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Abstract

IMPORTANCE—For more than a decade, sorafenib has been the only systemic treatment option 

for patients with advanced hepatocellular carcinoma (HCC). However, rapid progress over the past 

few years led to approval of other angiogenesis inhibitors and several immune checkpoint blockers 

(ICBs) that have been added to the treatment armamentarium for advanced HCC. Moreover, the 

recent success of a combination of bevacizumab with atezolizumab signals an important change in 

the front-line treatment of HCC.

OBSERVATIONS—This review summarizes rapidly emerging clinical data on the promise and 

challenges of implementing ICBs in HCC and discusses the unmet need of biomarkers to predict 

response or resistance to therapy. Two strategies to target immunosuppression in tumors are also 

discussed: one proven (vascular endothelial growth factor pathway inhibition) and one currently 

under investigation (transforming growth factor-β pathway inhibition). The rationale and 

preliminary evidence on how their inhibition may reprogram the immunosuppressive milieu and 

enhance the efficacy of ICBs in HCC are reviewed.

CONCLUSION AND RELEVANCE—The recent successes and failures of angiogenesis 

inhibitors and ICBs, alone and in combination, have provided important insights into how to 

implement this novel systemic therapy in HCC and led to new avenues to enhance immunotherapy 

efficacy in this disease.

Hepatocellular carcinoma (HCC) is the most common primary liver cancer and a leading 

cause of cancer-related mortality. Early HCC can be treated curatively with surgery or 
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ablation, but at advanced stages, available HCC treatments (eg, transarterial 

chemoembolization, systemic therapies) are merely palliative.1 The development of the 

multityrosine kinase inhibitor (mTKI) sorafenib represented the first systemic therapy for 

advanced HCC.2 While sorafenib was the only systemic therapy option for more than a 

decade, the field has evolved rapidly over the past 4 years.1 Four more agents succeeded in 

phase 3 trials and were eventually approved: lenvatinib mesylate (mTKI) in front-line 

treatment and regorafenib, cabozantinib S-malate (both mTKIs), and ramucirumab (anti-

vascular endothelial growth factor [anti-VEGF] receptor(R)2) in second-line treatment.1 In 

addition, immune checkpoint blockers (ICBs) against the programmed cell death protein 

(PD)-1 and cytotoxic T lymphocyte antigen 4 have been approved for HCC in second-line 

treatment.3–5 Fueled by this progress, a large number of studies are currently testing ICBs 

worldwide, alone or in combination with other systemic or locoregional therapies.

There is a rationale supporting the use of immunotherapy in liver cancer.6 While HCC could 

be immunogenic, the tumor cells and the infiltrating stromal and immune cells promote an 

immunosuppressive tumor microenvironment (TME), including by upregulation of immune 

checkpoint molecules on their surface. Moreover, the tolerogenic liver environment, as well 

as chronic inflammation caused by the underlying liver disease present in most patients with 

HCC, further enhance immunosuppression, which enables the cancer cells to evade immune 

surveillance and potentially resist ICB treatment.6

In this review, we summarize recent clinical data on the use of ICBs in HCC and discuss the 

need for biomarkers to estimate the probable response or resistance to immunotherapy. We 

also elaborate on the roles of 2 of the pathways known to contribute to tumor 

immunosuppression: the VEGF and transforming growth factor (TGF)-β pathways. We 

summarize the rationale and preliminary evidence on how inhibition of these pathways may 

reprogram the immunosuppressive TME and enhance the efficacy of ICBs in HCC.

ICBs in Advanced HCC

Several ICBs have been tested in clinical phase 1, 2, and 3 trials in advanced HCC, either 

alone or in combination with targeted therapies or other ICBs. Response rates to ICB 

monotherapy ranged from 15% to 23% and increased to approximately 30% after 

combination treatment (Table 13–5,7–16 and Table 2).17–19 Based on durable antitumor 

responses from phase 2 trials of nivolumab and pembrolizumab (both anti–programmed cell 

death protein 1 [PD-1] antibodies) and nivolumab with ipilimumab (anti–cytotoxic T 

lymphocyte antigen-4 antibody) combination in HCC, the US Food and Drug 

Administration granted conditional approval for these ICBs.3–5,7,8 The CheckMate 040 

study tested nivolumab alone or with ipilimumab and reported an overall response rate 

