across four rats were used (one to four ses-
sions per rat). Rats were killed, and lesions were made on selected tetro-
des by passing current (30 A for 5 s) through each tetrode. Animals were
then perfused with formalin. Brains were removed, sectioned, and
stained for cresyl violet to verify tetrode recording locations. The
spike data were manually clustered in custom software Xclust2
(written by M. Wilson, Massachusetts Institute of Technology,
Cambridge, MA). Putative HP pyramidal neurons were separated
from HP interneurons by their spike width and spike rate. None of
the HP interneurons were considered in this analysis. Well isolated
single units recorded in the PFC were included in subsequent analy-
ses if the following criteria were met: (1) mean peak-to-trough spike
width. 0.35ms; (2) fewer than 5% of all spikes occurred within the
refractory period (interspike interval, 2 ms); (3) average firing rate
over the entire recording session is higher than 0.2 Hz. These crite-
ria were set to ensure exclusion of noisy clusters, units with ultralow
firing activities, and interneurons. Eleven sessions across four rats
were used, except where otherwise noted where only the session
with the highest yield of PFC neurons was used from each rat (Fig
3H, inset, Fig. 4F, inset, Fig. 6K,M, insets).

All analysis and statistics were performed in MATLAB and are
described in the following sections. Data and MATLAB code are avail-
able from the authors on request. All permutation tests were done by
taking the proportion of permutations (n) that produced a value (perm)
greater than or equal to the real value the data produced (real); P = (sum
(perm).=real)1 1)/(n1 1). All error bars and shading represent SEM.

Position linearization and place-field computation
Recorded positions were projected onto three centerlines (defined by the
experimenter) aligned with the three arms of the Y-maze. The three lines
were then concatenated to produce a linear axis (Fig. 3A). Directional
linear place fields were computed by using all spike and position data (2-
cm position bins) from when the rat was moving.5 cm/s and smoothed
with a Gaussian filter (s =3 bins). Note that firing rates on the three
arms were separately smoothed to minimize misestimation of place
fields around the choice point. Two-dimensional place fields were com-
puted by using all spike and position data (8� 8 cm position bins) from
when the rat was moving .5 cm/s and smoothed with a Gaussian filter
(s = 2 bins; Fig. 1B,C).

Spatial selectivity and radial symmetry
Spatial selectivity was calculated for each neuron by taking the maxi-
mum value across linear position bins divided by the mean value across
those same position bins (Fig. 1D). Radial symmetry was calculated for
each neuron by taking the average Pearson’s correlation value across the
linear firing rate maps for all pairs of the three arms (the long arm was
binned by an additional factor of two for comparison; Fig. 1E).
Comparisons of these metrics between HP and PFC populations were
done using two-sidedWilcoxon rank-sum tests.

Overlap measure
In addition to radial symmetry, we evaluated the extent of overlap
between fields across arms using the linearized firing fields and a method
previously published by Battaglia et al. (2004) to produce an overlap (r)
evaluated with no shift (s = 0). We took the average overlap across the
three combinations of arms (e.g., center compared with right arm, again
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binning the long arm by twice as much to match the shorter ones) for
each PFC cell to generate the overlap measure.

Generalized linear model (GLM)
To explore what behavioral aspect was best predicted by PFC neuron fir-
ing we performed a GLM using all PFC neurons’ firing rate each lap
(from when rat left reward area to when the rat reached the next one)
binned into time bins 0.02–0.6 s long. A GLM was created from this ac-
tivity to predict one of seven behavioral variables. The MATLAB func-
tion fitglm was used and the three categorical variables were marked as
such in the function. We used a 10-fold cross-validation whereby 90% of
the data were used to predict the remaining 10%. The square of the cor-
relation value of the true data and the data predicted by the GLM was
plotted in Figure 1G.

Candidate event and replay analysis
For each recording session, we identified the three tetrodes from which
the most HP neurons were isolated. The LFP from these tetrodes was
bandpass filtered between 150 and 250Hz, and the absolute value of the
Hilbert transform of this filtered signal was then smoothed (Gaussian
kernel, SD= 12.5ms). To examine SWRs, these processed signals were
averaged across all three tetrodes and SWRs were identified as local
peaks with an amplitude .2 SD above the mean, excluding periods

when the rat’s speed was .5 cm/s. The start and end boundaries for
each event were defined as the point when the signal crossed the mean.
SWRs shorter than 50ms or longer than 2 s were excluded from further
analysis. A Bayesian decoding algorithm (Davidson et al., 2009) was
then applied to the candidate events, which calculated the probability of
the ensemble of neurons representing each position bin during each
time bin (20-ms time bin, every 5ms).

To identify SWRs that represented a certain arm (termed “arm-
replays”), we segmented the posterior probability matrix of each candi-
date event in both position and time to further define trajectory-specific
subregions. Each SWR event was first separated along the position axis
into three segments corresponding to the three arms. We defined a max-
imum a priori probability (MAP) function as the largest probability
across all positions per time bin, smoothed in time with a Gaussian (Wu
and Foster, 2014). Each single-arm segment was then segmented in time,
and a trajectory-specific subregion was created around the largest peak
of the MAP function to include time bins whose MAP values were above
a threshold of four times the chance level, namely (1/total # position
bins). 4 (a fixed threshold only dependent on the size of the track and
not the quality of neuronal data). To identify joint-replays, for all arms
that sustained at least 50ms above the MAP threshold the following
three variables were calculated: (1) length of subregion in time (.50
ms); (2) arm coverage (.50% of the arm); and (3) weighted correlation

Figure 1. HP neurons were more modulated by the rat’s position on the track than PFC neurons. A, PFC tetrode placement. Left, Summary of three rats, each with different color. Right,
example histology images. B, Rats were rewarded for alternating between right and left arms, and always rewarded for returning to the center arm. C, Outbound accuracy in alternation task
across days. Asterisks depict the 11 d from which neural recordings were used. Kendall’s rank correlation between recording day and outbound accuracy, R= 0.56, p= 3.6e-4. D, top, Three
examples of HP neurons recorded from three different rats showing place fields. Bottom, Three example prefrontal (PFC) neurons showing little spatial selectivity recorded simultaneously to
the HP neurons in B. E, Spatial selectivity (max firing rate in binned position divided by the mean firing rate across bins) for all HP and PFC neurons. Two-sided Wilcoxon rank-sum test,
N= 158, 968, z= 5.36, p, 10�7. F, Radial symmetry (correlation across the three arms) for all HP and PFC neurons. Two-sided Wilcoxon rank-sum test, N= 158, 968, z= �14.35,
p, 10�45. G, Results from 10-fold cross-validated predictions of behavioral correlates using PFC neurons’ firing rates.
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(absolute value .0.3). If two non-overlapping replays satisfied these
conditions and the resulting joint-replay’s absolute value of its weighted
correlation exceeded 0.3 then it was deemed a joint-replay. These replays
were separated and for all future analyses as two separate single-arm-
replays, each identified as an arm-replay. All SWRs that did not have
joint-replays but had one arm that stayed above the MAP threshold for
at least 50ms were truncated in time to when it crossed the MAP thresh-
old and identified as an arm-replay. If no arm crossed the MAP thresh-
old for in a SWR it was not categorized as an arm-replay. We assessed
whether PFC neurons had a bias in modulated to arm-replays depending
on their direction of travel, their dependence on a certain directional
map, whether they were forward or reverse replays or whether they were
arm-replays going toward or away from the rat on the arm it was on and
found no bias in any of these comparisons. Because of this, all arm-
replays, despite the direction of travel of the replay, the directional map
it used, or whether it was using the same (forward replay) or different
(reverse replay) map as the direction of travel, were used.

