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Introduction: Recent network-based analyses suggest that 
schizophrenia symptoms are intricately connected and in-
terdependent, such that central symptoms can activate 
adjacent symptoms and increase global symptom burden. 
Here, we sought to identify key clinical and neurobiological 
factors that relate to symptom organization in established 
schizophrenia. Methods: A symptom comorbidity network 
was mapped for a broad constellation of symptoms measured 
in 642 individuals with a schizophrenia-spectrum disorder. 
Centrality analyses were used to identify hub symptoms. 
The extent to which each patient’s symptoms formed clus-
ters in the comorbidity network was quantified with cluster 
analysis and used to predict (1) clinical features, including 
illness duration and psychosis (positive symptom) severity 
and (2) brain white matter microstructure, indexed by the 
fractional anisotropy (FA), in a subset (n = 296) of individ-
uals with diffusion-weighted imaging (DWI) data. Results: 
Global functioning, substance use, and blunted affect were 
the most central symptoms within the symptom comorbidity 
network. Symptom profiles for some patients formed highly 
interconnected clusters, whereas other patients displayed 
unrelated and disconnected symptoms. Stronger clustering 
among an individual’s symptoms was significantly asso-
ciated with shorter illness duration (t = 2.7; P =  .0074), 
greater psychosis severity (ie, positive symptoms expres-
sion) (t = −5.5; P < 0.0001) and lower fractional anisotropy 
in fibers traversing the cortico-cerebellar-thalamic-cortical 
circuit (r = .59, P < 0.05). Conclusion: Symptom network 
structure varies over the course of schizophrenia: symptom 
interactions weaken with increasing illness duration and 
strengthen during periods of high positive symptom expres-
sion. Reduced white matter coherence relates to stronger 
symptom clustering, and thus, may underlie symptom 

cascades and global symptomatic burden in individuals 
with schizophrenia.

Key words:  psychosis/symptom network/diffusion-
weighted imaging/fractional anisotropy

Introduction

Schizophrenia is a complex mental health disorder, whose 
course is marked by gradual deterioration in psychopa-
thology and brain structure. No curative treatment exists, 
and first-line antipsychotic treatments do not relieve the 
full scope of symptoms and functional sequalae.

Diagnostic classification of schizophrenia currently 
relies on categorical typologies, whereby symptoms are 
equally weighted and considered manifestations of an 
underlying illness. However, it is increasingly clear that 
symptoms carry differing degrees of importance in terms 
of their impact on overall illness and may derive from 
numerous antecedents.1,2 Recent studies have leveraged 
graph theory to reconceptualize symptoms as an interac-
tive comorbidity network, rather than representing inde-
pendent entities.3 In this way, a collection of symptoms 
are represented as nodes (network elements) and their 
local interactions as edges.4,5 This model suggests that 
psychiatric disorders reflect a causal interplay between 
multiple symptoms, whereby symptoms form meaningful 
associations and interactions with each other.

Network analysis has been used to identify the rel-
ative importance of  symptoms in schizophrenia (ie, 
their degree of  connectedness with other symptoms). 
Preliminary network studies identify negative symp-
toms and functioning levels as central to overall 
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clinical profiles in schizophrenia.6,7 Thus, amelioration 
of  negative symptoms—a longstanding pharmaco-
therapy challenge8,9—could potentially protect against 
global symptom cascades and improve overall illness 
states.10,11 However, it is unclear whether the centrality 
of  negative symptoms and general functioning is con-
served in comorbidity networks comprising broader 
symptom constellations.

In addition to key symptoms/nodes, global network 
features may also bear on general psychopathology. 
In this regard, higher psychosis symptom severity and 
risk of psychotic relapse was observed in schizophrenia 
subgroups with stronger connectivity between multiple 
different symptoms (ie, higher symptom connected-
ness)—for example, by way of reinforcing maladaptive 
feedback loops.12 These findings raise the important 
question of whether symptom structures remain stable or 
vary over the course of illness.