(ORR) of 22.5% for sorafenib-naive and 18.7% for sorafenib-experienced patients for 

nivolumab and 33% for the nivolumab-ipilimumab combination; median overall survival 

(OS) rates were 29 months (sorafenib naive), 15 months (sorafenib experienced), and 23 

months (nivolumab-ipilimumab combination).3,5,7,8 The KEYNOTE-224 study investigated 

pembrolizumab in sorafenib-experienced patients and demonstrated an ORR of 17% and a 

median OS of 13 months.4

Pinter et al. Page 2

JAMA Oncol. Author manuscript; available in PMC 2021 July 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Despite the positive signals from phase 1/2 studies, 2 subsequent randomized phase 3 trials 

testing nivolumab and pembrolizumab in advanced HCC failed to meet their primary end 

points.17,19 The CheckMate 459 study compared nivolumab vs sorafenib in the first-line 

setting in advanced HCC (Table 2).17 The predefined threshold of significance for the 

primary end point OS was not reached (hazard ratio [HR], 0.85; P = .09). However, the 

median OS was substantially longer with nivolumab (16.4 vs 14.7 months) and was the 

longest ever seen for any drug monotherapy in advanced HCC. While relatively low, the 

ORR was double with nivolumab vs sorafenib (15% vs 7%), and 4% of the patients achieved 

a complete response. Nivolumab also showed an improved safety profile and quality of life 

compared with sorafenib.17 Another randomized phase 3 trial (KEYNOTE-240) tested 

pembrolizumab vs placebo in sorafenib-experienced patients with HCC and also missed the 

predefined significance levels for its coprimary end points of OS and progression-free 

survival (PFS) (Table 2).19 Median OS for pembrolizumab vs placebo was 13.9 vs 10.6 

months (HR, 0.78; P = .02), and median PFS was 3.0 vs 2.8 months (HR, 0.78; P = .02). 

Pembrolizumab was well tolerated and improved ORR vs placebo (18.3 vs 4.4%); median 

duration of response was 13.8 months.19 The failure of both phase 3 trials despite clear 

activity of the ICBs could be explained by the unexpectedly long median OS in the control 

arms, which was likely impacted by poststudy treatment (including ICBs).19 Another phase 

3 trial testing pembrolizumab vs placebo after previous sorafenib therapy in Asian patients is 

ongoing (KEYNOTE-394).20

The setbacks for ICB monotherapy indicated that combinations with additional agents might 

be necessary to enhance ICBs’ efficacy. In a randomized phase 3 trial,18 first-line 

atezolizumab (anti-PD-ligand [L]1 antibody) plus bevacizumab (anti-VEGF antibody) 

significantly improved the coprimary end points median OS vs sorafenib (not estimable vs 

13.2 months; HR, 0.58; P < .001) and PFS (6.8 vs 4.3 months; HR, 0.59; P < .001) (Table 2). 

The safety profile was also more favorable, with fewer treatment-related grade 3 to 4 adverse 

events in the combination arm. These data are especially important given the limited impact 

of bevacizumab in HCC reported previously.21

Thus, despite recent successes, much remains to be understood for optimal integration of 

ICBs in HCC. Safety and efficacy of ICBs have been researched in combination ICB studies. 

Large studies have confirmed the durability of responses seen in smaller studies, but both 

phase 3 trials testing anti-PD-1 monotherapy failed. Clearly, patient selection using 

predictive biomarkers would be highly desirable. Moreover, the impressive outcome data 

seen with the combination of nivolumab with ipilimumab and atezolizumab with 

bevacizumab demonstrate that combinatorial approaches represent valid strategies to 

increase the efficacy of immunotherapy in HCC.

Potential Predictors of Response

Even though combination with targeted therapy nearly doubled the ORR of ICB, still more 

than half of the patients did not respond.18 Moreover, ICBs can cause severe immune-related 

adverse events as well as hyper progression (accelerated tumor growth) as a new pattern of 

progression during PD-1/PD-L1-targeted therapy (8% in HCC).22,23 Patient selection based 
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on biomarkers could help to maximize the efficacy and reduce the number of patients who 

may not benefit or even be harmed from ICBs.

To our knowledge, no predictive biomarkers for ICB response currently exist. Several 

potential biomarkers have been proposed based on exploratory end points in HCC trials. 

