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Abstract

Purpose: To generate diagnostic 18F-FDG PET images of pediatric cancer patients from ultra-

low dose 18F-FDG PET input images, using a novel artificial intelligence (AI) algorithm.

Methods: We used whole body 18F-FDG-PET/MRI scans of 33 children and young adults with 

lymphoma (3–30 years) to developed a convolutional neural network (CNN), which combines 

inputs from simulated 6.25% ultra-low-dose 18F-FDG PET scans and simultaneously acquired 
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MRI scans to produce a standard dose 18F-FDG PET scan. The image quality of ultra-low-dose 

PET scans, AI-augmented PET scans and clinical standard PET scans was evaluated by traditional 

metrics in computer vision, and by expert radiologists and nuclear medicine physicians, using 

Wilcoxon signed rank tests and weighted kappa statistics.

Results: The peak signal-to-noise ratio and structural similarity index were significantly higher, 

and the normalized root-mean-square error significantly lower on the AI-reconstructed PET 

images compared to simulated 6.25% dose images (p<0.001). Compared to the ground-truth 

standard-dose PET, SUVmax values of tumors and reference tissues were significantly higher on 

the simulated 6.25% ultra-low-dose PET scans as a result of image noise. After the CNN-

augmentation, the SUVmax values were recovered to values similar to the standard-dose PET. 

Quantitative measures of the readers’ diagnostic confidence demonstrated significantly higher 

agreement between standard clinical scans and AI-reconstructed PET scans (kappa = 0.942) than 

6.25% dose scans (kappa = 0.650).

Conclusions: Our CNN model could generate simulated clinical standard 18F-FDG PET images 

from ultra-low dose inputs, while maintaining clinically relevant information in terms of 

diagnostic accuracy and quantitative SUV measurements.

Keywords

Pediatric cancer imaging; PET/MRI; whole-body PET reconstruction; PET denoising; deep-
learning

Introduction

In many patients with cancer, the metabolic information from 18F-FDG PET/CT scans is 

required to provide accurate tumor diagnoses and to monitor response to treatment (1–3). 

However, diagnostic 18F-FDG PET/CT scans involve considerable radiation exposure (4, 5). 

Several groups independently reported that the radiation exposure from diagnostic CT scans 

is associated with an increased risk of developing secondary cancers later in life (6–8). This 

is particularly concerning for children, as they are more sensitive to radiation effects than 

adults (9). For example, a patient with lymphoma who undergoes five PET/CT scans will be 

exposed to 10–15 mSv of ionizing radiation per scan and 50–75 mSv total (10). Direct 

evidence from human population studies showed that doses of 50–100 mSv (protracted 

exposure) or 10–50 mSv (acute exposure) increase the risk of developing secondary cancers 

later in life (9). While advances in cancer therapy have increased the number of pediatric 

cancer survivors, these patients now live long enough to encounter secondary cancers (9, 11–

13). Therefore, the image gently campaign advocates for practitioners to provide the least 

possible radiation exposure when examining pediatric patients (14). Integrated 18F-FDG 

PET/MRI saves radiation by replacing CT with radiation free MRI scans (1). This addresses 

the radiation exposure from CT scans. A clinical standard 18F-FDG PET/CT scan is 

associated with about 6–7 mSv of radiation exposure for a clinical CT scan and 6–7 mSv for 

the 18F-FDG PET (4, 15). While many studies have focused on replacing CT with MRI for 

anatomical co-registration of 18F-FDG data, the reduction of the injected radiotracer dose 

has received less attention thus far. A major bottleneck to reducing radiotracer doses for 18F-

FDG PET scans is increased image noise (16) and resultant decreased diagnostic accuracy of 
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ultra-low dose scans (17). We hypothesized that this problem could be solved by training a 

deep convolutional neural network (CNN) to integrate information from ultra-low-dose PET 

images with anatomical information from simultaenously acquired MRI images to generate 

simulated standard-dose PET images.

The main innovation of our work is fourfold: (1). We are the first to explore ultra-low-dose 
18F-FDG PET imaging of the whole-body using CNN-based image data augmentation. (2). 