Changes across the course of illness are well established 
with respect to brain structure and function in schizo-
phrenia. Numerous magnetic resonance imaging (MRI) 
studies report structural brain alterations in schizophrenia, 
which progress over the course of illness, particularly in 
white matter microstructure.13–15 These alterations may 
relate to aspects of psychopathology16,17 and cognitive or 
functional decline.18–20 However, precise brain-symptom as-
sociations remain to be established due to mixed findings. 
This may be due in part to a complex interplay between 
symptoms that confound direct relationships between neu-
roimaging measures and discrete symptoms. Accounting 
for symptom interplay by way of a network approach 
may thus, lead to more realistic, and clinically meaningful 
brain-symptom associations in schizophrenia.

This study builds on previous symptom network 
studies by examining key clinical and neurobiolog-
ical factors that could relate to symptom network 
architecture in a large schizophrenia cohort. We con-
sider a broad constellation of  symptoms to construct 
a symptom comorbidity network. Each network node 
represents a particular symptom and edges (ie, con-
nections) are drawn between comorbid symptoms (ie, 
symptoms that frequently co-occur among individ-
uals). We quantify the extent to which each patient’s set 
of  symptoms form clusters in the comorbidity network 
and test whether the extent to which an individual’s 
symptoms are interconnected associates with illness 
duration, psychosis severity, and regional white matter 
microstructure. We hypothesized that symptom clus-
tering varies as a function of  illness course in schizo-
phrenia and relates to diffusion-indexed white matter 
microstructure. More specifically, we postulated that 
individuals whose symptoms were interconnected to 
form clusters would show higher psychosis (ie, positive) 
symptom severity12,21 and lower white matter fractional 
anisotropy, compared to individuals with symptoms 
that were disconnected from each other.

Methods

Participants

This study included data from 668 individuals diagnosed 
with a schizophrenia-spectrum disorder, drawn from 
the Australian Schizophrenia Research Bank (ASRB).22 
Participants had an established diagnosis of schizophrenia 
(n = 451), schizophreniform (n = 2), schizoaffective dis-
order (n = 86), delusional disorder (n = 18) or psychotic 
disorder not otherwise specified (n = 85). Diagnoses were 
confirmed by trained clinical assessment officers using 
the Diagnostic Interview for Psychosis (DIP).23 Exclusion 
criteria included a history of brain injury or neurolog-
ical brain disorder; an intelligence quotient (IQ) below 
70; and/or a diagnosed movement disorder. Approval 
for data analysis was provided by the Melbourne Health 
Human Research Ethics Committee (MHREC: 2010.250) 
and written informed consent was obtained from all par-
ticipants, according to the Declaration of Helsinki.

Clinical Assessments

Clinical assessment data were collected across 5 
Australian sites. Detailed clinical assessment protocols, 
including quality control measures undertaken to en-
sure inter-rater and inter-site reliability are described 
elsewhere.22 The Wechsler Test of Adult Reading24 (3 
items) was used to assess premorbid IQ and the following 
4 scales were used to assess current cognitive ability: 
(1) the Wechsler Abbreviated Scale of Intelligence25 (3 
items), (2) the Controlled Oral Word Association Test26 
(3 items); (3) the Repeatable Battery for Assessment 
of Neuropsychological Status27 (12 items); and, (4) the 
Letter Number Sequencing28 (1 item). Psychopathology 
(e.g., positive, negative, and depressive symptoms) and 
substance abuse/dependence were assessed with the 
Diagnostic Interview for Psychosis (DIP)23,29 (82 items) 
and the Scale for Assessment of Negative Symptoms30 
(22 items). We note that substance use items were in-
cluded in the construction of an overall symptom net-
work due to known interactions between drug use and 
core schizophrenia symptoms.3,31,32 General functioning 
was assessed with the Global Assessment of Functioning 
scale33 (GAF; 1 item). Psychosis (positive symptom) se-
verity was measured by summing the positive symptom 
items in the DIP scale. Refer to supplementary table 1 for 
a complete list of symptom items (126 in total) and cor-
responding scales used in this study.