These biomarkers mainly include PD-L1 expression, tumor mutational burden, and specific 

genomic alterations.

Expression of PD-L1 on immunohistochemistry is routinely being used for patient 

stratification in non–small cell lung cancer or gastric cancer; however, some patients with 

PD-L1–negative tumors respond to ICBs, and PD-L1 expression did not correlate with 

response in other tumor types.24 In HCC, tumoral PD-L1 expression (cutoff ≥1%) was not 

predictive for response to nivolumab or pembrolizumab.3,4,17 The combined positive score 

(PD-L1 on tumor and immune cells), assessed in only a subset of patients (n = 52), was 

associated with response to pembrolizumab and PFS.4

High tumor mutational burden (ie, number of nonsynonymous single nucleotide variants) 

may increase the likelihood of ICB response, as seen in some patients with ICB-treated 

cancer.24 Moreover, tumors with high microsatellite instability have a high tumor mutational 

burden, making them more likely to be sensitive to ICBs. Pembrolizumab was granted 

approval for any microsatellite instability–high or mismatch repair deficient tumors by the 

US Food and Drug Administration in 2017 and became the first drug to be approved with a 

tumor-agnostic indication.24,25 In HCC, tumor mutational burden is generally low, and its 

utility as a biomarker to predict response to ICB is not supported by available data.26 

Similarly, the prevalence of microsatellite instability–high status is rare in HCC.27

Activated Wnt/β-catenin signaling has been associated with immune exclusion (cold, non–T-

cell inflamed tumors) in HCC and proposed as potential biomarker of resistance to 

immunotherapy.28,29 However, this observation needs prospective confirmation.

On the basis of these findings, biomarker-associated patient selection for ICB may increase 

the likelihood of durable responses, but, to our knowledge, no such biomarkers have been 

confirmed for HCC. Based on the current clinical evidence, a predictive model that 

incorporates several factors (genetic and microenvironmental) may be more likely to 

estimate the probability of response to immunotherapy than a single biomarker.24

Targeting the Immune TME

Several immune and stromal cells of the TME directly or indirectly orchestrate antitumor 

immunity. Tumor-infiltrating CD4+ and CD8+ effector T lymphocytes are thought to 

mediate responses to ICBs. These cells are primed in the draining lymph nodes through 

tumor antigen presentation by dendritic cells. In addition, natural killer cells have the ability 

to directly recognize tumor cells and also contribute to antitumor immunity. Tumor-

associated endothelial cells and the aberrant tumor vasculature hinder trafficking of immune 

effector cells while promoting the recruitment of immunosuppressive cell types. These cell 

types include regulatory T cells and myeloid-derived suppressor cells, which suppress 

effector T-cell proliferation, function, and cytotoxicity. Tumor-associated macrophages 
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display different phenotypes; M1-like TAMs are considered to have antitumor activity, while 

M2-like tumor-associated macrophages exert immunosuppressive and tumor-promoting 

effects. Cancer-associated fibroblasts contribute to immunosuppression by inhibiting T-cell 

function and secretion of extracellular matrix, which represents a physical barrier to T-cell 

infiltration.30–32

Each of these components represents a potential target to reprogram the immunosuppressive 

TME. Herein, we focus on VEGF and TGF-β signaling—2 immunosuppressive pathways 

that are characteristic of HCC and modulate several cell types of the TME—as targets for 

reprogramming the HCC TME and enhance ICB efficacy.

Targeting VEGF Signaling

Hepatocellular carcinoma is a highly vascularized tumor that exploits the active formation of 

new blood vessels (angiogenesis) to grow and disseminate.33 The VEGF pathway is a key 

regulator of tumor angiogenesis and upregulated in most cancer types.34 All 5 targeted 

therapies with proven efficacy against HCC inhibit VEGF signaling,1 which supports the 

notion that this pathway mediates HCC progression.

