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1  |  INTRODUC TION

Dementia is a common neurodegenerative disorder with a markedly 
increasing worldwide prevalence.1-3 The term dementia is used as 
a general, umbrella term for vascular dementia (VD), Lewy body 
dementias (LBD), frontotemporal dementia (FTD), and Alzheimer's 
disease (AD). The major neurological features of dementia are cogni-
tive impairment and neuroinflammation.4,5 Chronic neuroinflamma-
tion, neuronal loss, oxidative stress, amyloid beta accumulation, and 
impaired synaptic plasticity lead to memory loss.6,7 Furthermore, a 
chronic inflammatory state gives rise to the activation of the tau ki-
nase, increasing the formation of intracellular neurofibrillary tangles, 
leading to synapse dysfunction.6

Multiple risk factors for dementia have been reported, includ-
ing genomic mutations, impaired lipid metabolism, and impaired 
glucose metabolism.8 Furthermore, several studies have reported 
that changes in the metabolic state, including blunt insulin sensitiv-
ity and hyperglycemia, are directly linked to the onset and develop-
ment of dementia, especially memory deficits.6,9 Thus, a complete 
understanding of the risk factors for dementia will allow the under-
lying mechanisms to be characterized and targeted for therapeutic 
approaches.

Lipocalin 2 (LCN2), also known as neutrophil gelatinase-
associated lipocalin (NGAL), functions in the regulation of the 
immune system and in inflammatory processes.10,11 LCN2 is an an-
tibacterial protein that acts by sequestering iron during bacterial 
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Abstract
Dementia accompanied by memory loss is considered one of the most common 
neurodegenerative diseases worldwide, and its prevalence is gradually increasing. 
Known risk factors for dementia include genetic background, certain lifestyle and 
dietary patterns, smoking, iron overload, insulin resistance, and impaired glucose 
metabolism in the brain. Here, we review recent evidence on the regulatory role 
of lipocalin 2 (LCN2) in dementia from various perspectives. LCN2 is a neutrophil 
gelatinase-associated protein that influences diverse cellular processes, including the 
immune system, iron homeostasis, lipid metabolism, and inflammatory responses. 
Although its functions within the peripheral system are most widely recognized, recent 
findings have revealed links between LCN2 and central nervous system diseases, as 
well as novel roles for LCN2 in neurons and glia. Furthermore, LCN2 may modulate 
diverse pathological mechanisms involved in dementia. Taken together, LCN2 is a 
promising therapeutic target with which to address the neuropathology of dementia.
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infection and has recently been reported to be involved in various 
pathophysiological conditions in various organs and tissues, includ-
ing the heart, lung, liver, kidney, and brain.12,13

Recent studies have suggested that LCN2 modulates cellular ac-
tivity in the central nervous system (CNS) and peripheral nervous 
system through the activation of glia, the control of iron accumula-
tion, and the regulation of neuroinflammation, which is defined as an 
inflammatory response and neurotransmitter secretion within the 
CNS.14-17 Additionally, LCN2 can cross the blood-brain barrier (BBB) 
by binding with the melanocortin 4 receptor (MC4R) in hypothalamic 
neurons.18 Another study demonstrated that cancer cells are grow-
ing in the LCN2/SLC22A17 system in the leptomeningeal metastasis 
mouse model.19

Lipocalin 2 likely regulates cell differentiation by modulating iron 
transport and cell death signaling, such as controlling the activa-
tion of the nuclear factor kappa-light-chain-enhancer of activated 
B cells (NF-κB). LCN2 ultimately controls neuroinflammation by 
modulating the production of cytokines, including interleukin-1 beta 
(IL-1β), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) se-
creted from glia.15 In contrast, LCN2 also has neuroprotective func-
tions in the brain by suppressing the secretion of pro-inflammatory 
cytokines.18