Symptom Comorbidity Network Construction

Symptom items measured for each subject formed a 
648 (subjects) × 159 (symptoms) matrix. Missing data 
were handled iteratively: first, subject rows or symptom 
columns with >30% missing values were removed and 
second, remaining missing elements were imputed using 
probabilistic principal component analysis (PPCA).34 
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This resulted in a 642 (subjects) by 126 (symptoms) ma-
trix used to build the symptom comorbidity network. 
Symptom scores were quantile normalized (into z-scores) 
and cognition and function-related symptom items were 
inverted (1/raw symptom score) so that higher values sig-
nified poor performance/functional deterioration, in ac-
cord with the remaining symptom items.

The overall symptom network was represented with a 
symmetric M by M correlation matrix, where M denoted 
the number of symptom items (ie, nodes). The Pearson 
correlation coefficient35 between each pair of symptoms 
was computed across all patients (n = 642).5 The corre-
lation between a pair of symptoms provided a contin-
uous measure of comorbidity and quantified the extent 
to which the symptoms co-occurred in the cohort. While 
complementary measures of comorbidity are available, 
including partial correlation36 and information-theoretic 
measures,37 they mandate specific data assumptions and 
add complexity to the construction process. Correlation 
coefficients below a fixed threshold (r = .2, which yielded 
the high betweenness across all symptoms) were set to zero 
to remove weak symptom correlations from the network.

In post hoc analyses, symptom networks were mapped 
separately for each of the 5 acquisition sites (Melbourne, 
Brisbane, Sydney, Perth, Newcastle) and for each sex. 
This enabled the effect of sex and the confound of site to 
be investigated. Consistency between pairs of sites and 
between males and females was assessed by computing 
the Pearson correlation coefficient across the set of 
unique elements in the symptom networks. Consistency 
in symptom centrality measures was assessed in the same 
way. Furthermore, an overall symptom network was con-
structed using least absolute shrinkage and selection op-
erator (LASSO) to evaluate network stability against an 
alternative approach to network construction.

Symptom Network Organization and Centrality

Graph-theoretic analyses were performed to identify the 
most central (hub) symptoms and to test for evidence of 
modular organization. These analyses were undertaken 
using functionality provided in the Brain Connectivity 
Toolbox (BCT).38 While nodes reflect distinct elements of 
a network, individual symptom items may be highly cor-
related, particularly those derived from the same assess-
ment scale. Therefore, Modularity was used to decompose 
the symptom comorbidity network into distinct modules, 
where each module contains more strongly related symp-
toms relative to the rest of the whole network. To this 
end, the Louvain (gamma = 0.4) was used to maximize 
the number of within-group edges, and minimize the 
number of between-group edges.39,40 We systematically 
selected the gamma for which there was no module com-
prising only one symptom. Subsequently, 3 measures of 
node centrality were used to identify influential symptom 
nodes within each symptom module and across the 

entire network.2 Betweenness quantified the portion of all 
shortest paths in the network that contain a given node. 
Nodes with high betweenness are considered bridges or 
gatekeepers, as they participate in many shorter paths.2 
Closeness quantified the topological distance of a given 
node to all the other nodes in the network by inverting 
the summed distance between the node of interest and all 
other nodes in the network. Degree quantified the fraction 
of edges connected to a given node and is taken to reflect 
how influential the given node is.2 For the overall group 
symptom network, correlation coefficients below a fixed 
threshold (r = .2, which yielded the highest betweenness 
across all symptoms) were set to zero to remove weak 
symptom correlations from the network. However, net-
work centrality measures (described below) were com-
puted by averaging across multiple correlation thresholds 
(supplementary figure 1).

Symptom Clustering Analysis

The extent to which each patient’s most prominent symp-
toms were interconnected in the symptom comorbidity 
network was determined using cluster analysis. Patients 
were ranked according to symptom severity for each 
symptom item, yielding a ranked list for each item. For 
each patient, the top 15% of ranked symptom items (re-
peated at thresholds of 10% and 20%) were identified 
and projected onto the symptom comorbidity network. 
We tested whether the top 15% (repeated at thresholds of 
10% and 20%) of ranked items for each subject formed 
interconnected clusters between the predefined mod-
ules (figure  1A). For each subject, a symptom module 
was considered active if  at least one of its constituent 
symptoms was ranked as severe (ie, among the top 15% 
of ranked items for that particular subject; figure  1B). 
Note that the symptom comorbidity network and mod-
ules remained the same for all subjects: only the set of 
active modules varied between individuals. The degree 
of symptom clustering was quantified by the number 
of connected components among active symptom mod-
ules (figure 1C), where fewer components signify higher 
symptom clustering.1,10,21,41