In addition to its widely studied role in promoting angiogenesis, VEGF can directly affect 

immune cells of both myeloid and lymphoid lineage and promote immune evasion in 

different tumor types (Figure 1).30 For example, VEGF can impair maturation and function 

of dendritic cells, which are key antigen-presenting cells,35,36 and promote accumulation of 

regulatory T cells and myeloid-derived suppressor cells.37,38 In addition, VEGF can directly 

and indirectly inhibit infiltration and function of cytotoxic T lymphocytes,39,40 and increase 

PD-1 expression on intratumoral CD8+ T cells.41 Vascular endothelial growth factor 

indirectly affects immunity by increasing vessel permeability (leakiness), a main feature of 

the aberrant tumor vasculature.42,43 Leakiness impairs tumor blood flow and increases 

interstitial fluid pressure, consequently leading to hypoxia and acidosis,43 which promote 

immunosuppression by impairing the function of antigen-presenting cells and cytotoxic T 

lymphocytes, and by increasing accumulation of immunosuppressive cells and immune 

checkpoint expression.31,43,44

Inhibition of VEGF has also been shown to impact not just the vasculature, but also the 

immune TME of HCC, but the results have been inconsistent. Some preclinical studies 

showed that treatment with sorafenib, 30 mg/kg/d, decreased the intratumoral accumulation 

of regulatory T cells and myeloid-derived suppressor cells in subcutaneous and orthotopic 

murine HCC models.45,46 Another study showed that sorafenib, 10–90 mg/kg/d, triggered a 

natural killer cell response against HCC by inducing proinflammatory activity mediated in 

part by treatment-induced pyroptosis—a potentially immunogenic type of cell death—in 

tumor-associated macrophages.47 On the other hand, excessive vessel pruning caused by 

anti-VEGF therapy can increase tumor hypoxia and counteract these effects by promoting 

immunosuppression.43 In addition, antivascular effects can impair drug delivery to tumors 

and may thus reduce the efficacy of the anti-VEGF agent itself or concomitant ICBs.42 In 

experimental models of HCC, sorafenib, 40–50 mg/kg, treatment intensified tumor hypoxia 

and increased the accumulation of immunosuppressive cell types (eg, myeloid-derived 
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suppressor cells, regulatory T cells, and M2-like macrophages) as well as PD-L1 expression 

in tumors.48,49 While anti-PD-1 therapy had no additional efficacy when combined with 

sorafenib, a triple combination with a CXCR4 inhibitor, that prevented polarization toward 

an immunosuppressive milieu, delayed tumor growth and reduced dissemination.49

Judicious dosing of anti-VEGF drugs to normalize the dysfunctional tumor vasculature 

instead of causing excessive vessel pruning may improve tumor perfusion, alleviate tumor 

hypoxia, and increase delivery of concomitant systemic therapy (eg, immunotherapy) 

(Figure 1).42 This hypothesis was supported by emerging clinical data: bevacizumab (anti-

VEGF antibody) improved tumor vessel function in patients with rectal cancer,50 and 

increased tumor blood perfusion upon treatment with a VEGF receptor (R)-targeted TKI was 

associated with prolonged survival in patients with glioblastoma.51

Immune checkpoint blocker itself may normalize vascular structure and function when 

eliciting immune responses via CD4+ and CD8+ lymphocytes (Figure 1).52,53 Moreover, 

combination of lower, vascular-normalizing doses of anti-VEGF treatment with active 

immunotherapy showed efficacy in preclinical54 as well as clinical studies.55 In murine 

breast cancer models, lower doses of anti-VEGFR2 therapy induced vascular normalization 

and thereby alleviated tumor hypoxia, reprogrammed the immunosuppressive TME, and 

enhanced the efficacy of immunotherapy.54 A recent phase 1b trial reported encouraging 

efficacy data for the combination of regorafenib, 80 mg/d (half the standard dose), plus 

nivolumab (>35% ORR) in advanced gastric or colorectal cancer.55 A similar trial, using 

regorafenib, 80 mg/kg/d, and anti-PD1 antibodies is ongoing in HCC.56

Preclinical studies provided several insights into the effect of this treatment interaction in 

murine HCC models. One study showed that dual inhibition of VEGFR2 and PD-1 resulted 

in normalized vessel formation mediated by CD4+ T cells and was accompanied by 

augmented antitumor immune response and improved efficacy, including in ICB-resistant 