PFC SWR modulation
PFC neurons were categorized as being significantly SWR modulated as
was done by Jadhav and colleagues (Jadhav et al., 2016), briefly restated
here. We averaged over all SWRs to create peri-SWR time histogram
(SWR-PSTH). To test significance, we created 500 shuffled SWR-
PSTHs. In each SWR, the PFC spikes were jittered circularly around the
SWR (in the window of �2–2 s around an event) by a random amount.
We calculated the squared difference between the real SWR-PSTH and
the mean of the shuffled SWR-PSTHs in the 0- to 200-ms window after
SWR onset, to obtain a SWR-modulation measure. We then repeated
this for each differently jittered SWR, producing 500 shuffled modula-
tion values. If the real SWR modulation exceeded 95% of the shuffled
distribution (permutation test), then the neuron was significantly modu-
lated (Fig. 2A,B,D). The direction of that modulation was determined by
the sign of the SWR modulation. To compare the SWR modulation to
theta modulation across neurons we computed the difference between

the 200ms after SWR onset to a baseline period in the �500- to –100-
ms window before the SWR and normalized it by dividing by the sum of
those two periods (Fig. 2G).

PFC arm-replay modulation
To assess whether individual PFC neurons were differentially modulated
to SWRs depicting different arms, arm-replay-PSTHs were made for
each neuron. Using the same time windows as with SWR modulation,
the modulation of each PFC neuron to each of the three arm SWRs
(SWRs depicting the three arms of the Y-maze) was computed and aver-
aged across each arm-replay category. The modulation was defined as
the difference in firing rate in a modulation window (200ms after replay
onset) from a baseline period (�500 to –100 ms before the replay). To
assess the significance of the difference in modulation, the sum of
squared differences between all pairs of the three arms was taken, and
this was summed to produce a single value (SSD). This SSD was then
compared with 2000 shuffled distributions of permuting the group label
(which arm is depicted) of each arm-replay event and repeating the SSD
analysis. A PFC neuron was determined to be significantly differentially
modulated by arm-replays if the true SSD exceeded 95% of the distribu-
tion of shuffled SSDs (permutation test; Fig. 3). Neurons that did not
have sufficient spikes (,50) summed across all SWRs in both windows
combined were not included in this analysis. We also replicated these
analyses using only arm-replays that passed the stricter criterion of a
weighted correlation absolute value .0.6 and max jump distance ,0.4
and found similar and significant results with 22.7% of PFC neurons sig-
nificantly differentially modulated by replays of different arms.

Expected PFC arm-replay modulation assuming re-activation
To simulate the expected modulation of PFC neurons to arm-replays as
re-activation of arm-selectivity during running, we kept the proportion
of arm-replays the same, but shuffled the labels of them non-randomly
to minimize the difference of the pattern of arm-replay modulation eli-
cited and the pattern the PFC neurons exhibited across running.

Figure 2. PFC neurons were modulated to HP ripple events and HP theta. A, Three example PFC neurons’ raster plot of firing centered on HP ripple events. B, Average ripple-triggered firing
rates of the same three PFC neurons in A; p values are from a permutation test using a distribution of circularly shifted firing rates. C, Histograms of the same three PFC neurons’ spikes as a
function of HP theta phase. D, left, 64% of PFC neurons were significantly modulated by HP ripples (permutation test p, 0.05); 58% of ripple-modulated neurons were modulated by theta
compared with only 26% of non-ripple-modulated neurons. Right, 47% of PFC neurons were significantly modulated by HP theta (Rayleigh test p, 0.05); 80% of theta-modulated neurons
were modulated by ripples compared with only 50% of non-theta-modulated neurons. Inset below, Venn diagram of neurons modulated by ripples (blue), theta (yellow), and both (green). E,
Histogram of the mean theta preference for each HP neuron (top) and PFC neuron (bottom) to HP theta. F, The more a PFC neuron was modulated to HP ripples (absolute value of the FR in
postripple (red in B) minus preripple (gray in B; period normalized by sum of both) the more it tended to be modulated to HP theta (mean resultant vector). Pearson’s correlation, R= 0.30,
p= 1.3e-4. Inset, Same data plotted on a log-log scale (Person’s correlation: R= 0.42, p= 6.2e-8). The three examples shown in the left, middle and right panels of A–C are depicted in in or-
ange, pink, and blue, respectively.
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Specifically, the normalized firing rate across each arm
(mean firing rate on each arm divided by the sum of mean
firing rates across all three arms) was compared the modu-
lation to each arm-replay normalized in the same way [the
mean modulation (which is defined above) by each arm-
replay was divided by the sum of the mean modulation by
each arm-replay]. The absolute value of that difference was
summed across all three arms for 4000 permutations of
shuffled arm-replay labels and the permutation that mini-
mized the error between the pattern of firing rate across
position and pattern of modulation to replay was chosen.
This produced a simulated scenario whereby the pattern of
modulation a PFC neuron showed to arm-replay matched
the pattern of modulation it showed across arms during
running. This procedure kept the proportions of arm-
replays constant and the way a PFC neuron responded to
arm-replay events on average constant, changing only the
relationship between how a PFC neuron responds to arm-
replay events depicting certain arms and the way it is differ-
entially modulated along arms during running. We then
used this permutation of arm-replay labels too test whether
this simulated modulation was significantly arm-replay
modulated using the same tests that were performed as
described above (see PFC arm-replay modulation). To test
whether the “Expected” (simulated) modulation could
account for the “Observed” selectivity, the sum of squared
differences of modulation across arms for the expected and
observed replay modulation was compared across neurons
(Fig. 4D–F). We also repeated this analysis but using the fir-
ing rates across different portions of behavior separately.
Each period of time in which the rat fully explored the
whole track (each of the three arms in both direction) we
computed the average firing rate across the three arms. We
then performed the same analysis as described above except
using each of these periods of exploration. For each neuron
we then took the largest Expected sum of squared differen-
ces from these periods of exploration and compared those
values to their Observed sum of squared differences and
reported these results in the Results.

Arm-replay discriminant analysis using PFC neurons
SWR were classified into arm-replays from the simultane-
ously recorded PFC neurons with discriminant analysis.
For each SWR, the modulation (using the same windows as
above, see PFC arm-replay modulation) was calculated for
each PFC neuron (excluding those with too few spikes as
stated in the previous section). For each session, a classifier
on the population modulation (a vector for each PFC neu-
ron’s modulation across each arm-replay) was used to dis-
criminate which of the three arms the SWR depicted. In a
leave-one-out procedure, the classifier was trained on all
but one SWR and tested on that SWR. SWRs were excluded
from training or testing whether fewer than four PFC neu-
rons spiked during either the baseline or the modulation
window. The MATLAB “classify” function was used, with a
diaglinear discriminant function, similar to a linear dis-
criminant analysis except with a diagonal covariance matrix
estimate. To test significance, the same procedure was done

Figure 3. PFC neurons differentiated between replays depicting different arms. A, Linearized trajectory of a
rat running across the three arms of the Y-maze. Arrows depict direction of running corresponding to the
arrows in Figure 1B. B, Raster of simultaneously recorded HP neurons’ firing, ordered by their preferred posi-
tion on the track. C, Estimate of position using Bayesian decoding with HP. D, Three example ripple events.
Top, Raw LFP. Middle, Ripple filtered LFP. Bottom, Replays decoded of three different arms. E, Replay-trig-
gered raster plot and averaged firing rates (F) for three example PFC neurons, color coded by the arm identity
of the replay. Red and black bars in F show baseline and modulation periods. G, Replay-triggered firing rates
for five more example neurons. H, right, A significant number of PFC neurons were significantly differentially

/

modulated by replays of different arms (18.5% of PFC neurons were signifi-
cantly modulated, 28/151; binomial test p= 2.2e-9). Inset, Direction of
modulation to ripple events. Left, To control for the possibility of double
counting the same neurons in different sessions, we repeated these analy-
ses using the single session from each rat with the highest PFC neuron yield
and found similar and significant results (20% of PFC neurons were signifi-
cantly modulated, 14/69; binomial test, p= 6.9e-6); ***p, 0.001,
**p, 0.01, *p, 0.03. Shading represents SEM.
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500 times with permutated training labels (which arm was depicted in
that arm-replay). The significance of each session and cumulatively
across all sessions was assessed by whether the classifier outperformed
95% of the shuffled classifier (permutation test). Additional controls
were performed to account for information that (1) ripple power (2)
time within the session (3) position of the rat at the time of SWR or (4)
the length of the replay, could provide (all p= 0.002). To control for rip-
ple power, training and testing was performed separately on the events
with the largest and smallest (a median split) mean ripple power. To
control for the time during the session, the first half and second half of
each session were trained and tested separately using the same proce-
dure. To control of the position of the rat, training and testing was per-
formed separately for SWRs where the rat was on each of the three arms
using the same procedure. To control for replay length (in time),

training and testing was performed separately on the
events with the longest and shortest (a median split)
replays. Although the arm-replay label shuffle keeps
the proportions of arm-replays constant and tests for
significance given these proportions, we also per-
formed another control to make sure the unequal
number of arm-replays was not creating a spurious
effect. We repeated the discriminant analysis using a
down-sampled set of arm-replays with an equal num-
ber for each arm. The results of discrimination using
this down-sample control was also significantly better
than chance (p=0.002).