Exploring the Neural Basis of Symptom Networks With 
White Matter Anisotropy

Diffusion-weighted images (DWIs) were acquired in a 
subset (n  =  296) of individuals with a Siemens Avanto 
1.5-Tesla system (Siemens) across 5 different sites in 
Australia.22 The same model of MRI scanner and acqui-
sition sequences were used at each site and no scanner 
upgrades were performed during the study lifetime. A ret-
rospective harmonization procedure was performed on 
raw DWI data to remove nonlinear site/scanner effects.42,43

Processing procedures for DWI data were completed 
for a prior study42 and are described in supplementary 
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material. Fractional anisotropy (FA) maps were gener-
ated by fitting a single-diffusion tensor to the harmon-
ized and processed DWIs. Tract-based spatial statistics 
(TBSS)44 was employed to skeletonize FA maps and 
mean values were extracted from a subset of white matter 
regions comprising the JHU white matter atlas (48 re-
gions). Statistical inference was performed on the re-
sulting skeletonized regions-of-interest.

Statistical Modeling

A general linear model was used to examine the impact 
of symptom clustering (ie, the number of connected com-
ponents among active symptom modules) on illness du-
ration and psychosis symptom severity. The number of 
active symptom modules was included as a covariate to 
remove bias due to systematic variation across individ-
uals in the number of active symptom modules.

10-Fold Cross Validation. A 10-fold cross-validation 
framework was used to examine the stability of associ-
ations between symptom clustering with illness dura-
tion and psychosis symptom severity. To this end, the 
sample was randomly partitioned into 10 equal-sized 
subsamples. In each fold, a single subsample was left out 
and symptom comorbidity and modules were mapped 
using the remaining set of subjects. The left-out subjects 
were then projected onto the network to determine their 

number of active modules. This was repeated for each 
subsample. The entire 10-fold cross-validation process 
was repeated 1000 times, each time using a different al-
location of subjects to each sub-sample. We report the 
proportion of cross-validations for which a significant as-
sociation was identified.

Canonical Correlation Analysis.  Canonical correlation 
analysis (CCA) was used to examine possible relation-
ships between symptom network clustering and regional 
white matter FA. To this end, symptom clustering rep-
resented a vector (296 subjects x 1 value representing 
the number of  connected components) and regional FA 
measures were represented as a matrix (296 subjects × 
48 regions). Potential confounding effects of  age, the 
square of  age, and sex were regressed from each factor 
(symptom clustering and regional FA) and the residuals 
were used as inputs to the CCA. One million permuta-
tions were used to evaluate statistical significance, with 
P < .05 considered significant (reflecting the proportion 
of  randomized data that were greater than the observed 
data).

Results

Participants and Symptoms

Six subjects were removed due to high missing data rates, 
resulting in a total of 642 subjects (sex: 433 [67.45%] males; 

Fig. 1. Measuring the degree of clustering intrinsic to individual symptom profiles. The degree of symptom clustering was measured by 
(A) delineating severe symptoms (red circles) and non-severe symptoms (green circles). (B) Modules containing a severe symptom were 
designated as “active symptom modules” (red modules) and modules without severe symptoms were designated as “non-active symptom 
modules” (green modules). (C) The degree of symptom clustering was obtained by computing the number of connected components 
among the active symptom modules. Patient 1 displays high symptom clustering as all active modules are connected (forming a total of 
one connected component), whereas Patient 2 displays weaker symptom clustering, as their active symptom modules formed 3 connected 
components (ie, their symptoms are more disconnected/segregated compared to Patient 1).

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab015#supplementary-data
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age range = 18–65 years, mean [SD] age = 39.46 [10.77] 
years). Patient characteristics are shown in table 1. Of 159 
symptom items, 33 were removed due to high missing data 
rates, resulting in 126 variables used for network construc-
tion (supplementary table 1). Resulting data were recorded 
as a 642 (subjects) × 126 (symptoms) matrix, which was 
fed into PPCA for missing data imputation.