HCC models.57 Another study showed that lenvatinib—but not sorafenib—decreased the 

tumor infiltration by monocytes and macrophages, increased the numbers of CD8+ T cells, 

and augmented the antitumor effect of anti-PD-1 treatment in a subcutaneous murine model 

of HCC.58

In HCC, several trials are currently investigating anti-VEGF–based therapies in combination 

with ICBs (Table 3).59–86 Based on preliminary data, the combinations of lenvatinib plus 

pembrolizumab and bevacizumab plus atezolizumab have both been granted breakthrough 

therapy designation for advanced HCC by the US Food and Drug Administration (Table 1).
12,14 The latter combination improved both coprimary end points (OS and PFS) over 

sorafenib alone in the first-line setting of advanced HCC in the recently reported 

IMbrave150 phase 3 study18 and is currently being investigated in another phase 3 study as 

an adjuvant therapy after resection or local ablation (IMbrave050).64 Lenvatinib plus 

pembrolizumab is currently being tested in a phase 3 front-line trial, and data are 

forthcoming.63

Taken together, the role of targeting the immune TME of HCC has been confirmed clinically 

using anti-VEGF/VEGFR therapy. The effects may be dose and agent dependent when using 
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mTKIs. The use of lower, vascular-normalizing doses of anti-VEGF therapies is supported 

by emerging clinical data,55 but needs further confirmation in larger studies in HCC. This 

mechanistic complexity notwithstanding, given that combining anti-VEGF and ICB 

treatment is the new standard of care in HCC, future therapeutic approaches will have to 

improve on this new backbone treatment.

Targeting TGF-β Signaling

The TGF-β pathway has complex functions in the liver tissue, where it regulates 

homeostasis. Dysregulated TGF-β signaling is involved in the pathogenesis of several liver 

diseases, including HCC development. Moreover, TGF-β has a dual role in carcinogenesis as 

it can act as a tumor suppressor, particularly in early tumor stages, but can also promote 

tumor progression and dissemination in more advanced cancers. Several components of the 

TME, including fibroblasts, immune cells, and extracellular matrix components, mediate 

these context-dependent functions.87,88

Regulation of tumor immune evasion is also seen with TGF-β, especially in advanced tumor 

stages.88 The immunosuppressive effects are mediated by dampening T-cell responses, but 

TGF-β may also affect other immune cells.88 For example, TGF-β inhibits natural killer cell 

function and increases the number of regulatory T cells.89,90 Another action of TGF-β is 

promotion of antigen-specific T-cell exhaustion by upregulating PD-1.91 In addition, this 

cytokine affects tumor-associated macrophages by inducing an M2-like (tumor-promoting) 

phenotype.92 The expression of VEGF in different cell types of the TME is induced by TGF-

β, including immune, tumor, and stromal cells.93,94 This crosstalk between TGF-β and 

VEGF signaling may further promote TGF-β–mediated immunosuppression.

Moreover, the profibrotic effects of TGF-β can indirectly contribute to immunosuppression. 

TGF-β activates myofibroblasts and upregulates the deposition of extracellular matrix 

proteins in the tumor,95 which may act as a physical barrier and lead to exclusion of effector 

T cells (Figure 2).96

Activated TGF-β signaling was linked to an exhausted immune subclass in HCC 

(approximately 10% of cases) characterized by exhausted T cells, impaired cytotoxicity, 

M2-like tumor-associated macrophages, and an upregulation of immunosuppressive 

cytokines.28 In addition, 4 distinct clusters with different levels of TGF-β disruption were 

described recently with use of The Cancer Genome Atlas transcriptome sequencing 

database,97 and the highly activated TGF-β cluster overlapped with the exhausted immune 

subclass.28,97 Patients with the least disrupted TGF-β signaling had a better outcome than 

those with activated or inactivated TGF-β signaling. These data implicate TGF-β in 

immunotherapy resistance. A phase 2 study reported that high pretreatment plasma TGF-β 
levels correlated with HCC resistance to pembrolizumab.98

These data also suggest that TGF-β inhibition may reprogram the TME to enhance ICB 

efficacy, especially in HCCs with activated TGF-β signaling. In preclinical (non-HCC) 

tumor models, blockade of TGF-β reduced infiltration of regulatory effector T cells and 

myeloid-derived suppressor cells, facilitated T-cell infiltration, and enhanced the efficacy of 
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anti-PD-L1 and anti–cytotoxic T lymphocyte antigen-4 treatment.96,99 Phase 2 studies 

testing the TGF-β receptor 1 kinase inhibitor galunisertib alone100 or combined with 

sorafenib101 showed acceptable safety and prolonged survival in advanced HCC, especially 

in patients who experienced a decrease in circulating TGF-β. The combination of 

galunisertib plus nivolumab is currently being investigated as second-line treatment in a 

phase 2 study.102 In addition, a phase 1 study is testing the combination of NIS793 (anti-