In addition, modulating LCN2 may be useful for preventing BBB 
disruptions and white matter atrophy that lead to neurological dis-
eases, including stroke and dementia.14,20 Furthermore, LCN2 is in-
volved in the accumulation of iron that occurs within brain neurons 
of patients with dementia and is related to cognitive dysfunction.21 
LCN2 can also decrease synaptic plasticity through its involvement 
in controlling active mobility through iron-dependent signaling.22 
Moreover, LCN2 is also strongly related to an impaired metabolic 
state, such as impaired glucose metabolism, thus leading to cogni-
tive decline.23,24 Finally, LCN2-deficient mice display increased in-
sulin resistance under hyperglycemia and heightened blood glucose 
levels compared to control mice.23

Here, we review the evidence for the involvement of LCN2 in 
dementia, focusing on neuroinflammation, iron accumulation, and 
metabolic alterations. These findings highlight the importance of the 
role of LCN2 in the CNS and suggest that LCN2 is key to modulating 
the neuropathology of dementia.

2  |  DEMENTIA

Dementia is one of the most common disorders affecting elderly 
people, and the number of patients with dementia is gradually 
increasing globally.1 Dementia is generally classified into four 
subtypes and is used as a general term to describe a syndrome of 
progressive cognitive decline, including AD, LBD, FTD, and VD.25,26 
The main clinical pathologies of dementia are objective cognitive 
deficits, language impairments, and difficulties with executive 
function or judgment.5

Alzheimer's disease, the most common type of dementia, is char-
acterized by the excessive accumulation of amyloid beta, neuronal 

damage, BBB disruption, tau hyperphosphorylation, and neurofibril-
lary tangles in several brain regions, including the hippocampus and 
the entorhinal cortex.27-29 Patients with AD show atrophy and de-
generation of the cortex, as well as limbic and hippocampal regions, 
compared to healthy controls, which leads to memory loss.30,31

Vascular dementia, the second most common type of demen-
tia globally, represents approximately 20% of all dementia cases 
and results from neuronal damage caused by oxygen and glucose 
deprivation in various brain regions.4 VD, considered a multi-infarct 
type of dementia, is influenced by lifestyle, dietary patterns, and 
vascular dysfunctions such as small vessel disease and lacunar 
infarctions.4,32,33

Lewy body dementias, the third most common type of dementia, 
results from the excessive accumulation of alpha-synuclein protein, 
called Lewy bodies, in neurons.34 LBD leads to cognitive impair-
ments with recurrent visual hallucinations, lethargy, and a decrease 
in attention, as well as parkinsonism.34,35

Frontotemporal dementia is a general type of dementia that af-
fects the frontal and temporal lobes and mainly occurs in younger in-
dividuals, as opposed to the generally older age of patients with AD. 
A hallmark of FTD is the high accumulation of neurofibrillary tangles 
in the frontal and parietal lobes.36 This type of dementia leads to a 
lack of judgment, inappropriate social behavior, and memory dys-
function.37 Importantly, the cognitive decline in dementia results 
from neuronal damage in the cerebral cortex, synaptic dysfunction, 
neuroinflammation, and impaired cerebral metabolism.5,38,39

Vascular dementia is caused by impaired vascular homeostasis, 
which aggravates cortical and hippocampal neuronal loss in the isch-
emic state, ultimately contributing to cognitive decline.39 In addition, 
changes in metabolic biomarkers contribute to impaired cerebral 
metabolism and ultimately damages neurons and glia by decreasing 
the supply of nutrients and oxygen.38

Numerous risk factors for dementia have been identified, in-
cluding genetic predispositions, vascular damage, inflammation, co-
morbidities, as well as various lifestyle and physiological factors.8,40 
Furthermore, a number of studies have demonstrated a correlation 
between dementia and metabolic changes, such as insulin resistance 
(impaired intracellular insulin functioning) and glucose imbalance.9,41 
In fact, Bergantin et al9 found that dysregulation of cellular Ca2+ sig-
naling represents an important risk factor, suggesting that it aggra-
vates brain insulin resistance, resulting in memory loss.