Symptom Network Organization

Symptom co-occurrence (comorbidity) was quantified 
between 7875 pairs of  symptoms and summarized in 
terms of  a 126 by 126 correlation matrix (supplemen-
tary figure 2). The symptom comorbidity network was 
partitioned into 7 non-overlapping modules (figure 2), 
which distinguished broad symptom domains: negative 
symptoms, positive symptoms, depressive symptoms, 
disorganized speech and behavior, substance use, cog-
nition 1 (general intelligence) and cognition 2 (visual 
and spatial perception). As shown, “global functioning 
(gaf)” clustered together with negative symptoms and 
formed a bridge to “bizarre behavior (bizBe)” within 
the substance use domain. The substance use domain 
was central to the network, connecting positive, cog-
nitive and disorganized symptoms. The centrality of 
substance use items was confirmed in a secondary anal-
ysis in which these items were removed (supplementary 
figure  3). Conversely, depressive symptoms were pe-
ripheral to the network, forming connections only with 
positive symptom nodes via links between hallucina-
tory symptoms (positive symptom module) and sleep 
symptoms (depressive symptom module). Notably, 
the positive symptom module was directly linked to 
the substance use module via hallucinatory symptoms 
and alcohol dependence symptoms. Network struc-
ture was found to be stable: closeness and degree were 
significantly correlated across all study sites (supple-
mentary tables  2–4) and between males and females 

(supplementary table  5), and was conserved using an 
alternative LASSO approach to measure symptom co-
morbidity (supplementary table  6). Betweenness was 
less stable than closeness and degree, which may be due 
to several multi-hop paths utilizing a common connec-
tion. Omission of  this common connection can thus 
result in marked change in betweenness. This requires 
further investigation.

Symptom Centrality

Network centrality analyses provided insight into the ex-
tent of comorbidity associated with each symptom item 
(figure 3). The most central symptoms were found within 
the negative symptom and substance use modules. In 
particular, symptoms with the highest betweenness were 
global functioning and lifetime drug use, followed closely 
by bizarre behavior and visual hallucinations. The close-
ness and degree measures revealed strikingly similar pat-
terns, with blunted affect (within the negative symptom 
domain) displaying the highest closeness and degree, fol-
lowed by alcohol use items (capacity to control alcohol 
use, alcohol tolerance, alcohol craving, and alcohol re-
lated withdrawal problems). Collectively, substance use, 
negative symptoms and global functioning exhibited 
high centrality across all 3 indices. Symptoms with high 
betweenness tended to form bridges between distinct 
modules.

Similar within-module centralities were also observed 
in closeness and degree. For example, the capacity to reg-
ulate alcohol intake and alcohol tolerance were highly 
central within the substance use module according to 
both closeness and degree. For betweenness, endorsement 
of drugs ever taken and bizarre behavior were identified 
as most central within the substance use module.

Symptom Clusters Associate With Clinical Course and 
Psychotic Symptom Severity

Following the approach exemplified in figure  1, the 
symptom profiles of many patients (76.32%) formed a 
single tightly interconnected cluster within the symptom 
comorbidity network. This suggests that the symptom 
comorbidity network accurately captured symptom inter-
actions found in most individuals. The symptom profiles 
of the remaining patients formed either 2 (19.47%) or 3 
(4.21%) distinct clusters. The extent to which symptom 
profiles formed clusters in the symptom network was sig-
nificantly greater than attributable to chance (figure 4A). 
The presence of multiple symptom clusters does not nec-
essarily indicate a greater symptom burden compared 
to a single cluster. Multiple clusters could potentially be 
remnants of an initially larger single cluster that has been 
broken down by effective treatment.