TGF-β antibody) and spartalizumab (anti-PD-1 antibody) in patients with advanced cancers, 

including HCC.103

In addition to directly targeting TGF-β, TGF-β activity can be downregulated using 

inhibitors of the angiotensin II (AngII)/AngII type I receptor (AT1R) axis of the renin-

angiotensin system.104,105 Apart from reducing TGF-β expression, blocking AngII/AT1R 

signaling can also prevent other immunosuppressive effects of the renin-angiotensin system 

(Figure 2).31 Inhibition of AT1R normalized the desmoplastic stroma in several preclinical 

tumor models and consequently decreased solid stress and thereby improved vascular 

perfusion and reduced hypoxia.104–106 Inhibition of AT1R also reduced infiltration of tumor-

associated neutrophils and regulatory T cells and increased CD8+ T-cell infiltration in 

pancreatic tumors of obese mice.107 In patients with pancreatic cancer, gene expression 

profiles indicated reduced activation of Wnt signaling in lisinopril users.108 These data 

suggest that inhibition of the renin-angiotensin system could have the potential to enhance 

ICB efficacy and may help to overcome primary resistance to immunotherapy, which may be 

associated with activated Wnt/β-catenin signaling in HCC.28,29 In preclinical breast and 

pancreatic cancer models, AngII/AT1R blockade reprogrammed the immunosuppressive 

TME and improved the efficacy of ICBs directed against PD-1 and cytotoxic T lymphocyte 

antigen-4.106 A phase 2 study is currently investigating the AT1R blocker losartan plus 

nivolumab in combination with chemoradiotherapy in patients with pancreatic cancer.109 In 

HCC, the use of renin-angiotensin system inhibitors decreased tumor growth preclinically110 

and was associated with improved outcome in patients with advanced HCC treated with 

sorafenib.111

In summary, TGF-β signaling is often upregulated in HCC and contributes to an 

immunosuppressive TME, mainly by inhibiting effector T-cell function. The profibrotic 

effects of TGF-β also contribute to immunosuppression by inhibiting immune cell 

infiltration. The combination of TGF-β (or renin-angiotensin system) inhibition and ICBs is 

currently being tested in early phase clinical trials. Whether these approaches will be 

effective in reprogramming the immunosuppressive TME of HCC will need prospective 

confirmation.

Conclusions and Future Perspectives

Immune checkpoint blocker monotherapy with nivolumab and pembrolizumab did not show 

significant benefit in randomized phase 3 trials in HCC.17,19 The hypothesis that efficacy of 

immunotherapy in HCC can be safely achieved by using combination therapies was 

confirmed by the recent success of dual VEGF/PD-L1 blockade in front-line (IMbrave150 

study) treatment.18 This breakthrough signals an important change in the standard treatment 

for advanced HCC. Moreover, the success of this therapy will directly affect the future use 
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of currently approved targeted therapies in first- and second-line treatment. These drugs have 

been tested against sorafenib or in sorafenib-experienced patients, respectively, but not in 

patients who have previously received anti-VEGF/PD-L1 treatment. The patterns of tumor 

recurrence are expected to differ. Thus, establishing the optimal treatment sequence of anti-

VEGF(R) antibodies, mTKIs, and ICBs will become an important challenge in the 

management of HCC. This new first-line treatment will also impact ongoing clinical studies 

as well as the design of future trials in advanced HCC, and perhaps the implementation of 

immunotherapy with other treatment modalities (eg, surgery, radiotherapy, and transarterial 

chemoembolization) at earlier stages of the disease.

Another challenge will be addressing treatment resistance. Even though dual VEGF/PD-L1 

blockade doubled the response rates, more than two-thirds of the patients still do not 

respond. Whether targeting other pathways, such as TGF-β or AT1R, will be effective with 

ICBs in these patients needs to be demonstrated.112

Estimating the probability of response or resistance to immunotherapy remains a challenge. 

