
314
ⓒ 2021 The Korean Society of Neurogastroenterology and Motility

J Neurogastroenterol Motil, Vol. 27  No. 3   July,  2021
www.jnmjournal.org

Introduction 	

Gut microbiota consists of as many as 1013 to 1014 microorgan-
isms.1 The collective genome of microbiota (microbiome) covers 
various genes needed for many biologic processes; it is thus re-
garded as a separate organ for metabolism, like the human liver.2,3 
Imbalance of the gastrointestinal microbiome could impact many 
diseases, such as neoplasm and autoimmune or cardiovascular con-
ditions.4-6 There are several factors that affect the gut microbiome. 
Among them, gender and sex hormones play an important role 
after puberty.7 Interestingly, the bacteria-to-human cell ratio is dif-

ferent between genders, that is, higher in women than in men. The 
bacteria-to-human cell ratio is 1.3 in men and 2.2 in women.8 As 
the gut microbiome is involved in the excretion and circulation pro-
cess, the “microgenderome” indicating the interaction between sex 
hormones and the gut microbiome is an emerging research topic.9,10 
In functional gastrointestinal disorders (FGID), microbiota and in-
flammation can affect gastrointestinal (GI) function and sensation.11 
There is emerging evidence that sex hormones can play a role in the 
interplay between the microbiome and GI symptoms.7 We hereby 
review the interaction between sex hormones, gender, and micro-
biota. 
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The distribution of gut microbiota varies according to age (childhood, puberty, pregnancy, menopause, and old age) and sex. Gut 
microbiota are known to contribute to gastrointestinal (GI) diseases such as irritable bowel syndrome, inflammatory bowel disease, 
and colon cancer; however, the exact etiology remains elusive. Recently, sex and gender differences in GI diseases and their relation 
to gut microbiota has been suggested. Furthermore, the metabolism of estrogen and androgen was reported to be related to the gut 
microbiome. As gut microbiome is involved in the excretion and circulation process of sex hormones, the concept of “microgenderome” 
indicating the role of sex hormone on the gut microbiota has been suggested. However, further research is needed for this concept to 
be universally accepted. In this review, we summarize sex- and gender-differences in gut microbiota and the interplay of microbiota 
and GI diseases, focusing on sex hormones. We also describe the metabolic role of the microbiota in this regard. Finally, current 
subjects, such as medication including probiotics, are briefly discussed.
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Estrogen and Microbiota 	

Reproductive endocrine function involves a variety of hormones 
controlled by intricate feedback mechanisms (Fig. 1).12 The ovaries, 
adrenal glands, and adipose tissue produce estrogens. Estrogens 
produced in the body or ingested as food can be metabolized by gut 
microbes. The resultant metabolites again influence the host.13 Sex 
hormones directly modulate the metabolism of bacteria through 
steroid receptors, including estrogen receptor beta.14 

Meanwhile, the gut microbiome with β-glucuronidase activity 
deconjugates the conjugated circulating estrogens excreted in the 
bile (Fig. 2).10 Deconjugation enables the estrogen reabsorption 
process to the system.10 The deconjugated estrogens circulate and 
affect multiple organs not only reproductive, but also skeletal, car-
diovascular, and central nervous systems via estrogen receptors.15 
Typically, estrogen binds to nuclear receptors, causing conforma-
tional change (Fig. 3).16 Central and peripheral alterations have 
been linked to irritable bowel syndrome (IBS) through intestinal 
barrier permeability and immune system modulation.9 Epidemio-
logical studies suggest a female predominance of IBS, implying the 

effect of sex hormones on its pathogenesis.9,17 GI transit duration 
also has been reported to vary according to menstrual cycle, preg-
nancy, and postpartum.17

In a human study, estradiol, estrone, 13 estrogen metabolites, 
and total estrogens were measured in urine and feces.18 In male and 
post-menopausal females, the total urinary estrogen levels were as-
sociated with fecal microbiota abundance and α-diversity.18 Non-
ovarian estrogens were also associated with fecal Clostridia taxa and 
some Ruminococcaceae, which produce β-glucuronidase. Fecal 
β-glucuronidase was inversely correlated with fecal estrogens.18 In 
contrast, pre-menopausal female estrogen levels were not related to 
the fecal microbiome or enzymes.18 From the results they concluded 
that non-ovarian estrogens were affected by the intestinal microbi-
ome and enzymes such as β-glucuronidase.18 A recent animal study 
showed that increasing age was associated with a significant reduc-
tion in fecal β-glucuronidase activity in females.19 Male C57BL/6 
mice showed significantly higher β-glucuronidase activity than did 
females.19 In this study, fecalase, a cell-free extract of feces, was em-
ployed in a colorimetric-based assay to quantify enzymatic activity.19 
This approach could be employed to investigate gender differences 
in human samples. 