As hypothesized, both illness duration and psychosis 
symptom severity were significantly associated with 

Table 1. Schizophrenia Cohort Characteristics

N = 642
Males, n (%) 433 (67.45)
Age, mean (SD) 39.46 (10.77)
Duration of illness in years, mean (SD) 15.83 (10.00)
Site n (%)
Sydney 123 (19.16)
Melbourne 148 (23.05)
Brisbane 163 (25.39)
Perth 161 (25.08)
Newcastle 47 (7.32)
Diagnosis n (%)
Schizophrenia 451 (70.25)
Schizophreniform disorder 2 (0.31)
Schizoaffective disorder, depressed type 52 (8.10)
Schizoaffective disorder, bipolar type 34 (5.30)
Delusional disorder 18 (2.80)
Psychotic disorder NOS 85 (13.24)

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab015#supplementary-data
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http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab015#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab015#supplementary-data
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http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab015#supplementary-data
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interindividual variation in the number of symptom 
clusters (1, 2, or 3 connected components). Specifically, 
GLM analysis detected a linear increase in the number 
of connected components as a function of illness dura-
tion (t = 2.7, P = .0074; Cohen’s d = 0.12; figure 4B; see 
supplementary table 7 for post hoc comparisons), after 
controlling for the number of active symptom modules. 
Conversely, GLM analysis detected a linear decrease in 
the number of connected components as a function of 
psychosis symptom severity (t = −5.5; P < .0001; Cohen’s 
d = 0.21; figure 4B; see supplementary table 7 for post hoc 
comparisons), after controlling for the number of active 
symptom modules. All results were robust against site dif-
ferences (supplementary material), as well as across lower 
(10%) and higher (20%) thresholds to delineate severe 
symptoms intrinsic to each subject’s interconnectivity 
profile (Supplementary Table 8). The association between 
duration of illness and the number of connected com-
ponents was significant against chance in 42.4% out of 
1000 repetitions of 10-fold cross validation; whereas the 
association between psychosis severity and number of 

connected components was significant against chance in 
96.8% out of 1000 repetitions of 10-fold cross-validation, 
see supplementary figure 4).

Symptom Networks and White Matter Microstructure

Figure 5 presents results from the CCA. There was an 
overall positive association between the symptom clus-
tering and regional FA measures (r = .59, P = .047, boot-
strap  =  5000). Therefore, in general, higher symptom 
clustering associated with lower FA levels. A  total of 8 
white matter regions comprising the cortico-cerebellar-
thalamic-cortical circuit, significantly contributed to the 
observed covariation between symptom profiles and white 
matter anisotropy. The specific regions included the pon-
tine crossing tract (cortico-ponto-cerebellar fibers), as well 
as the bilateral posterior corona radiata (main cortical 
projection fibers) and the left inferior cerebellar peduncle 
(olivocerebellar fibers), retrolenticular (or retrolentiform) 
internal capsule (parieto- and occipito-pontine fibers), 
posterior thalamic radiations (thalamocortical fibers), 
and sagittal stratum (corticosubcortical fibers).

Fig. 2. Symptom comorbidity network in schizophrenia. Circles represent nodes (symptoms) and lines represent associations between 
symptom pairs: thicker lines indicate stronger correlations. The network layout is force-directed, whereby distant variables are weakly 
correlated and adjacent variables are strongly correlated. Modularity analysis yielded 7 symptom modules: negative symptoms (peach), 
positive symptoms (brown), depressive symptoms (gray), disorganized speech and behavior (violet), substance use (mint), cognition—
intelligence (yellow), and cognition—visuospatial perception (green). Refer to supplementary table 1 for specific item names and items 
removed from the network.

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab015#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab015#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab015#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab015#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab015#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab015#supplementary-data
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Discussion

We studied emergent properties of a schizophrenia 
symptom comorbidity network, as well as relationships 
with clinical features and cortical white matter anisot-
ropy—frequently reported as reduced in schizophrenia.13,14 
We observed weaker symptom clustering in older indi-
viduals with longer illness durations, suggesting a pat-
tern of gradual symptom decoupling over the course of 
illness. In contrast, stronger clustering of an individual’s 

symptom profile coincided with higher psychotic (posi-
tive symptom) severity and lower white matter anisotropy. 
Our findings suggest that strong symptom interactions 
manifest in psychotic illness states—the neural basis of 
which relates to impaired white matter circuitry.