Identification of biomarkers will help to improve patient outcomes and reduce adverse 

effects and economic burden of these treatments. Currently, there is no clinically available 

biomarker to estimate response to ICBs. Tumor tissue should routinely be gathered within 

clinical HCC trials to better characterize the TME and identify potential biomarkers.

The underlying cause of HCC may also have implications for ICB response. Chronic 

inflammation, as seen in patients with viral hepatitis, induces the expression of immune 

checkpoint molecules and promoteseffectorT-cellexhaustion.113 Results from phase 3 trials 

demonstrated higher efficacy of ICBs in patients with underlying viral disease vs other 

etiologic factors, including nonalcoholic fatty liver disease.17,18 Nonalcoholic fatty liver 

disease can cause CD4+ T-cell loss and induce protumor effects in natural killer T cells, 

CD8+ T-cells, and helper T17 cells.114 In preclinical models, nonalcoholic fatty liver disease 

impaired the efficacy of immunotherapy.115 Given the expected surge in nonalcoholic fatty 

liver disease–associated HCC and reduction in viral-related disease, these observations 

warrant further investigation of the immune cell landscape of HCC with respect to the cause 

of the disease.

These challenges not with standing, the systemic therapy of HCC has rapidly changed with 

the development of multiple antiangiogenic agents and immunotherapies over the past 3 to 4 

years, raising expectations for unprecedented durable responses and increased survival in 

this aggressive cancer.
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Figure 1. 
Effects of Anti-Vascular Endothelial Growth Factor (Anti-VEGF) Treatment on the Tumor 

Immune Microenvironment A, VEGF-targeted therapy can revert the immunosuppressive 

effects of VEGF. These effects include the inhibition of dendritic cell (DC) function and 

maturation, impairment of CD8+ T-cell function and infiltration, upregulation of immune 

checkpoint molecules, as well as the accumulation of immunosuppressive cell types, 

including tumor-associated macrophages (TAM), myeloid-derived suppressor cells (MDSC), 

and regulatory T cells (Treg). B, The effects of anti-VEGF treatment are dose-dependent. 

Higher doses lead to blood vessel pruning and thereby aggravate tumor hypoxia and 

acidosis, which supports tumor immune evasion. In contrast, low-dose anti-VEGF treatment 

may normalize the aberrant and dysfunctional tumor vasculature and thereby improve tumor 

perfusion, alleviate tumor hypoxia, reprogram the immunosuppressive milieu, and increase 

drug delivery of concomitant therapies, including immune checkpoint blockers (ICBs). 

Since anti-PD(L)-1 and anti–cytotoxic T lymphocyte antigen-4 antibodies may also 

normalize blood vessels and make them refractory to pruning by anti-VEGF(R) antibodies, 

even higher doses of anti-VEGF(R) may normalize tumor vessels when co-administered 

with immune checkpoint blockers (ICBs).
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Figure 2. 
The Angiotensin II (AngII)/AngII Type I Receptor Axis Promotes Tumor Immune Evasion 

by Affecting Cancer Cells as Well as Various Stromal Cells A, AngII activates profibrotic 

pathways and promotes the deposition of extracellular matrix (ECM) components from 

fibroblasts. ECM acts as a physical barrier to T-cell infiltration, which hampers an antitumor 

immune response. ECM also leads to blood vessel compression, which impairs tumor 

perfusion and aggravates tumor hypoxia and acidosis. The hypoxic and acidic milieu further 

promotes immunosuppressive mechanisms. B, AngII also induced the secretion of different 

cytokines and growth factors from cancer and stromal cells. These cytokines inhibit function 

and accumulation of dendritic cells (DC), natural killer (NK) cells, and T-cells, and promote 

the accumulation of immunosuppressive cell types, including regulatory T cells (Treg), 

tumor-associated macrophages (TAM), and neutrophils (TAN), and myeloid derived 

suppressor cells (MDSC). Finally, tumor hypoxia is further aggravated by AngII-mediated 

upregulation of vascular endothelial growth factor (VEGF), which increases vascular 

leakiness and impairs tumor blood perfusion. CAF indicates cancer-associated fibroblast; 

GM-CSF, granulocyte-macrophage colony-stimulating factor; IL, interleukin; MCP, 

monocyte chemoattractant protein-1; PGE2, prostaglandin E2; and TGF-β, transforming 

growth factor-β.
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