Local and non-local internal HP representations dur-
ing running
All running time (speed.5 cm/s) was decoded using
40-ms bins with a 10-ms sliding window using HP
putative pyramidal neurons and two-dimensional
place fields with 8-cm bins smoothed with a Gaussian
filter with a radius of 4 cm and a s of 2 cm (Figs. 1B,
C, 6B). To ensure accurate estimates of position, only
bins with at least four unique HP neurons fired and
five total spikes occurred were included (42.12% of
the time bins passed these criteria). If the decoded
estimate of position was less than half a position bin
away, the bin was considered local, whereas if it was
more than half a position bin away it was considered
non-local. We also repeated these analyses using an
error cut off of 12 and 20 cm, and found similar and
significant results. However, a cutoff of 36 cm did not
yield similar and significant results. We also repeated
these analyses using 5-cm bins (with 5- and 7-cm cut-
offs) and 6-cm bins (with 6- and 9-cm cutoffs) and
found similar and significant results. PFC firing rates
for each decoded bin was taken from the 40ms after
that bin (40-ms delay). We also repeated these analy-
ses with delays of 10–70ms. PFC firing rate maps as a
function of local and non-local HP representation
were computed by dividing the summed firing rate
from all bins of each position bin by the cumulative
time in which that position was decoded (Fig. 6E,F).
The same procedure as just described was also per-
formed on time bins when the animal was still (speed
,5 cm/s) to obtain a “replay map” (Fig. 6A, different
from the insets which show the modulation to arm-
replays as described previously) to use to correlate to
two-dimensional local and non-local running maps
(Fig. 6G). To see whether local or non-local periods
drive PFC to be modulated similarly to the replay
map, we computed a Pearson’s correlation between
either the replay map and the local (RhoLocal) or non-
local (RhoNon-Local) running map and took the differ-
ence (RhoNon-Local – RhoLocal) across all PFC neurons
(Fig. 6H) or only the PFC neurons that were signifi-
cantly differentially modulated by arm-replays
(Fig. 6I).

Basic theta analysis
The LFP from the HP tetrode with the largest number of simultaneously
recorded pyramidal neurons was filtered through 6- to 12-Hz bandpass
filter, a Hilbert transform was used to obtain the phase, and this phase
was adjusted to a global zero phase based on the maximal HP pyramidal
neuron activity. PFC neuron locking to HP theta was assessed using any-
time the rats speed exceeded 10 cm/s and a Rayleigh permutation test
was used to test for significance and the mean resultant vector length
was used to assess correlation with ripple modulation (Fig. 2).

For the rest of theta analysis theta was defined with the following
procedure. The LFP from the HP tetrode with the largest number of
simultaneously recorded pyramidal neurons was filtered through 6- to

Figure 4. PFC neurons were more modulated to Y-maze arms during replay than behavior. A, Number of neurons
(of those significantly modulated by arm-replays) that were modulated positively (1) or negatively (–) to replays
of each of the three arms. B, The accuracy of classifying each ripple into which arm is being depicted in the HP
replay using the firing rates of simultaneously recorded PFC neurons was higher with more simultaneously recorded
PFC neurons. Spearman’s correlation, N= 11, R= 0.62, p= 0.045. Spearman correlation between number of neu-
rons and permutation test p value: R = �0.64, p= 0.033. Each session that was significantly better than a shuffled
distribution (permutation test p, 0.05) is plotted in red (all data combined, p= 0.002). C, Replay-triggered firing
rates of the neurons depicted in Figure 2E. D, Simulated expected response of the same example PFC neurons as in
A if they were to respond to arm-replays in a similar ratio of firing as while running (all p. 0.2). E, Sum of squared
differences (armSSD) of modulation across replay of different arms across all PFC neurons for all sessions (black; red
lines are averaged for each rat). The armSSD in Observed modulation (examples in A) was greater than Expected
(examples in B). Two-sided Wilcoxon signed-rank test, N= 11, 11, signed-rank = 66, p= 9.8e10�4. Error bars rep-
resent SEM. F, The armSSD in Observed were also more than Expected when evaluating only significantly arm-replay
modulated neurons. Two-sided Wilcoxon signed-rank test, N= 28, 28, z= 4.44, p= 10�5. Inset, Using only one ses-
sion per rat. Two-sided Wilcoxon signed-rank test, N= 14, 14, W= 105, p= 1.2e-4; ***p, 0.001, *p, 0.05. All
error bars and shading represent SEM.
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12-Hz bandpass filter, a Hilbert transform was used
to obtain the phase. As we have done previously
(Feng et al., 2015), we then found the peak of theta
(360°) and interpolated the spikes to find the phase
of theta for each cycle. Theta sequences were then
decoded for all sessions and a mean theta sequence
was computed and rotated circularly across theta
phase to optimize the highest slope of the sequence
(Fig. 5A). This shift was applied to all theta cycles in
each session for all analysis after Figure 2 to center
theta to the theta sweep (Feng et al., 2015). Analyses
and results were also similar and significant if each
session’s optimized theta sequence shift was com-
puted separately instead.

HP-PFC cross-covariance during theta
Standardized cross-covariance during theta was cal-
culated similar to previous reports (Siapas et al.,
2005; Jadhav et al., 2016). The cross-covariance
between individual PFC neurons and the HP neu-
ron population (only putative pyramidal neurons)
was assessed during periods during which the rat
was moving (speed .5 cm/s) for at least a second.
The cross-covariance was computed separately two
ways, using only the HP spikes occurring in the first
half of theta cycles or the second half. In order to
make sure the same amount of time was being con-
sidered for each of these halves, each theta cycle was
halved. As we have done previously (Feng et al.,
2015), we found the peak of theta (360°) and inter-
polated the spikes to find the phase of theta for each
cycle. This ensures that there is equal amount of
time in early as late theta phases. Spikes from theta
cycles shorter than 100ms or longer than 200ms
were not considered. The cross-correlation for each
these conditions was computed for a 500-ms win-
dow using 10-ms bins, and each of the conditions
was normalized to account for differences in mean
firing rates such that the covariances of autocorrela-
tions was one at zero lag (Fig. 5C). The cross covari-
ance from each of these high velocity periods was
normalized by multiplying it by the square-root of
the bin size multiplied by the length of the period
considered. The cross covariances for each of these
periods was then averaged and smoothed (using a
Gaussian of length 50ms and a SD of 16.7ms) for
each PFC neuron (Fig. 5C). The difference in the
cross-covariance between the first and second half
of the theta cycle was computed by taking the maxi-
mum covariance in the 0- to 250-ms (where HP
spikes lead PFC spikes) window of the cross-covari-
ance. The maximum covariance between the first and second half of the
theta cycle was compared across neurons with a two-sided Wilcoxon
signed-rank test. The difference between the maximum cross-covariance
driven by second half spikes subtracted by that of first-half spikes was
compared (across PFC neurons) to the extent of arm-modulation
(armSSD, described above) using a Pearson’s correlation (Fig. 5D). This
difference was also compared with the extent of modulation by SWRs
(SWRmodulation, described previously) with a Pearson’s correlation. In
addition, we performed a partial correlation between the theta difference
and armSSD of PFC cells, controlling for the SWRmodulation.