In accord with prior work and previous dimensional 
symptom models,20,45,46 the symptom comorbidity net-
work naturally clustered into broad symptom domains, 
with negative symptoms and general functioning situated 

Fig. 3. Symptom centrality in schizophrenia. The relative importance of symptoms in the overall network was quantified by the 
betweenness, closeness, and degree, respectively. For each parameter, symptom names are given for the top 2 most central symptoms 
within each module. Nodes are colored according to their superordinate module (refer to figure 1 for color legend). “Global functioning 
(GAF),” “lack of insight,” “bizarre behavior” and “drugs ever used” showed the highest betweenness values. Closeness and degree 
revealed a strikingly similar pattern of symptom importance, with “blunted affect” (negative symptom module), and “capacity to control 
alcohol intake” reflecting the most central symptoms across both parameters.
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most centrally. Global functioning was more closely 
linked to negative symptoms than to positive symptoms. 
This is perhaps unsurprising, as the resolution of positive 
symptoms does not necessarily translate into functional 
recovery.47 Furthermore, individuals with treatment-
resistant schizophrenia often exhibit persistent and severe 
negative symptoms stemming from both primary and 
secondary sources (eg, neuroleptic side effects, or depres-
sion)48 that can affect functional outcomes more so than 

positive symptoms.49 As such, interventions that target 
central negative symptoms, including alogia and speech 
difficulties, may lead to improved functional recovery.

Extending previous work, we also identify substance 
use as central within the symptom network. The rate of 
lifelong substance abuse in individuals with schizophrenia 
is high (ranging between 40% and 70%),50 the effects of 
which are known to exacerbate existing positive, negative, 
cognitive symptoms, as well as social functioning.31 This 

Fig. 4. Association between symptom clustering and clinical course in schizophrenia. (A) The observed extent to which symptom 
profiles formed clusters in the network (red dashed line) was significantly greater than attributable to chance—the number of connected 
components computed from randomly generated networks (1000 permutations). The dark blue line and light blue shading represents the 
mean and 95% confidence intervals, respectively). (B) The degree of symptom clustering (number of connected components) increases 
as a function of illness duration and decreases as a function of psychosis (positive symptom) severity. * denotes a significant group 
difference. (C) An example younger subject with a shorter illness duration (circle) displays 1 connected component (ie, tightly clustered 
symptoms). Conversely, an example older subject with a longer illness duration (square) displays 3 connected components (ie, weakly 
clustered symptoms).
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may explain our finding that positive and cognitive symp-
toms indirectly relate to functioning via substance abuse 
symptoms. In particular, substance abuse may serve to 
exacerbate core cognitive and psychotic symptoms, which 
in turn contributes to functional decline. Longitudinal 
studies that track temporal relationships between sub-
stance abuse of various substances, positive symptoms 
and cognitive decline are required to test this hypothesis. 
Furthermore, richer substance use phenotyping in future 
study designs could help towards disentangling the effects 
of distinct substances on symptom network organization 
and dynamics.

Another key finding is that mood symptoms, such as 
depression and mania, interact indirectly with positive 
symptoms via sleep-related symptoms, facilitated by direct 
links between hallucinations and insomnia/early waking. 
Cumulative evidence supports a role for sleep disturbance 
in positive symptoms. This is consistent with evidence 
that sleep-arousal cycle disturbances are more prevalent 
in schizophrenia patients with severe positive symptoms51 
and that insomnia is linked to psychotic experiences.52 
Collectively, the symptom comorbidity network mapped 
in this study mirrors previously observed symptom dy-
namics, providing strong support for a network approach 
to gain insights into the complex nature of co-occurring 
symptoms and symptom clusters in schizophrenia. Our 
findings add to the body of evidence that management of 
schizophrenia requires a combined approach that targets 
not only positive symptoms, but also negative symptoms, 
sleep and substance abuse problems.53

Beyond describing microscopic symptom (node) 
effects, the present study examined macroscopic 
(systems-level) network effects and was the first to 

evaluate positive symptom severity and illness du-
ration in relation to clustering intrinsic to individual 
symptom profiles. We observed a positive relationship 
between the degree of  symptom clustering and illness 
duration, indicating that symptom interactions may 
vary over the course of  illness. In our cohort, which is 
mostly comprised of  out-patients that respond well to 
antipsychotic medication (table 1), network decoupling 
may reflect a pattern of  symptom improvement owing 
to successful treatment. It is alternatively possible 
that symptom network decoupling manifests with 
advancing age and is associated with typical or accel-
erated aging processes in brain structure and function. 
Regardless of  the mechanisms, weak symptom inter-
actions between modules may serve to sustain illness, as 
local symptom improvements are less likely to produce 
carryover effects in other symptom modules, leading to 
cumulative symptom burden within distinct modules.