Estrogen and testosterone have been shown to directly affect 
the gut microbiome and immune cells. β-estradiol affects the trans-
formation of dendritic cells to produce IL-12 and IFN-γ.20 This, in 
turn, activates pathways for pro-inflammatory cytokines.20 Estradiol 
prolongs the survival of B cells and activates polyclonal B cells. The 
resulting pro-inflammatory environment with altered intestinal gut 
permeability causes the migration of gut microbiota into the lamina 
propria, which again promotes inflammation processes.20

Androgen and Microbiota 	

The relationship between androgen and microbiota has been 
reported. An animal study measured unconjugated and gluc-
uronidated androgen levels. In young adult males, unconjugated 
dihydrotestosterone (DHT) was 70-fold higher in the feces than 
in the serum. The distal intestine of germ-free mice showed high 
glucuronidated testosterone and DHT, but very low free DHT 
levels. They concluded that the gut microbiome affects the intestinal 
metabolism and deglucuronidation of androgens.21

Another study investigated the gut microbes and serum levels 
of testosterone in men and estradiol in women.22 Male and female 
patients with high testosterone or estradiol levels showed a more 
diverse gut microbiome.22

An animal study showed that antibiotic exposure inhibited 
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mitochondrial dysfunction in a mouse Leydig tumor cell line 
(MLTC-1), inducing reduced steroidogenesis.23 Mice exposed to 
doxycycline subchronically showed a reduction in microbiome di-
versity and changes in composition.23

In males, testosterone shows an inhibitory effect on T-cell 
proliferation. In contrast to estradiol, testosterone does not alter the 
intestinal barrier.20 Blood testosterone levels are correlated with gut 
microbiota. Furthermore, the sex difference was reversed by male 
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castration, which confirmed the effect of androgens on microbiota.24 
Androgen excess represented by polycystic ovary syn-

drome (PCOS) is associated with gut microbiota disturbance. 
5α-Dihydrotestosterone (DHT) with a high-fat diet (HFD) could 
lower gut microbiota diversity.25 In a human study with 33 patients, 
the co-abundance bacterial groups increased in PCOS were Bac-
teroides, Escherichia/Shigella, and Streptococcus.26 They showed a 
negative correlation with ghrelin, while positive relationships with 
testosterone and body mass index were noted. In contrast, Ak-
kermansia and Ruminococcaceae decreased with PCOS, showed 
opposite results with body weight, sex hormone, and brain-gut pep-
tides.26

A recent human study showed that butyrate producers de-
creased in a PCOS group.27 Another human study with 58 obese 
female adolescents showed that gut microbiota was altered in obese 
adolescent PCOS patients.28 The aromatase inhibitor letrozole 
treatment of PCOS mice showed a positive effect on reproduction, 
metabolism, and the gut microbial community.29

In androgen metabolism, the gut microbiota has been reported 
to be an important regulator. In the small intestine content of mice, 
glucuronidated testosterone and DHT were found at high levels. 
The distal intestine had high levels of free DHT.21 Markedly high 
levels of unconjugated DHT were observed in the feces of young 
adult males.21 In germ-free mice, glucuronidated testosterone and 
DHT were high; however, very low free DHT levels were noted 
in the distal intestine. This implies that gut microbiota affects the 
intestinal metabolism of DHT and testosterone. 

We summarize the relevant studies focused on specific sex hor-
mone in Table 1. 

Gender Difference/Gonadectomy Status 	

Important shifts in the maturation of the gut and sex hormones 
occur simultaneously. Sex differences within these systems occur 
at similar ages, implying communication between gender and gut 
microbiota.40 We summarize relevant studies focused on gender dif-
ferences in Table 2.