Neuroinflammation aggravates neuronal loss and activates 
glia, ultimately leading to memory loss in dementia through exces-
sive secretion of pro-inflammatory cytokines and inflammatory 
mediators.42,43 In the dementia brain, astrocytes and microglia are 
activated and secrete several inflammatory cytokines and neu-
rotransmitters such as glutamate,44,45 whereas neurons are damaged 
and show impaired synaptic plasticity against oxidative stress condi-
tion.46 Increased BBB permeability in dementia induces the infiltra-
tion of circulating immune cells such as T-lymphocytes.47 A previous 
study found that brain insulin resistance, including impaired insulin 
receptor signaling and insulin-like growth factor-1 (IGF-1) signaling, 
leads to cognitive dysfunction in dementia by aggravating neuronal 
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cell death and synaptic dysfunction.48 Additionally, excessive iron 
accumulation observed in the caudate nucleus and putamen of VD 
patients contributes to neuronal synapse connectivity dysfunction 
and memory loss.49

Thus, the onset and progression of dementia are linked to many 
factors, which may contribute to the neuropathology observed in 
dementia. These previous studied have highlighted that there are 
few pathological differences between the different types of demen-
tia.8 Further understanding of the potential risk factors for demen-
tia is critical, as the onset of dementia results from diverse routes. 
Therefore, identifying specific risk factors for the onset and devel-
opment of the disease is necessary for its prevention and treatment.

3  |  ROLES OF LCN2 IN DEMENTIA

Lipocalin 2 is a glycoprotein of the lipocalin superfamily comprised 
of 160–180 amino acids, which contributes to innate immunity and 
inflammatory responses.10,11,50 Two specific membrane receptors of 
LCN2 have been reported: megalin (known as LRP2, expressed by 
kidney epithelial cells) and 24p3R (known as solute carrier SLC22A17, 
expressed in various tissues, including the brain).51,52 LCN2 can bind 
and transport both lipids and small hydrophobic molecules into the 
cell, and also control matrix metalloproteinases in blood vessels to 
mediate neurovascular remodeling.53,54

Several studies have shown that LCN2 exerts multiple physio-
logical cellular processes, such as inflammatory responses, and iron 
metabolism in the brain.12,15,55-57 LCN2 is an important modulator of 
innate responses, and exerts antibacterial and bacteriostatic effects 
through an interplay with the bacterial iron-laden siderophore.57 
LCN2 acts as a key controller of inflammation mediated through 
the toll-like receptor 2 (TLR2) and TLR4 dependent pathways.55 
Moreover, LCN2 blood levels are positively correlated with insulin 
resistance in females, as demonstrated in some clinical studies.56 
Although the detailed mechanisms behind the role of LCN2 in these 
responses remain to be elucidated, the relevance between LCN2 and 
various cellular mechanisms should be highlighted in order to under-
stand the roles of LCN2 in the brain.

In the CNS, increased LCN2 is observed in patients with neuro-
degenerative disorders such as AD and Parkinson disease, and ulti-
mately aggravates the neuropathophysiology of such diseases.50,58,59 
LCN2 is mainly produced in glia under oxidative stress in the brain 50 
and can disrupt the BBB by boosting astrocyte and brain endothelial 
cell damage.14 One study demonstrated that LCN2-deficient condi-
tion leads reduced cerebral cortex damage in a VD mouse model by 
decreasing neuroinflammation.8

Lipocalin 2 causes neuronal death, induces synaptic dysfunction, 
activates microglia, reduces white matter mass, and leads to micro-
vasculature damage in the hippocampus by promoting the expres-
sion of vascular endothelial growth factor (VEGF).8

Several studies have shown that the level of LCN2 in the blood 
increases in patients with neurological diseases, including AD, mild 
cognitive impairment, and Parkinson's disease.59,60 Mechanically, 