Local and non-local HP portions of theta cycle during running
In these analyses, and all analyses where Bayesian decoding was per-
formed on a theta periods, time bins were used for decoding, based off
of theta cycles identified as described earlier (see above, Basic theta anal-
ysis). Each theta cycle was assumed to be 120ms long, starting 120ms
before the end of each theta cycle. Theta cycles during which the rat was
running (.5 cm/s) were considered, excluding any time periods

overlapping with SWRs. In order to have confidence of the HP estimate
of position, only theta cycles with at least five unique HP neurons
participating were used. Two portions of each theta cycle were then
considered, the local (�120 to –60 ms from the end of the theta
cycle) and non-local (�60 to 0ms from the end of the theta cycle)
and Bayesian decoding (using linear fields of HP putative pyramidal
neurons) was performed to determine the estimate of position.
Portions of theta cycles were not included in the analysis if there
were fewer than four spikes or if fewer than two HP neurons spiked.
The difference between the estimated and correct estimate of posi-
tion was calculated and compared between the local and non-local
parts of the theta cycle (Fig. 5B).

Similarly to the maps generated above (see Local and non-local inter-
nal HP representations during running) the PFC firing rate map was
determined for each neuron as a function of decoded position, except
here using firing rates from either the 60ms after the end of each HP
theta cycle (non-local; Fig. 6M, right) or the 60ms before the end of the
HP theta cycle (local; Fig. 6M, left), regardless of the decoded content
within the theta cycle.

Figure 5. Late-phase HP spikes were more non-local and more closely related to PFC neurons’ spiking. A, Average
theta sequence (decoded estimate of position from HP neurons across HP theta phases, centered on the current posi-
tion of the rat). B, The second half of the theta sequence cycle was more non-local than the first. One-sided Wilcoxon
signed-rank test, N= 11, 11, z=�2.36, p, 0.007. C, Example PFC neurons’ (left, rat E, day 1, neuron 2; right, rat C,
day 4, neuron 73) cross-covariance with the HP spikes from either the first or second half of theta cycles. Positive val-
ues of the x-axis correspond to HP spikes leading PFC spikes. In both neurons the peak of the cross-covariance was
higher when using HP spikes from the second half of theta. D, Across all significantly differentially modulated
PFC neurons, the peak cross-covariance driven by HP spikes was higher for spikes coming from the second
half of the theta cycle than the first. Two-sided Wilcoxon signed-rank test, N = 28, N = 28, p = 6.8e-5. E,
Across all PFC neurons, the more differentially modulated a neuron was (log of the sum of squared differen-
ces (armSSD) of modulation between replays of different arms) the higher the cross-covariance peak related
to HP spikes in later theta phases compared with earlier phases of theta was. There are significant Pearson’s
correlations between both the arm SSD (R = 0.32, p = 7.6e-5) and the log of the armSSD (R = 0.24, p = 3.6e-
3); ***p, 0.001, **p, 0.01. Error bars represent SEM.
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Arm-specific difference score
The pattern of modulation to arms depicted during different running
conditions [for both the HP internal representation described above (see
Local and non-local internal HP representations during running) and
the HP theta cycle analysis described above (see Local and non-local HP
portions of theta cycle during running)] was compared with the pattern
of modulation to arms depicted in replay (Figs. 2, 3, 6A, insets). The fol-
lowing procedure denoting “local” and “non-local” was done using ei-
ther the local and non-local modulations calculated from the internal
representation (Fig. 6E,F,J) or from the local and non-local portions of
the HP theta cycle (Fig. 6M). The firing rates as a function of local or
non-local position across each arm was averaged (Fig. 6E,F, insets).
Then, the replay modulation pattern (Fig. 6A, insets) was compared with
the arm-averaged local and non-local modulation using a difference score
computed with the following procedure. The modulation values for each
condition (replay, and either local or non-local running) normalized
([value – max(values)]/([min(values) – max(values)]) across the three
arms and all combinations of normalized arm values were compared by
taking the absolute value of the difference (e.g., Arm1Replay – Arm1Local,
Arm1Replay – Arm2Local, Arm1Replay – Arm3Local, Arm2Replay – Arm1Local,
etc.). Then the matched (e.g., Arm1Replay – Arm1Local) combinations (the
diagonal) were summed and divided by the sum of all combinations. This
difference score results in smaller values when the pattern of modulation
is more similar to replay. Then the difference score for local and non-local
was compared across all PFC neurons that were significantly differentially
modulated to arm-replays (Fig. 6K,P).

HP internal representation analysis shuffle
To make sure the similarity between PFC modulation to high speed
non-local HP representation and arm-replays was not an artifact of a
bias in which locations tend to be represented non-locally, we generated
a distribution of non-local difference scores using 1000 shuffles of the
non-local decoded positions (which shuffles the arm-identity of the posi-
tions) and compared the effect (local difference score – non-local differ-
ence score; Fig. 6K) to the shuffled distribution of the same calculation
using a permutation test (Fig. 6L). We also compared the real effect for
each neuron to that neuron’s shuffle distribution with a one sided
Wilcoxon signed-rank test (Fig. 6M,N).

HP theta cycle analysis shuffle
To access the significance of the effect of local minus non-local dif-
ference score when using portions of the HP theta cycle (Fig. 6P),

Figure 6. PFC neurons were modulated to non-local HP representations similarly during
rest and running. All panels show PFC neurons’ firing patterns as a function of conditions
determined by HP firing. A, A PFC neuron’s modulation to non-local HP representations of
position while the rat is still. Bottom inset, Neuron’s arm-replay triggered firing rate. Top
insets in A, B, F, G show bars depicting the PFC neurons’ firing pattern across the arms in

/

each of the four conditions. B, The same neuron’s firing rate across position of the rat during
running. HP local (C) and non-local HP (D) representation during running. PFC firing rate map
as a function of local (E) and non-local (F) HP representation. G, Depiction of Pearson’s correla-
tion between the PFC replay map (as in A) with the local (RhoLocal) and non-local (RhoNon-local)
maps (as in E, F). H, The difference between non-local and local correlations (RhoNon-local-
RhoLocal) across all PFC neurons. One-sided Wilcoxon signed-rank test, N=158, 158, z=8.53,
p, 10–17. I, Across significantly arm-modulated PFC neurons. One-sided Wilcoxon signed-
rank test, N=28, 28, z= 4.41, p, 10–5. J, A difference score was computed between PFC
modulation to arms during replay and both local and non-local modulation to arms. K, The
non-local difference score was less than that of local, one-sided Wilcoxon signed-rank test,
N=28, 28, z= 2.06, p=0.0197. Inset, Only using one session per rat, N=14, 14, signed-
rank = 93, p=4.3e-3. L, The true local-non-local difference was greater than a distribution pro-
duced by shuffling non-local representations, p=9.0e-3. M, The real difference score was
greater than the shuffle across the significantly arm-replay modulated neurons, one-sided
Wilcoxon signed-rank test, N=28, 28, z= �2.1, p=0.017. Inset, Only using one session per
rat, N= 14, 14, signed-rank = 18, p=0.015. N, The analysis presented here used a 40-ms
delay between HP local/non-local activity and PFC activity (inset and bolded x-axis label), but
delays between 10 and 50ms also produced similar and significant results; p=0.014, 0.012,
0.021, 0.017, 0.033, 0.12, 0.14. O, A schematic showing the comparison of PFC’s response to
local versus non-local parts of the theta cycle. P, Non-local portions of the theta cycle produced
PFC firing patterns across the three arms that better matched PFC’s responses to replay. One-
sided Wilcoxon signed-rank test, N=28, 28, z=1.88, p, 0.04. Q, Permutation test with shuf-
fled labels of first and second half of theta cycle, p, 0.002. All error bars represent SEM;
***p, 0.001, **p, 0.01, *p, 0.05. Shading represents SEM.
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we generated a shuffled distribution of the same cal-
culation with 1000 permutations of shuffled labels of
the theta portion (local vs non-local) and compared
that shuffled distribution to the true value using a
permutation test (Fig. 6Q).