Females showed greater gut microbial diversity in a study of 
1135 individuals.41 In particular, Akkermansia muciniphila was 
abundant in females.41 In pre-menopausal women, compared to 
in post-menopausal female, the Firmicutes:Bacteroidetes ratio was 
higher, Lachnospira and Roseburia were relatively more abundant, 
and plasma levels of glucagon-like peptide-1, one of the intestinal 
incretins released from enteroendocrine cells in the gut to potenti-
ate glucose clearance in response to the ingestion of food, were also 

higher.42 The relative abundances of the Prevotella, Parabacteroides, 
and Bilophila genera were lower in pre-menopausal than post-
menopausal women. The plasma levels of IL-6 and monocyte che-
moattractant protein-1 representing inflammatory levels were also 
lower than those in post-menopausal women.42

Gonadectomy (GDX) model was used in animal studies to 
investigate the function of sex hormones. A research showed that 
GDX showed that the abundance of Ruminococcacea was mark-
edly different between GDX males and the control on a high-fat/
high-sucrose diet.34 In females, 2 strains showed differences be-
tween the sham control and GDX mice. Akkermansia was more 
abundant in the control than in GDX female mice.34 In addition, 
an interesting animal study with low capacity running (LCR) and 
high running capacity (HCR) rats was reported to mimic the post-
menopausal phenotype.44 A decreased Firmicutes:Bacteroidetes 
ratio was observed in LCR—but not HCR—mice subjected to 
ovariectomy (OVX). LCR OVX was associated with increased mi-
crobial diversity and Bacteroidetes. HCR OVX did not show any 
changes in specific phyla.44 

Age 	

Sex differences in childhood gut microbiota have not been re-
ported owing to gonadal hormone quiescence. Approximate mean 
sex steroid levels in plasma shows pubertal surge and difference 
between sexes.40,65 The microbiota undergoes changes according 
to age, represented by a human study showing the core microbiota 
of elderly subjects was different from that of younger adults, with 
higher proportion of Bacteroides species (spp.) and distinct abun-
dance patterns of Clostridium groups.66 A recent study reported 
that early-life adverse events such as maternal lipopolysaccharide 
injection, maternal separation, and unpredictable chronic stress af-
fected gut microbiota according to gender.67 

One germ-free mice study reported the sex-specific effects of 
the early-life microbiota status on serotonin production.44 The re-
duced sex differences in serotonin concentration in germ-free mice 
were reversed after microbial colonization. Sex differences in the 
hippocampal serotonergic neurocircuit also reappeared.40,68 Pubertal 
gonadal hormone alteration and its effect on sexually dimorphic 
brain development could not be reversed by hormone replacement 
in adulthood.69 

The core microbiota of the elderly has a greater proportion of 
Bacteroides species and abundant Clostridium groups than does 
that of younger subjects.66 In centenarians, rearrangement in the 
Firmicutes population and an enrichment in facultative anaerobes 
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are characteristic.70 The old rats showed a higher abundance of 
Ruminococcaceae and Lachnospiraceae, which are butyrate pro-
ducers.45 In the cecum of rats, the sulfate-producing Deltaproteo-
bacteria increased with age.45 Recently, we reported the microbial 
changes and host response of F344 rat colon, focusing on sex and 
age.71 A HFD-induced low species richness and high abundance 
of Desulfovibrio spp. and Clostridium lavalense were noted with 
colon mucosal cell proliferation.71 Only in young rats and female 
aged rats, the abundance ratio of A. muciniphila and Desulfovibrio 
spp. increased with a HFD.71 

In people aged over 70 years, changes in gut physiological 
function can affect the gut microbiome composition.7,72,73 In a Ger-
man study with 35 292 adults, total colony-forming units did not 
show age- or sex-related changes.52 However, individual bacterial 
species differed according to age: Escherichia coli and Enterococci 
spp. both increased, and Bacteroides spp. decreased. Lactobacillus 
and Bifidobacterium were stable throughout life.72,74 

Effect of Diet 	

Diet has sex differential effects on gut microbiota.75 In the study 
of dietary intake of phytonutrients in relation to fruit and vegetable 
consumption in Korea, a higher proportion of women than men met 
the recommended intake of fruits and vegetables.76 In addition, the 
Korean national health and nutrition examination surveys among 
3 groups, men, menopausal women, and postmenopausal women, 
showed that men’s dietary carotenoid intake was the lowest.77 Since 
fruits and vegetables are the main source of dietary carotenoids, 
men consume less dietary fruits and vegetables than women. How-
ever, diet study is very difficult to perform in human especially in 
terms of sex differential effect of diet on the gut microbiota because 
sex- and gender-difference has many underlying conditions includ-
ing age, race and culture. Usually diet studies are performed in ani-
mals, in which diet can be easily controlled. There are many studies 
on the relationship between gut microbiota and fat and/or bile acid 
regarding sex. HFDs induce an increase in bile secretion.78 Second-
ary bile acids are produced by gut bacteria from primary bile acids. 
Large intestinal anaerobic bacteria deconjugate and dehydroxylate 
to form secondary bile acids, such as deoxycholic acid and lithocho-
lic acid.79,80 An animal study on sex differences in bile acids reported 
that sex differences in Western diet-induced steatosis, insulin sensi-
tivity, and microbiota functions were farnesoid X receptor (FXR)-
dependent.56 Male Western diet-fed FXR knockout mice showed 
the most severe steatosis and highest liver and serum lipid profiles, 
and insulin resistance than females. FXR deficiency increased the 