On the other side of  the coin, higher clustering 
among symptoms was associated with greater psychosis 
(positive) symptom severity. This finding coheres with 
prior work linking stronger symptom connectivity to 
psychosis onset21 and treatment resistance.41 Together, 
these findings implicate greater symptom inter-
actions during periods of  active psychosis (high pos-
itive symptom expression) or psychotic relapse. From 
a network perspective, targeting central symptoms 
during active psychosis may effectively remove key 
nodes, thereby breaking apart the network into smaller 
symptom subnetworks to reduce global feedback loops 
caused by strong symptom interactions.

The biology underlying symptom interactions may re-
late to alterations in white matter. This is the first study to 

Fig. 5. Associations between symptom network connectivity and white matter microstructure. (A) A significant mode of covariation 
was found between the number of connected components (one value per subject) and the composite of regional fractional anisotropy 
(FA) measures (48 values per subject). Datapoints represent the canonical coefficient for each individual subject (n = 296), with respect 
to the number of components. (B) Correlations (r) between regional FA and the mode of population covariation with the set of 48 
FA measures and mean FA. Error bars indicate 95% confidence intervals estimated with bootstrapping (5000 bootstrapped samples). 
Regions that significantly contributed to the mode of covariation are marked with red squares.
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describe brain-symptom network relationships, and our 
results suggest that densely connected symptoms associ-
ated with reduced white matter anisotropy. This finding 
provides support for the longstanding disconnection 
hypothesis of schizophrenia, which ascribes the diverse 
symptom profile of schizophrenia to alterations in brain 
connectivity.54,55 White matter fibers in the brain serve to 
facilitate communication between brain regions that co-
ordinate multiple brain functions.56 Intuitively then, re-
duced white matter connectivity between functionally 
distinct brain regions could reflect the neural basis for 
activating comorbidities between distinct symptom mod-
ules. The regional pattern of significant FA associations 
(ie, brain regions that significantly contributed to the 
mode of covariation) implicated the cortico-cerebellar-
thalamic-cortical circuit (CCTCC). A  burgeoning of 
structural and functional imaging studies provide evi-
dence for CCTCC disruption in schizophrenia,57–60 which 
is proposed to result in diverse sensory, behavioral and 
cognitive disturbance due to difficulties in processing and 
coordinating mental functions.61–63

Our findings are subject to the following limitations. 
Symptom networks from cross-sectional data are inher-
ently limited by their undirected nature. The cross-sec-
tional findings here provide a strong basis for follow-up 
longitudinal studies to assess temporal relations between 
distinct symptoms, and synergistic effects across time. 
Furthermore, it is challenging to disentangle the effects 
of  illness duration and age, which are highly correlated 
(r  =  .78, P  =  1.12e-134), and in turn, controlling for 
age in illness duration (and vice versa) is inappropriate. 
Lastly, this study employed the Diagnostic Interview 
for Psychosis (DIP) to assess for the presence of  psy-
chosis symptoms. While the DIP represents a reliable 
and valid scale for measuring psychosis symptoms,23 
statistical correspondence with alternative scales, such 
as the Positive and Negative Syndrome Scale (PANSS), 
has not been examined. Therefore, future work is 
needed to test whether the current symptom network 
findings can be reproduced with alternative psychosis 
symptom scales.

Conclusions

Negative symptoms, general functioning and substance 
use are central among a schizophrenia symptom comor-
bidity network. The strength of  symptom interactions 
is dynamic and relates to aspects of  illness course: 
weaker clustering relates to prolonged illness duration 
and stronger clustering relates to higher psychosis (pos-
itive symptom) severity. Higher symptom clustering 
was linked to decreased white matter anisotropy, sug-
gesting that symptom network properties may aid in 
our quest to understand the biological underpinnings of 
schizophrenia.
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