LCN2 regulates cellular responses by activating NF-κB and hypoxia-
inducible factor-1-α (HIF-1-α) induction.61 Other in vivo and in 
vitro studies have reported that LCN2 is involved in the aggrava-
tion of pro-inflammatory responses and the inhibition of neuro-
protective cellular pathways in the brain by boosting the release 
of pro-inflammatory cytokines such as TNF-α.58,62 Together, these 
findings suggest that LCN2 mediates the inflammatory state in the 
brain. Recently, LCN2 has emerged as a potential diagnostic marker 
for dementia,63 based on the observation of elevated LCN2 in the 
plasma of patients with dementia64 and in the cerebrospinal fluid 
(CSF) of patients with VD.65 In fact, a previous study demonstrated 
that LCN2 deficiency attenuates white matter damage and improves 
cognitive dysfunction in animal models of VD.34 Furthermore, in an 
in vitro model of AD, astrocytes secreted high amounts of LCN2, and 
elevated LCN2 ultimately boosted amyloid beta aggregation and am-
yloid beta-induced cell death in astrocytes and endothelial cells.58,66 
Recent studies have also suggested that LCN2 is a strong and spe-
cific biomarker for VD.38,67-70

The relationship between the level of LCN2 and the pathological 
progression of dementia has been reported in previous studies. One 
study suggested that the CSF level of LCN2 is elevated in the brains 
of patients with VD.50 In addition, one cross-sectional study showed 
that the plasma level of LCN2 was higher in patients with AD than in 
normal subjects.71

Based on these findings, we suspect that the levels of LCN2 may 
differ across the various models of dementia due to the difficulties in 
measuring the levels of LCN2 during the progress of dementia. Thus, 
although a strong relationship between neurodegenerative disease 
progression and LCN2 levels in the CNS and blood have been re-
ported, clinicians should use caution when using LCN2 levels as a 
clinical indicator of neurodegenerative disease progression.

To summarize, LCN2 contributes to inflammatory responses 
and regulates various cell signaling pathways, affecting neurons and 
glia in the brains of patients with dementia. The fact that demen-
tia is also linked to multiple mechanisms related to LCN2, such as 
inflammatory responses, iron metabolism, and cellular apoptosis, 
highlights the importance of the relationship between LCN2 and the 
neuropathology of dementia. Below, we review the roles of LCN2 in 
dementia from various perspectives.

In the CNS, iron is an essential biomolecule for cellular homeo-
stasis, including DNA repair, DNA synthesis, oxidation, immune cell 
activation, synapse development, and cell division; it also acts as a 
neurotransmitter, such as in the development of neurodegenerative 
diseases.72-74 Specifically, iron is known to play a role in the devel-
opment of neurodegenerative diseases by controlling monoamine 
neurotransmitters such as dopamine and serotonin and ultimately 
contributes to the regulation of cognitive functions, including emo-
tional- and arousal-related behaviors.75

Iron is also a co-factor for multiple cellular physiological mech-
anisms, such as axonal myelination, oxidative mitochondrial me-
tabolism (by promoting adenosine triphosphate [ATP] production), 
and the synthesis of neurotransmitters that depend on tyrosine hy-
droxylase.76-78 Iron is also a critical regulator of the oxidative stress 
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response and is thus considered a redox-active transition metal.79 
Iron acts as an antioxidant regulator by catalyzing the formation of 
reactive oxygen species (ROS).80

Moreover, iron is an essential metal for the maintenance of en-
ergy consumption in the brain - the most energy-consuming meta-
bolic organ in the body.81,82 Furthermore, iron acts as a co-factor in 
axonal myelination, mitochondrial function, and neurotransmission 
in the CNS.83