numbers of Desulfovibrionaceae, Deferribacteraceae, and Helico-
bacteraceae only in males.56 

In addition, in a study on laboratory fish, mice, and humans, 
Bolnick et al81 showed a gender-specific relationship between diet 
and microbiota. They first employed principal coordinate analysis 
and further analyzed the relative abundance according to diet and 
sex. They found that the mammalian gut microbiome is affected by 
sex–diet interactions. When males were fed a HFD, they showed 
an increased abundance of Lactobacillus, Alistipes, Lachnospira-
ceae, and Clostridium, whereas females did not.81 

Another animal study investigated the association between gen-
der, physical activity, and the gut microbiome.82 High-fat, high-corn 
starch, and high-sucrose diets were provided. Rats were housed in 
a sedentary environment or under physically active conditions with 
wheel-running access (RUN). Males in the RUN environment 
equally consumed the 3 diet types, with significantly less consuming 
the HFD than in the other groups.82 Females preferred a HFD. 
Regarding microbiota, only males showed an effect of physical ac-
tivity. Males in the RUN showed more richness than did females in 
the sedentary environment.82 

In IBS, the gut microbiota involved in bile acid metabolism 
may affect the pathophysiology.83 

A study on human fecal samples showed 2 orthologues, which 
has a role in secondary bile synthesis, were decreased in IBS pa-
tients.83 The microbiota, primary bile acids, and secondary bile acids 
(mainly deoxycholic acid and lithocholic acid) could be measured to 
investigate the sex differences in IBS in future studies. 

The Effect of Microbiota on the Disease 
Manifestations Depending on Sex  
Differences 	

Gut dysbiosis triggers diseases that manifest differently be-
tween the sexes. The most investigated disease or condition include 
autoimmune diseases, obesity, and FGID. However, multifactorial 
factors including sex, age, and dysbiosis affect these diseases and 
they are also closely related and interact mutually. We tried to review 
relevant research to date. 

Functional Gastrointestinal Disorder and 
Microbiome-Gut-Brain Axis 	

Gut microbiota play key roles in modulating the brain-gut axis 
and intestinal barrier (Fig. 4).84-86 Short-chain fatty acids (SCFAs) 
such as acetate, propionate, and butyrate are the most abundant 
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and important microbial end-products. They are inflammation 
modulators that regulate gut motility and wound-healing.87 They 
have been also found as a link between the microbiome-gut-brain 
axis.6,80,88 Among them, butyrate is considered to be the reason 
for the health benefit from the fermentation process of indigest-
ible carbohydrate.89 Interestingly, the sex difference in butyrate-
producing gut microbiota has been reported.90 In addition, a recent 
study has shown that male and female rat gut microbiomes have 
different profiles of SCFAs when an oligofructose-containing diet 
is administered to both.50 In females, oligofructose supplementa-
tion increased the abundance of Bacteroidetes, while no difference 
was found in males.50 Furthermore, fecal butyrate, liver IgA, IL-6, 
and cecal IL-6 levels were increased in males but IL-10 levels were 
higher in females.50 Interestingly, Native Africans had remarkably 
higher abundance in the butyrate-producing bacteria such as Fae-
calibacterium prausnitzii, Clostridium cluster IV, and Clostridium 

cluster XIVa.91 In contrast, Bacteroides was the dominant in African 
Americans.91 Bacteroides-Prevotella group showed higher levels in 
men than women.55 

There have been a few clinical studies regarding the micro-
biota and FGIDs. For instance, the differences in gut microbiota 
associated with sex were investigated in 277 Japanese volunteers.51 
Increases in the genera Prevotella, Megamonas, Fusobacterium, 
and Megasphaera in males and increases in Bifidobacterium, 
Ruminococcus, and Akkermansia in females were reported. In 
females, 19.4% had hard stools (Bristol stool form scale types 1 and 
2), which was higher than that in male subjects. Loose-to-liquid 
stools (Bristol stool form scale type 6) were more common in male 
subjects.51 Tight junction proteins are important for the develop-
ment of IBS and it contacts with microbiota and SCFA. Our team 
found that Helicobacter pylori was shown to be related to various 
tight junction proteins, particularly claudin-4 and occludin.92 Inter-