Remote theta cycle analysis
Theta was defined in the same way as above (see Local
and non-local HP portions of theta cycle during run-
ning), including that only theta cycles during which the
rat was running at high speeds (.5 cm/s) were consid-
ered, excluding any time periods overlapping with
SWRs. An estimate of position was calculated using
directional Bayesian decoding every 5ms with a 20-ms
window (Fig. 7A). In order to have confidence of the HP
estimate of position only 20-ms bins with at least two
unique HP neurons spiking were used as estimates of
position, and only theta cycles with at least five unique HP
neurons participating were considered. The arm that the
animal occupied was decoded using the inbound fields
while the other two arms were decoded using outward
fields (representing the map of the actual possible trajectory
of an inbound rat). For each theta cycle during which the
rat was running toward the center of the Y-maze
(inbound), the proportion of the posterior in each of the
outbound arms was summed for each time bin, and nor-
malized by the length of each arm to produce a representa-
tion proportion. The remote arm with the maximum
representation was found for each theta cycle.

To see whether these theta cycles were more likely to
depict the arm the rat chose next, the proportion of theta
cycles depicting the chosen and unchosen arm (no
difference= 0.5) was calculated for each lap. As a control,
we performed 1000 shuffles where the chosen arm and
unchosen arm was permutated within trajectories start-
ing on each arm (so the proportion of choices the rat
took on each arm to every other arm was constant, and
the proportion of arms that were represented in the
remote theta cycles was constant but the relationship
between the theta cycles and choice was shuffled). The
remote theta cycles were considered to be representing
the animal’s choice of next arm if the proportion of theta
cycles representing that arm exceeded 95% of the shuf-
fled distribution (Fig. 7B, permutation test). For any
given starting arm, if the rat did not choose one of the
other two arms enough to have an adequate enough dis-
tribution of choices (if the number of combinations was
less than the number of shuffles) that arm was skipped
for that session. Two of the 11 sessions were not used
because no arms were viable. Three sessions had three
viable arms, two sessions had two viable arms, and four
sessions had one viable arm.

Choice discriminant analysis using PFC spikes
To assess whether the PFC predicts the rat’s upcom-
ing choice during theta, we performed discriminant
analysis using the modulation of PFC neurons to each
theta cycle. For each starting arm in each session, a
classifier on the population modulation (a vector for
each PFC neuron’s modulation across each theta
cycle) was used to discriminate which of the two arms
the rat would choose. Separately for each of the three
arms, in a leave-one-out procedure, the classifier was
trained on all but one lap and tested on that lap. The MATLAB
“classify” function was used, with a “diaglinear” discriminant func-
tion. As a control, the same procedure was done 1000 times with
permutated training labels (the chosen arm) for each theta cycle.
The significance of each session and cumulative significance across
all sessions was assessed by whether the classifier outperformed 95%

of the shuffled classifier (permutation test). This procedure was
done separately using either the 60ms after the end of each HP theta
cycle (non-local; Fig. 7D) or the 60ms before the end of the HP theta
cycle (local; Fig. 7C). To assess whether the non-local classification
was more predictive of choice than the local classification (Fig. 7E)
we compared the improvement over shuffle for each lap for local
and non-local classification with a one-sided Wilcoxon rank-sum
test (Fig. 7E). Importantly, this method of comparing the two

Figure 7. Both HP non-local representations and PFC spiking predicted upcoming choice better than chance
during running. A, Example of a theta cycle with a representation of a non-local arm. B, top, We asked whether
the proportion of remote representations during theta tended to overrepresent the arm the rat would choose.
Bottom, The proportion of theta sweeps that match the rat’s choice, compared with a distribution of shuffled
arm labels. Permutation test, p, 10�3. C, top, We asked whether PFC neurons’ simultaneous firing rates could
discriminate which arm the rat would choose from spikes directly following the local or (D) non-local part of HP
theta cycles. Bottom, The accuracy of discriminating the rat’s next choice (line) compared with a distribution of
accuracies from shuffling the label of the choice. Spikes from non-local (D, p, 10�3) but not local (C,
p. 0.8) were significantly able to discriminate the rat’s choice. E, The improvement over the shuffled distribu-
tion was compared between non-local and local showing non-local PFC spikes discriminated future choice better
than local. One-sided Wilcoxon rank-sum test, p, 10�4.
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conditions does not change in its rigor as a function of how many
shuffles are performed to build the control distributions. Arms with
fewer than six laps were not used, and laps without an adequate
number of different non-local theta representations (if the number
of combinations was less than the number of shuffles) were not
used.

Results
Spatial responses of prefrontal and HP neurons recorded
during learning
HP and PFC neurons (Fig. 1A) were recorded simultaneously
from four rats in 11 recording sessions as they explored an asym-
metric Y-maze (Fig. 1B). Recordings were taken from learning
days 1–5. The rats were rewarded in accordance to an alternation
rule and all recordings were performed before asymptotic per-
formance (Fig. 1C). On the 11 recording days, rats had an av-
erage reward rate of 63.00% (26.32–78.00%) and average
alternation accuracy of 45.57% (0–63.64%). Overall, rats
increased their reward rate between the first and last session,
from 59.98% to 70.51% (Kendall’s rank correlation between
recording day and reward rate, R = 0.51, p = 1.2e-3), and
increased their alternation accuracy from 31.32% to 58.32%.
These results are consistent with the hypothesis that the rats
were learning from their experiences during the time that we
were recording their neural activity.

In each of the 11 sessions, we recorded simultaneously from
HP neurons (mean= 88, range 62–137, 968 total) and PFC neu-
rons (mean= 14.4, range 7–25, 158 total). Consistent with previ-
ous reports, while HP neurons tended to fire in specific regions
of the track known as place fields (Fig. 1D), PFC neurons’ firing
patterns were much less spatially localized (Fig. 1E; Jung et al.,
1998; Zielinski et al., 2019). HP neurons exhibited more spatial
selectivity (Fig. 1E) and less radial symmetry (Fig. 1F) than PFC
neurons. Thus, PFC neurons were less selective for the rat’s posi-
tion during running than HP neurons were. To explore what be-
havioral correlates better fit PFC neurons’ firing rates during
running we fit a GLM and using 10-fold cross-validation, pre-
dicted seven behavioral variables. We found that across many
different time bin sizes, the best predicted variable was the dis-
tance traveled within a trial (Fig. 1G). This was better predicted
than the time elapsed during the trial, distance from the center of
the maze, arm, speed, correctness of the trial, or direction trav-
eled (in/out).

PFC neurons were modulated by HP ripple events and HP
theta
In each session, we identified SWRs while the rat was paused on
the track (mean= 1985.3, range: 696–2909, total: 21,838; Fig.
2D). Similar to previous reports (Jadhav et al., 2016; Tang et al.,
2017; Yu et al., 2017), we found that 57% of PFC neurons (68
neurons) were significantly modulated by SWRs (Fig. 2A,B,D).
Of those, 43% were positively modulated, and 57% negatively
modulated. When rats run there is a strong theta rhythm (;8
Hz) in the HP, and consistent with prior reports (Jones and
Wilson, 2005a,b; Benchenane et al., 2010; Jadhav et al., 2016), we
found that 47% of PFC neurons were significantly modulated by
HP theta (Fig. 2C–E). Although ripple events and theta are dif-
ferent HP states and occur independently during ongoing behav-
ior, the PFC neurons that were modulated by HP ripple events
were more likely to be HP theta modulated (58%) than those
that were not (26%). Similarly, PFC neurons that were signifi-
cantly modulated by HP theta were more likely to be modulated
by HP ripple events (80%) than those that were not (50%).