The main route of iron uptake begins with intestinal absorption 
in the gut, where dietary Fe3+ is reduced to Fe2+ by duodenal cyto-
chrome B (DcytB), and divalent metal transporter 1 (DMT1) brings 
Fe2+ into the gut intestinal cells.84,85 Thus, dietary intake of iron 
contributes to the balance of iron in the body and can offset iron 
deficiency.86 Intracellular iron transport requires iron transporters, 
such as DMT1 and transferrin receptor 1 (TfR1),87 as well as iron reg-
ulatory protein 1 (IRP1).88 Iron is encapsulated in hemoglobin cells 
in the blood, and a small portion of iron in the body binds to iron 
storage proteins such as ferritin and transferrin.89,90 Iron enters the 
brain mainly through the BBB.91

In vitro inflammatory conditions induce microglial polarization 
and activation.92 During neuroinflammation, microglia are activated 
and polarized into the pro-inflammatory M1 phenotype and the anti-
inflammatory M2 phenotype in vitro.92 A previous study showed 
that M1 microglia secrete pro-inflammatory cytokines and nitric 
oxide, whereas M2 phenotype microglia produce anti-inflammatory 
cytokines such as IL-4, and IL-13.92 Owing to the functional diver-
sity of microglia, microglia are classified by M1, M2a, M2b, and M2c 
classifications,93-95 and M1/M2 polarization states could be iden-
tified in in vitro conditions.96 Previous in vivo studies have shown 
that the M2 microglia population contributes to the neuroprotective 
response after stroke,97,98 whereas M1 microglial populations aggra-
vate the neuronal damage after stroke.97

Since it is difficult to specifically detect M1 and M2 microglia 
phenotypes in the brain, some studies have suggested that polariza-
tion can be estimated using several surface markers, including clas-
sical M1 markers CD11b,99 CD16,100 CD3298 and CD86,101 and the 
classical M2 marker CD206.102

Microglial activation is very important for controlling neuroin-
flammatory responses and is directly related to iron uptake.103 
Under inflammatory conditions, the increased production of pro-
inflammatory mediators increases the uptake of non-transferrin-
bound serum iron (NTBI) as well as ferritin storage by upregulating 
both DMT1 and ferritin.82 In the inflammatory state, various pro-
teins related to iron metabolism, such as DMT1 and ferritin, con-
tribute to microglial polarization and microglia function.82 Within 
the NTBI uptake pathway in cells, Fe3+ is reduced at the cell sur-
face to Fe2+ through an endogenous ferrireductase and conveyed 
into the cytosol through DMT1. During the transferrin-bound 
iron (TBI) uptake pathway, iron is mainly combined with transfer-
rin as Fe3+ and subsequently enters endosomes through endocy-
tosis.82 Microglia can bind to NTBI and TBI as iron forms in the 
CSF.104 In addition, previous studies in rats have shown a posi-
tive correlation between microglia polarization and the amount of 

microglial iron uptake.82,103 Furthermore, a recent study reported 
that knockdown of the ferritin 3 heavy chain homolog (Fer3HCH) 
leads to mitochondrial dysfunction by decreasing mitochondrial 
respiration.105

Iron deficiency has been reported to cause abnormal brain de-
velopment and dysfunctions in cognition, motor function, and social 
behavior patterns.81 Excessive accumulation of iron in the brain dam-
ages AD-related brain regions, leading to neuronal loss in the frontal, 
parietal and hippocampal areas.106-109 The high accumulation of iron 
in microglia in the cortex and hippocampus of AD patients means 
that these microglia could be used as a monitoring marker for AD.108 
Iron chelators could also be used as treatment options for AD based 
on clinical trial data. Indeed, the iron-chelating drug deferoxamine 
has been shown to reduce amyloid plaque formation, and prevent 
memory loss.109,110

Other studies have demonstrated that cerebral iron overload is 
directly linked to the development of neurodegenerative diseases, 
such as dementia,111 by boosting mitochondrial dysfunction and mi-
croglial activation.112 In addition, several studies have suggested that 
iron directly regulates AD neuropathology by boosting amyloid beta 
peptide aggregation and amyloid beta plaque accumulation, thereby 
leading to cognitive decline.113,114 Iron deficiency aggravates mito-
chondrial function and oxidative stress, whereas iron overload re-
sults in oxidative stress.115,116 It has also been suggested that lipid 
peroxidation, a typical feature of ferroptosis, is an early step in the 
development of AD.117