Brain-gut axis

Central nervous system

Pain modulation

E: sensitivity

T: analgesic effect

IBS women: activity of structures involved

in emotional processing of pain

sensation (limbic system)

Stress response

E, P: HPA axis activity (CRH , cortisol )

T: stress induced ACTH release

IBS women: anxiety, hypervigilance

Intestinal transit

E: motility [RhoA GTPase , CCK(A) activity ]

P: motility (PGF2 , PGE2 )
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Figure 4. Sex hormone and brain–gut axis in irritable bowel syndrome (IBS). E, estradiol; T, testosterone; P, progesterone; HPA, hypothalamic-
pituitary-adrenal; CRH, corticotropin-releasing hormone; ACTH, adrenocorticotropic hormone; CNS, central nervous system; RhoA, Ras ho-
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estingly, an increase in claudin-2 was thought to be involved in male 
functional dyspepsia but not in females.92 

Medication and Probiotics 	

There have been a few reports on medication and sex-difference 
of microbiota. A human study investigated 23 healthy men and 
women for differences in NSAID-induced intestinal barrier func-
tion and microbiome.63 The duodenal and fecal microbiota com-
positions were determined using 16S ribosomal RNA sequencing. 
Healthy females had lower intestinal permeability, with higher duo-
denal and fecal microbial diversities than healthy males. Gut perme-
ability increased after indomethacin administration in both sexes.63 
However, only females showed decreased fecal microbial diversity, 
including an increase in Prevotella abundance, after indomethacin 
ingestion. The duodenal microbiota composition did not show sex-
specific changes.63 

Nowadays probiotics are popular for many reasons and it has 
been suggested that the effect could be different in terms of sex. 
Specifically, a probiotic clinical trial suggested an adjustment of the 
butyrate concentration by administering Lactobacillus paracasei 
DG.93 They showed that the effect of the probiotic on the micro-
biota and SFCAs correlated with the initial fecal butyrate concen-
tration.93 Another study reported that administration of a probiotic 
mixture of 5 Lactobacillus strains to lupus-prone mice improved 
renal function and showed anti-inflammatory effects in female and 
castrated male mice, but not in gonadally intact males, suggesting a 
sex difference in probiotic administration.57 

In addition, female and male rats responded differently to pro-
biotic treatment for repeated water avoidance stress-induced colonic 
microinflammation rat model. A 10-day treatment with Lactobacil-
lus farciminis effectively treated female rats, but not males.58 

Furthermore, supplementation of aged obese male mice with 
the probiotic Lactobacillus reuteri helped to restore testosterone 
levels, increasing seminiferous tubule cross-sectional profiles and 
spermatogenesis, and Leydig cell numbers, as well as decreasing 
IL-17 levels. The authors attributed these findings to the anti-
inflammatory properties of L. reuteri.38

Another study reported sex-based differences in the anti-aging 
effect of a tuna oil and algae oil mixture on the intestinal micro-
biota.59 Male mice showed better anti-aging effects than did female 
mice with a specific oil mixture ratio.59 The same oil treatment 
resulted in different intestinal microbiota composition alterations in 
different sexes. Lactobacillus and several butyrate producers were 
more abundant in males than in females. Some inflammation-relat-

ed genera, such as Clostridium cluster XIVa, were lower in males.59 
In addition, an animal study investigated the sex difference in 

the interaction between Mycobacterium avium subspecies (subsp.) 
paratuberculosis, probiotic Lactobacillus animalis NP-51, and the 
intestines.60 Host responses to M. avium subsp. paratuberculosis 
and L. animalis differed between sexes, especially the cytokines 
IL-1α/β, IL-17, IL-6, IL-10, and IL-12. Staphylococcus and 
Roseburia were consistently overrepresented in females compared 
to those in males.60

Conclusions 	

There has been significant progress in the research for relation-
ship between gender, sex hormones, and gut microbiota. We tried to 
summarize recent studies on this subject under various conditions 
such as androgen excess, aging, GI inflammatory and functional 
diseases, nutrition, and medication. However, the majority of 
studies were performed in animals, so far. Further research on the 
interaction between gender, sex hormones, and gut microbiota may 
suggest novel preventive measures for relevant diseases. 
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