Additionally, the extent to which a PFC neuron was modulated
by HP ripple events (absolute value of the average modulation)
predicted how modulated it was by HP theta (mean resultant
vector length; Fig. 2F). As others have reported (Jadhav et al.,
2016), these results depict a HP-PFC network that is co-modu-
lated during both awake rest and behavior.

PFC neurons were selective for arm identity within HP
replay
To determine whether PFC neurons were modulated by the spa-
tial information in HP ensembles during SWRs, we used
Bayesian decoding (see Materials and Methods) to estimate the
posterior probability of position expressed by the HP population
during SWRs. We found that SWR-related HP activity depicted
trajectories along individual arms, as described previously in a
study using a subset of this dataset (Wu and Foster, 2014). In
order to increase the power in analyses, unlike in our previous
study, we use lower criteria for an arm-replay whereby if the
event is decoded to represent one of the arms it is designated an
arm-replay (mean: 1243.3, range: 455–2048, total: 13,676; Fig.
3D). We then examined whether PFC neurons were differentially
modulated by arm-replay depicting different arms. Overall, a sig-
nificant portion, 18.5% (28/151; binomial test p= 2.0e-9) of PFC
neurons were differentially modulated by replay of different
arms (Fig. 3E–H). For example, the neuron depicted in the left
column of Figure 3E,F (rat E, day 1, neuron 2) increased its firing
rate in response to HP replay of the left and right arms, but not
to HP replay of the center arm. Alternatively, the neuron
depicted in the center column (rat C, day 2, neuron 85) increased
its firing rate in response to HP replay of the left arm, showed no
change in firing rate to HP replay of the right arm, and decreased
slightly its firing rate in response to HP replay of the right arm.
Out of those PFC neurons that were significantly modulated by
SWRs, 19% (17/90; binomial test p, 10�6) of them were also
differentially modulated by arm. In order to control for the pos-
sibility of double counting the same neurons in different ses-
sions, we repeated these analyses using the single session from
each rat with the highest PFC neuron yield and found similar
and significant results (20% of PFC neurons were significantly
modulated, 14/69; binomial test, p=6.9e-6).

There was a diversity of responses of PFC neurons to replay
of different arms, with different PFC neurons exhibiting different
combinations of preferences (Figs. 3G, 4A). In another analysis
to test the consistency of PFC neuron’s selectivity to arm-replay,
we hypothesized that it might be possible to discriminate which
arm was replayed by HP at any moment, from the PFC neurons’
responses to these events alone. Indeed, discriminant analysis
using the modulation of all simultaneously recorded PFC neu-
rons (not just those deemed statistically significantly modulated
by arm-replay) performed better than chance (discriminating
with shuffled training labels; permutation test p= 0.002).
Importantly, the ability to decode the content of HP arm-replay
was not dependent on which arm the animal was on, the time
that had passed in the recording session when the event
occurred, the degree of ripple power within the event or the
length of time each replay took (all permutation tests p= 0.002;
see Materials and Methods). The yield of PFC neurons varied
across sessions, and sessions with more simultaneously recorded
PFC neurons discriminated between arms with greater accuracy
(Fig. 4B). This suggests that the accuracy of decoding the content
of HP arm-replay would increase further with more PFC neu-
rons recorded simultaneously.
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PFC neurons were more selective for arm identity during HP
replay than during behavior
In order to understand this PFC selectivity further, we consid-
ered the hypothesis that these PFC firing rate changes reflected
replay of previous PFC activity patterns during spatial behavior.
This hypothesis follows naturally by analogy with HP replay, in
which replay activity patterns are related to activity patterns that
occurred during previous behavioral experience, whether directly
(Lee and Wilson, 2002) or indirectly (Foster and Wilson, 2006;
Gupta et al., 2010; Pfeiffer and Foster, 2013). Indeed, previous
studies of cortical activity have offered support for this hypothe-
sis (Ji and Wilson, 2007; Jadhav et al., 2016; Ólafsdóttir et al.,
2016; Yu et al., 2018; Shin et al., 2019). Specifically, we hypothe-
sized that PFC activity during HP replay of an arm would resem-
ble the PFC activity that occurred during behavioral exploration
of that same arm. In order to test this hypothesis, we simulated
PFC activity during SWRs based on the previous behavioral ac-
tivity patterns, and compared this to the actual PFC activity pat-
terns that occurred during SWRs (Fig. 4D). In generating these
simulated responses, we kept the proportion of arm-replay the
same, but non-randomly shuffled the response of each PFC neu-
ron to minimize the difference between the pattern of modula-
tion elicited and the pattern the PFC neurons exhibited across
running (Fig. 1D). We used the mean firing rate of each arm
because the PFC firing patterns along an arm’s length were simi-
lar across arms (Fig. 1F; Materials and Methods; mean radial
symmetry: 0.27; mean overlap measure: 0.78), and furthermore
the similarity across arms was even stronger in the PFC neurons
that showed arm-replay specificity (radial symmetry: selective
N= 28, mean: 0.39, range: 0.08–0.90; non-selective N=123,
mean: 0.25, range: �0.31–0.93; Wilcoxon rank-sum test: p=
7.2e-3; overlap measure: selective N=28, mean: 0.84, range:
0.58–0.95; non-selective N= 123, mean: 0.78, range: 0.20–0.96;
Wilcoxon rank-sum test: p=0.012). Contrary to our hypothesis,
these simulated responses were significantly less differentially
modulated than the true data (Fig. 4A–D). The sum of squared
differences in Expected is less than in Observed across all 11 ses-
sions (Fig. 4E) in addition to only in significantly arm-replay
modulated neurons (Fig. 4F). Thus, PFC neurons’ selectivity to
arms during running did not explain their selectivity to arms
during replay. We also repeated the same analyses using the PFC
firing rates across the three arms separately for each period of
time the rat explored all three arms, and computed the Expected
sum of squared difference for each of those exploration periods.
When we compared the maximum Expected sum of squared dif-
ferences that was possible across those periods the simulated
responses were significantly less than the true data (two-sided
Wilcoxon signed-rank test, N=28, 28, z=2.00, p= 0.045; using
only one session per rat. Two-sided Wilcoxon signed-rank test,
N= 14, 14, W=90, p= 0.017). Thus, not even in certain subsets
of behavior did PFC neurons’ selectivity to arms during running
explain their selectivity to arms during replay.

PFC neurons that were modulated by HP arm-replay were
also more active after HP spikes from non-local theta phases
Given the surprising degree of spatial coding exhibited by PFC
neurons during HP replay, despite the lack of spatial specificity
in the same neurons’ responses during running behavior, we
wondered whether alternative measures of co-activity between
PFC and HP neurons during running would reveal a different
basis for coordination between the two areas. We first noted that
when rats run through space, the HP internal representation of
space could be local or non-local, that is, either reflecting the

current position as expected from classical place field responses,
or reflecting the recall of distant place information in a manner
analogous to replay, respectively. Non-local and local HP repre-
sentations corresponded to different parts of “theta sequences”
or “theta sweeps,” which are sequential representations of space
nested within cycles of the strong theta rhythm in the HP during
running (Fig. 5A; Foster and Wilson, 2007; Johnson and Redish,
2007). The second half of the theta sequence cycle tended to be
more non-local than the first (Fig. 5B). Because PFC neurons
were modulated by HP activity during both rest and running
(Fig. 2E) as well as being modulated by non-local information in
replay (Fig. 3), we next asked whether PFC neurons were active
more after non-local parts of HP theta. We measured the cross-
covariance of HP spikes and each PFC neuron using HP spikes
from either the first or second part of the theta cycle (Fig. 5C),
and determined that PFC neurons were more strongly related to
HP spikes from the second half of theta cycles both across the
whole population of PFC neurons (two-sided Wilcoxon signed-
rank test, N=158, N= 158, p=4.9e-5), as well as only the PFC
neurons that were significantly arm-replay modulated (Fig. 5D).
The peak of HP to PFC modulation is a 10-ms lag when using all
spikes and 30ms when using only second half of theta cycle
spikes, while the peak using only the first half of the theta cycle
has a negative lag of 30ms. Furthermore, we found that the
extent to which a PFC neuron was differentially modulated by
replay of different arms predicted how much more modulated
the PFC neuron was to HP spikes from the second half of theta
cycles compared with the first half (Fig. 5E). There was no signif-
icant relationship between the extent a PFC neuron was modu-
lated by SWRs (as in Fig. 2G) and how much more modulated
the neuron was to HP spikes from the second half of theta
[Pearson’s correlation: R= 0.040, p= 0.62, log(SWR modulation):
R = �0.033, p= 0.68]. And when taking into account the extent a
PFC neuron was modulated by SWRs, there was still a significant
correlation between the extent it was driven by late theta spikes
and how differentially modulated it was to arm-replays (partial
correlation: R=0.31, p= 9.9e-5; log: R= 0.24, p= 3.5e-3). Thus,
PFC neurons that were modulated by non-local information
during rest were also active more after late phases of HP theta,
which were often associated with non-local representations dur-
ing behavior.