A recent study using the APP/PS1 AD mouse model demon-
strated that excessive iron accumulation in microglia triggers brain 
dysfunction and changes in brain metabolism.118 Subsequently, an-
other study suggested that iron dysregulation is the principal factor 
behind AD neuropathology and needs to be addressed in order to 
find a cure for the disease.119

These findings show that imbalances in iron levels in the brain 
contribute to diverse cellular signaling pathways and can aggravate 
AD neuropathology. Combined, they suggest that the specific mech-
anisms underlying the link between iron accumulation and brain 
functions need to be identified in order to find therapeutic solutions 
for dementia.

4  |  LCN2 AND IRON HOMEOSTA SIS

Lipocalin 2, an acute-inflammatory phase-related mediator, is 
quickly secreted in response to inflammatory stimulation.15 LCN2 
plays a crucial role in various cellular responses, such as in the 
defense against bacterial infections through the regulation of iron 
accumulation in the cell, inflammatory signaling, and apoptotic 
signaling.120 LCN2 stimulates glia such as astrocytes and microglia 
and regulates their production of anti- and pro-inflammatory 
cytokines under inflammatory conditions via its involvement in 
iron accumulation.16,121 LCN2 is emerging as a promising player in 
the search for novel dementia treatments because it can regulate 
inflammatory cytokines and iron accumulation in the CNS.19,122
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Previous studies have found that LCN2 knockout mice show 
iron dysregulation in both the peripheral system and the CNS, 
subsequently leading to synaptic dysfunction and impaired neuro-
genesis.22,123-125 A recent study reported that LCN2 could regulate 
neurogenesis and spine density in hippocampal neurons, as well 
as neuronal connectivity by modulating iron loading.124 Ferreira 
et al124 showed that LCN2 knockout mice display an increase in 
neuronal differentiation, which is involved in cognitive function. 
Another study reported that LCN2-deficient mice displayed more 
anxiety and depressive behavior as well as cognitive decline,125 and 
LCN2 has also been shown to mediate iron import into the brain.51 
Furthermore, Xia et al. reported that LCN2 knockout mice show a 
high level of iron and a severe oxidative stress compared to normal 
mice.126 Conversely, increases in LCN2 levels in the CSF are posi-
tively correlated with iron accumulation in basal ganglia regions and 
elevated levels of transferrin in the CSF.127

Previous studies have also reported that the expression of LCN2 
in the brain is positively correlated with excessive iron overload in 
various brain regions such as the cerebral cortex.59,128 LCN2 stimu-
lates ferritin expression and iron storage in astrocytes under amyloid 
beta toxicity,66 and has been reported to mediate the import and 
export of iron into cells under inflammatory conditions.129 In fact, 
recent studies have found that LCN2 contributes to iron homeosta-
sis to regulate the flow of iron from cells into the circulating system 
involving hepcidin and ferroportin in the brain,11 and that it plays 
a critical role as an iron transport protein by binding to the LCN2 
receptor.15 LCN2 deficiency has also been reported to impair iron 
export in cells.130

Taken together, the existing evidence suggests that LCN2 is key 
to the regulation of excessive iron accumulation and inflammation in 
the brain of dementia patients. Further investigations into the mech-
anism(s) underlying the link between iron homeostasis and LCN2 in 
the brain are needed, as iron imbalance is a critical problem leading 
to memory loss in patients with dementia.