PFC neurons’ arm preference in replay is best explained by
HP non-local representations during run
Since we found that PFC neurons were tuned to the internal HP
representation of arm during replay and active more after late
phases of theta, we hypothesized that the internal HP estimate of
position during non-local representation might be a better pre-
dictor of how the PFC neurons respond to replay than the true
external position. We decoded the position using 40-ms bins of
HP activity every 10ms of each rat as he ran and measured how
PFC neurons’ firing rates were modulated 40ms later by the 2-d
spatial representation in HP, broken down by local (Fig. 6C,E) or
non-local (Fig. 6D,F) positions. We compared the PFC neurons’
non-local modulation map during immobility (Fig. 6A, mirror-
ing the selectivity to arm-replay shown in the insets) to either the
local or non-local modulation maps during running for each
PFC neuron (Fig. 6G). We found that PFC neurons’ immobility
non-local modulation was more correlated with the non-local
modulation maps than the local modulation maps during run-
ning (Fig. 6H). Further, when we restricted these analyses to only
neurons that were previously found to be significantly differen-
tially modulated by replay of different arms, we found that this

5904 • J. Neurosci., July 7, 2021 • 41(27):5894–5908 Berners-Lee et al. · PFC Selectivity for Hippocampal Non-Local Activity



population’s replay modulation showed a strong correlation to
non-local compared with local HP activity (Fig. 6I). Because
these analyses were done on the 2D map of modulation, they do
not necessarily reflect the pattern across the three arms but could
also reflect similar modulation patterns within those arms. To
specifically test whether the pattern of non-local modulation by
different arms that PFC neurons showed to the HP representa-
tion during running better reflected the arm-replay modulation
than local HP representation, we computed a difference score for
each neuron for non-local and local separately, and found that
the pattern of modulation across the three arms during replay
was better reflected by non-local than local HP representation
(Materials and Methods; Fig. 6J,K and 6A,B,E,F, insets). To con-
trol for the possibility that some bias in the non-local HP repre-
sentations happened to produce this effect, we performed a
permutation test where the non-local representations were shuf-
fled, and found that the pattern of modulation produced by the
true non-local representations was unlikely to occur by chance
(Fig. 6L). Across arm-replay modulated neurons the pattern of
modulation matched better than chance (Fig. 6M). In addition to
using a 40-ms delay (which allows for HP activity from 0–80ms
previous to be reflected in PFC firing, as depicted in Fig. 6N,
inset), we tested other delays and, consistent with the results
from cross-covariance analysis, found that delays of 10–50ms
produced similar and significant results (Fig. 6N). Thus, during
running, PFC neurons exhibited selectivities to non-local HP
arm representations that were similar to their individual selectiv-
ities to HP replay arm representations, and dissimilar to the HP
representation of current position. Hence, whether during run-
ning or immobility, PFC neurons were sensitive to the non-local
information represented in HP, and insensitive to the actual cur-
rent location of the animal.

PFC neurons responded similarly to HP replay as they did to
remote HP theta cycles
Because PFC neurons’ replay selectivity was correlated with their
responses to non-local HP representations while running, we
asked whether this was true on a theta-cycle-by-theta-cycle level.
It is unclear whether theta phase or decoded position is the better
way to define non-local activity, so we aimed to use both. Again,
we generated modulation maps of PFC neurons by HP represen-
tation, but this time instead of comparing non-local and local
periods, we compared the first and second half of each theta
cycle. Knowing that PFC neurons that were significantly differ-
entially modulated by replay of different arms were active more
after non-local parts of theta (Fig. 5D,E), we asked whether these
neurons had a pattern of modulation by the non-local part of
theta cycles that better matched their replay modulation than the
local part of theta cycles (Fig. 6O). We found that the pattern of
modulation by the HP representation after the second half of
theta (non-local portion) was more similar to their replay modu-
lation pattern than after the first (local) portion (Fig. 6P) and
that this effect was greater than chance (Fig. 6Q). Thus, non-local
representations in the HP during theta were followed by arm-
modulated firing of PFC neurons in a similar pattern as during
replay.

Remote theta cycles and associated PFC spiking both
predicted rats’ choices
Non-local representations in theta sometimes predict the ani-
mal’s upcoming behavior (Wikenheiser and Redish, 2015) and
sometimes do not (Kay et al., 2020). We asked whether, as the
rat approached a choice point, the proportion of theta cycles in

which the HP remotely represented each of the two potential
next arms (Fig. 7A) predicted which arm it would choose. We
found that there was a bias of remote theta cycles toward the
chosen arm (Fig. 7B). This bias was not because of there being
matched biases of which arm the rat tended to choose and which
arm theta cycles tended to represent. This was tested by compar-
ing the bias to a control distribution where the chosen and un-
chosen arm were shuffled within trajectories starting on each
arm, so that the proportion of choices the rat took on each arm
to every other arm was constant, and the proportion of arms that
tended to be represented in the remote theta cycles was constant,
but the relationship between the theta cycles and choice was
shuffled (permutation test, p, 10�3). Thus, remote theta cycles
as the rat ran down one arm tended to reflect the arm the rat was
about to choose next.

Because PFC neurons activity was more related to these
remote theta cycles (Fig. 6) as well as to HP spikes in later, non-
local phases of HP theta (Fig. 5), we hypothesized that PFC
spikes might predict the rat’s choice. We found that when we
attempted to classify which arm the rat would choose on each
lap using all PFC neurons’ spiking triggered off of the local part
of HP theta (Fig. 7C, top) that we could predict the rats’ behavior
no better than chance (Fig. 7C, bottom). However, when we used
PFC neurons’ spiking triggered off of the non-local part of HP
theta (Fig. 7D, top), we were able to decode the rats’ future choice
better than chance (Fig. 7D, bottom). Furthermore, the improve-
ment over shuffle using non-locally triggered PFC spikes was sig-
nificantly greater than the improvement over shuffle using
locally triggered PFC spikes (Fig. 7E). Thus, even early in learn-
ing, PFC neurons expressed information about the animal’s
choice, and that information was yoked to the non-local repre-
sentations in HP theta.

Discussion
We have shown that a statistically significant portion of prefron-
tal (PFC) neurons can be selective to the spatial trajectory infor-
mation contained in HP replay. PFC neurons exhibited diverse
selectivities for replays of different arms. Because of this diversity
and robustness in responses, arm identity of HP replay could be
discriminated better than chance from small numbers of
simultaneously recorded PFC neurons. Intriguingly, PFC
neurons’ arm selectivites could not be predicted from those
neurons’ place responses during behavior. The observed
modulation by replayed arm was greater than expected if the
PFC neurons had solely been reactivating their firing pattern
seen when running across the arms. We found that HP’s rep-
resentations of nonlocal position during running explained
the PFC neurons’ firing patterns to HP arm-replay better
than representations of local position. This suggests that PFC
neurons’ activities, which were unrelated to the current loca-
tion of the animal, were consistently tuned to internally-gen-
erated non-local representations in the HP.