5  |  LCN2 IN DEMENTIA:  FOCUS ON 
NEUROINFL AMMATION

Neuroinflammation is considered an early diagnostic marker of 
dementia as it is observed from early to late stages of dementia.131,132 
Neuroinflammation is involved in the activation of glia such as 
microglia and astrocytes in dementia-related brain regions,133 as well 
as in the associated cognitive decline.134 One study demonstrated 
that the LCN2 receptor is highly expressed in microglia, astrocytes, 
and neurons under inflammatory conditions.135 Another study 
suggested that the LCN2 promoter provides binding sites for the 
inflammatory NF-κB pathway and CCAAT/enhancer-binding protein 
(C/EBP) during inflammation.136

In addition, LCN2 induces the polarization of microglia through 
the activation of NF-κB signaling as well as the activation of the sig-
nal transducer and transcription 3 (STAT3) pathway.137 LCN2 knock-
out mice display a neuroprotective phenotype, which manifests as 

reduced neuroinflammation under ischemic stroke conditions.138,139 
Additionally, LCN2  has been reported to promote the activation 
of astrocytes, and reactive astrocytes are known to stimulate 
microglial activation under neuroinflammation.140 Importantly, 
activated astrocytes control the expression of inflammatory medi-
ators, transporters, and neurotransmitters and influence neuronal 
metabolism.141-144

Lipocalin 2 can induce reactive astrocytes through its neurotoxic 
properties, and subsequently promote cell death.144 LCN2 activates 
both astrocytes and microglia, and exerts neurotoxic effects in neu-
rons, involving memory functions.144 Previous in vitro studies have 
reported that LCN2 is secreted in cultured astrocytes upon lipo-
polysaccharide stimulation and that it plays a role as an autocrine 
server.145,146 For example, Lee et al145 found that LCN2 secretion 
in glia aggravates neuronal apoptosis mediated by iron and the bcl2 
interacting mediator of cell death (BIM) protein, while also boosting 
neuronal motility. LCN2 also contributes to the inflammatory re-
sponse by regulating the phagocytic capacity of bacterial clearance 
in astrocytes and microglia.147,148

To summarize, these findings show that LCN2 induces the acti-
vation of microglia and astrocytes, regulates their functions, causes 
neuronal cell death, and influences neuronal function when in a state 
of neuroinflammation. Therefore, the modulation of LCN2 levels in 
the brain may be key to reducing pro-inflammatory responses that 
occur in the brain of individuals with dementia.

6  |  LCN2 IN DEMENTIA:  FOCUS ON 
METABOLIC ALTER ATIONS

Recent studies have emphasized and investigated the positive 
correlations between metabolic syndromes such as diabetes, 
obesity, and dementia.149,150 Numerous studies have reported that 
metabolic changes commonly observed in patients with metabolic 
syndromes, such as hyperglycemia, dyslipidemia, hypertension, 
and insulin resistance, are strongly related to the neuropathology 
of dementia.151-153 Clinically, diabetic neuropathy, such as memory 
loss, is a complication of diabetes.154,155

Several studies have suggested that LCN2 is linked to inflamma-
tory responses in metabolic disorders, including obesity,156 in which 
the pathway involves NF-κB,157 C/EBP,158 and estrogen response 
elements.157,159 Other studies have reported that elevated LCN2 
levels are observed in animal models of diabetes and obesity160,161 
and that LCN2 aggravates insulin resistance as well as lipid metabo-
lism.162 Furthermore, blood levels of LCN2 are reported to be posi-
tively correlated with total body fat mass and glycated hemoglobin 
(HbA1c),163 as well as with hyperglycemia and insulin resistance in 
patients with metabolic syndrome.164-166 Recent studies have also 
reported that the levels of LCN2 in blood serum, adipose tissue, and 
liver are increased in models of obesity.160,167 In fact, Yan et al160 
found that LCN2 expression in adipocytes leads to insulin resistance 
in adipocytes, and that LCN2 could control insulin sensitivity in pa-
tients with obesity. Based on this data, the authors suggested that 
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LCN2 likely regulates the secretion of adipokines in adipose tissues, 
and ultimately controls both the inflammatory state and metabolic 
balance.160