Previous studies have shown that many areas are modulated
by HP ripples (Pennartz et al., 2004; Ji and Wilson, 2007;
Peyrache et al., 2009; Logothetis et al., 2012; Jadhav et al., 2016;
Ólafsdóttir et al., 2016; Sosa et al., 2020) and that PFC neurons’
response to SWRs are modulated by state or context (Tang et al.,
2017; Yu et al., 2017). Here, we have shown, for the first time to
our knowledge, that representations of specific arms in a maze
are reflected in individual cortical neurons’ firing rates during
SWRs. This finding provides strong support for the hypothesis
that the role of HP SWRs is not solely to compute locally within
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the HP or to upregulate activity non-specifically in cortical areas,
but rather to communicate the information within replay to
downstream areas (Buzsáki, 1996; Sutherland and McNaughton,
2000; Teyler and Rudy, 2007).

The communication of information from HP to cortex is a
necessary component of models of systems consolidation in
which the replay of different memories enables the establishment
of corresponding cortical representations (McClelland et al.,
1995; Nadel et al., 2000; Sutherland and McNaughton, 2000).
However, our data do not align well with the Indexing Theory of
consolidation (Teyler and Rudy, 2007), which posits that the HP
possesses a pointer to a distributed cortical representation that is
established at the time of encoding during behavior, and which is
subsequently reactivated repeatedly to promote the slow consoli-
dation of synaptic connections between constituent neurons of
the cortical representation. In this framework, the cortical and
HP patterns refer to the same external information (i.e., the expe-
rience to be remembered), established through quick and slow
learning, respectively. In contrast, our data demonstrated a mis-
match between HP-PFC coactivity patterns during experience
and reactivation, when examined on the basis of the animal’s
actual position. Instead, the PFC was consistently engaged with
non-local representations in the HP. Thus, we propose that PFC
neuron activity during HP replay does not in general exhibit
reactivation, even while HP neurons do (Fig. 8). This schematic
figure demonstrates that, to the degree that PFC neurons
respond to non-local activity during behavior, they cannot then
be reactivating their own activity from this behavior whenever
the HP replays it.

Others have reported HP-PFC co-reactivation of encoded ex-
perience, but have not reported that PFC neurons’ selectivity for
portions of the environment during replay is more so than their
selectivity during encoding, as we report here (Jadhav et al.,

2016; Tang et al., 2017). These differences may be because of the
large numbers of HP neurons we recorded simultaneously and
therefore the large amount of replay we were able to resolve, as
well as the fact that our experiments took place in the very early
learning stages of a task that was being learned slowly and would
never become well learned. Other sources of variability across
studies may include the sub-areas or layers of PFC recorded
from. Experiments using rigid probes instead of independently
moveable tetrodes might address these potential differences.
Interestingly, a lack of cortical reactivation during HP replay
events is compatible with cortical reactivation that is unrelated to
HP replay. Replay across PFC neurons has recently been
reported (Kaefer et al., 2020). The same group has also reported
replay across neurons in entorhinal cortex unrelated to HP
replay (O’Neill et al., 2017; although see Ólafsdóttir et al., 2016).
Integrating these and our findings leads to the suggestion that
both cortical replay, and cortical activity driven by HP replay,
may occur, but without the relationship between the two
assumed by some consolidation theories.

Prior work has shown that activity in cortical areas before HP
SWRs can also be related to HP activity (Rothschild et al., 2017;
Chung et al., 2019). In this study we aimed to explore how non-
local representations in HP such as replay are reflected in PFC
neurons, and because of the evidence in our data that PFC neu-
rons were responding to HP activity, we chose to focus our anal-
ysis on PFC’s activity during and slightly after HP activity.
However, our data does not preclude the notion that information
may be traveling in both directions and/or from another shared
region. Our data also leaves open the exact computations that
PFC neurons perform on incoming HP internal representations.

Theta sequences in the HP have also been shown to be modu-
lated by reward and task structure (Gupta et al., 2012;
Wikenheiser and Redish, 2015). HP theta can coordinate activity
between HP and PFC, as shown here and in previous studies
(Siapas et al., 2005; Benchenane et al., 2010). Furthermore, our
findings that PFC neurons are modulated by the information
within replay in the same pattern as they respond to non-local
portions of theta cycles is consistent with the notion that non-
local parts of theta sequences are involved in similar computa-
tions as non-local replay (Pezzulo et al., 2017). It is also consist-
ent with the idea that theta cycles have encoding and retrieval
portions (Siegle and Wilson, 2014) and extends these ideas to
posit that non-local parts of theta sequences engage a similar
cortical network as do non-local replay.

Our findings are not in opposition to the general framework
that PFC neurons are important for learning abstract rules of a
task space (Wallis et al., 2001; Rich and Shapiro, 2007; Wilson et
al., 2014). The rats recorded from in this study were early in
learning, and it is likely that the rats were still trying to determine
the relevant dimensions of the task space to choose an effective
strategy. However, whatever coding scheme might later develop
in the PFC population to support high performance (Rich and
Shapiro, 2009; Powell and Redish, 2016) might be secondary to
the early integration of HP representations of space. Specifically,
having information about the possible remote trajectories that
defined the space might be useful to determine patterns or rules.
Possibly, with increased experience in this task, the PFC neurons
could become more tuned to another dimension of the task and
less tuned to HP internal place representation, or begin to gener-
alize across the environment (Tang et al., 2017; Yu et al., 2018).

PFC neurons in our recordings were tuned to similar internal
HP representations regardless of the state the rat was in. This is
consistent with the notion that PFC is oriented inward, driven

Figure 8. A schematic showing that while HP neurons reactivate previous encoded experi-
ence, PFC neurons instead consistently reflect non-local representations. Top row, As a rat
moves along a trajectory from the center arm up into the right arm, HP neurons with place
fields along the trajectory are activated locally (top left panel, open ellipses). Additionally,
however, HP neurons with fields on the left arm can be activated non-locally (top left panel,
solid ellipse), and it is these non-local activations that PFC neurons are tuned to (top right
panel, solid ellipse). Bottom row, During rest periods, HP neurons can exhibit replay of the
same trajectory as in the top panel (bottom left panel, solid ellipses). However, this replay
will typically recruit different PFC neurons to those that were recruited by the non-local HP
activity that occurred during the associated behavior (bottom right panel, solid ellipse, com-
pared with top right panel, solid ellipse). Thus, when the HP is reactivating its representa-
tions from a previous behavioral episode, the PFC is typically not reactivating its
representations from the same episode.
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more by internal states than by external stimuli (Brincat and
Miller, 2016) and part of a “default mode network” (Schacter et
al., 2007; Kaplan et al., 2016). Our data support the idea that PFC
performs computations on internal variables: the relationship
between PFC neurons’ modulation by replay and firing on the
track emerged only given the internal variable of remote posi-
tions represented by HP.

Consistent with previous findings of HP and PFC’s involve-
ment in prospective coding (Ito et al., 2015), we found that por-
tions of remote-representing theta cycles, as well as associated
PFC spikes, predicted the choice of the rat. Thus, even in early
learning when robust “splitter cells” had not yet developed, HP
and PFC reflected upcoming choices on the same theta-cycle
timescale. PFC receives input from many other brain areas in
addition to the HP including the striatum and amygdala (Sotres-
Bayon and Quirk, 2010; Catanese et al., 2016), and might use
theta to gate its input from different areas (Hyman et al., 2011).
This theta gating might provide a mechanism for PFC to tune in
selectively to nonlocal representations in HP. In this framework,
the PFC would be tuning into internal HP representations dur-
ing late HP theta phases, especially in periods when HP theta
phase is a strong driver of spike timing. Then, in other phases or
time periods it might tune into other internal variables that are
also relevant for behavior. Further study of how and when PFC
neurons are selective to different specific internal variables in the
brain will likely provide further insight into PFC function, as
well as the mechanisms of remote representations underlying
memory and prediction.
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