The expression and secretion of LCN2 are higher in mature 
adipocytes than in preadipocytes23 and are induced by various in-
flammatory cytokines and factors.168 Finally, the change of fat mass 
leads to increased cytokines and adipokines, and subsequently, 
aggravates the state of inflammation, and increases vascular dam-
age. LCN2 influences vascular remodeling, regulates atherosclerotic 
plaque formation caused by metabolic changes, and is ultimately in-
volved in the onset of VD.168-170

To summarize, the current evidence shows that LCN2 is 
involved in insulin sensitivity, glucose metabolism, vascular 

homeostasis, and hyperglycemia related to metabolic syndromes. 
These strong correlations between LCN2 and metabolic factors 
should be highlighted and considered in the search for therapeutic 
options for the treatment and prevention of dementia, consider-
ing that the onset and development of dementia are strongly re-
lated to metabolic disorders, including hyperglycemia and insulin 
resistance.

7  |  CONCLUSIONS

Here, we emphasize that LCN2  has crucial pathogenic roles 
in dementia through the regulation of iron homeostasis, 

F I G U R E  1  The role of LCN2 in iron accumulation and neuroinflammation. (A,B) LCN2 is related to the import and export of iron into 
neuronal cells. (B) Under neuroinflammation conditions, LCN2 binds with many bacterial/mammalian siderophores and subsequently 
increases iron accumulation from the extracellular space into the intracellular space. (C) LCN2 triggers astrocyte reactivation and swelling 
as well as the induction of M1 microglial phenotype. Finally, LCN2 activates the production of pro-inflammatory cytokines in astrocytes 
and microglia, and promotes the accumulation of intracellular iron, leading to the aggravation of neuroinflammation. DMT1, divalent metal 
transporter 1; IL-1β, interleukin-1 beta; IL-6, interleukin −6; LCN2, lipocalin 2; LCN2R, lipocalin 2 receptor; TNF-α, tumor necrosis factor-α
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neuroinflammation, and insulin resistance. The onset and 
progression of dementia are influenced by a variety of LCN2-
mediated mechanisms including inflammation, insulin resistance, 
iron accumulation, immune response, neuronal cell damage, and 
glia dysfunction.

Given the significant evidence supporting the involvement of 
LCN2 in the demented brain, we believe that the level of LCN2 
in the brain is a critical factor in the regulation of risk factors for 
dementia. Thus, we reviewed the roles of LCN2 in dementia and 
came to the following three conclusions: first, LCN2 contributes 
to excessive iron accumulation and is ultimately involved in the 
neuropathology of dementia (Figure 1A,B), suggesting that LCN2 
influences neuronal cell apoptosis by regulating iron accumula-
tion in the brain. Second, LCN2 accelerates neuroinflammation 
by regulating the activation and function of glia and subsequently 
aggravates the induced neuroinflammation by regulating NF-
kB signaling and the STAT3 pathway. Appropriate modulation of 
LCN2 may enhance the neuropathology of dementia (Figure 1C). 
Finally, LCN2 can control metabolic homeostasis, including insulin 
sensitivity, hyperglycemia, and dyslipidemia through the modula-
tion of NF-κB, C/EBP signaling, HbA1c level, and body fat mass 
(Figure 2).

The modulation of LCN2 levels may contribute to the attenua-
tion of the neuropathology of dementia, given that recent research 
focused on the chemotherapy in CNS disease including dementia 
as well as brain tumor.171 The immunotherapy using LCN2 neutral-
ization may be a promising clinical approach to treat and prevent 
neuropathology in dementia, suggesting that LCN2 deficiency mark-
edly suppresses neuroinflammation based on preclinical studies for 
various CNS disorders,172 such as traumatic brain damage,173 exper-
imental autoimmune encephalomyelitis,174 and stroke.175 Thus, we 

emphasize that LCN2 may be a critical target for the treatment and 
prevention of dementia.
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