This is the first study that utilizes information from simultaneously acquired MRI scans to 

reconstruct ultra-low-dose whole-body 18F-FDG PET scans. The inclusion of MRI data into 

the CNN improves the depiction of anatomical detail that could be missed if only the low-

dose 18F-FDG PET was used as input. (3). We incorporate an attention-weighted loss 

function to enhance sensitivity of our model to reconstruct the significant regions where 

lesions occur; this approach contributes more to the loss function during training in regions 

where lesions occur, such as perivascular areas where lymph nodes are common. Making the 

model pay more attention to the anatomical regions with high frequency of pathology could 

protect the loss and computed gradients from overwhelming by relatively irrelevant pixels in 

whole-body scans. In this manner, less training data are required, which is critical in the 

domain of pediatric cancer imaging where imaging data are relatively sparce. (4) We 

conducted a task-specific region-based clinical evaluation. The reconstructed PET images 

were not only evaluated by traditional metrics in computer vision, but also assessed by 

expert radiologists and nuclear medicine physicians in terms of the overall image quality, 

diagnostic accuracy and diagnostic confidence. To date, no comprehensive region-based 

clinical evaluation was conducted in such whole-body PET image enhancement studies. 

Thus, the purpose of our study was to generate diagnostic 18F-FDG PET images of pediatric 

cancer patients from ultra-low dose 18F-FDG PET input images, using a novel CNN 

algorithm.

Materials and Methods

Patients and image acquisition

This Health Insurance Portability and Accountability Act-compliant clinical study was 

approved by our respective institutional review boards and was performed as a secondary 

analysis of prospectively acquired data. Written informed consent was obtained from all 

adult patients and all parents of pediatric patients. In addition, children were asked to give 

their assent. Between July 2015 and June 2019, we enrolled 33 children and young adults 

(14 female, 9 male) with lymphoma at two centers (University of Tübingen, Germany and 

Stanford University, CA, USA). 23 patients enrolled at Stanford had a mean age of 17 ± 

7years (range: 6–30 years) and 11 patients enrolled at Tübingen had a mean age of 14 ± 5 

years (range: 3–18 years). The patients at Stanford underwent a whole body integrated 18F-

FDG PET/MRI scan on a 3T Signa PET/MRI scanner (GE Healthcare, Milwaukee, WI, 

USA) at 1 hour after intravenous injection of 18F-FDG at a dose of 3 MBq/kg, using a 32-

channel torso phased array coil and an eight-channel, receive-only head coil. PET data were 

acquired simultaneously with contrast-enhanced T1-weighted gradient echo scans, using a 

25 cm transaxial FOV and 3:30 minute acquisitions per PET bed. Tübingen patients 

underwent a whole body integrated 18F-FDG PET/MRI scan on a 3T Signa PET/MRI 
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scanner (Siemens Healthineers, Erlangen, Germany), using a 16-channel torso phased array 

coil and a 16-channel head coil. PET data were acquired simultaneously with contrast-

enhanced T1-weighted gradient echo MRI scans, using a 25 cm transaxial FOV and 4 

minute acquisitions per PET bed. Radiotracer input data were used to generate 100% dose 
18F-FDG PET images. 6.25% (0.18 mBq/kg) low-dose 18F-FDG PET images were 

simulated by unlisting the PET list-mode data and reconstructing them based on the 

percentage of used counts (28).

CNN architecture

We trained and cross-validated a CNN reconstruction model to augment whole body 18F-

FDG PET/MRI scans of 23 subjects with lymphoma. The inputs for the model are axial 

simulated ultra-low-dose 18F-FDG PET images and simultaneously acquired axial contrast-

enhanced T1-weighted MRI image. The outputs are AI-reconstructed 18F-FDG PET images, 

which should resemble a standard-dose 18F-FDG PET scan (Figure 1).

We designed the reconstruction network based on an enhanced deep super-resolution 

network (EDSR) (29) - the state-of-the-art image reconstruction network. However, our 

model is significantly different from EDSR and particularly tailored for the whole-body 18F-

FDG PET reconstruction. Our network is different in four key ways:

1. We utilized information from simultaneously acquired MRI scans. We 

hypothesized that using only a single simulated ultra-low-dose 18F-FDG PET 

image as input may not provide enough information to reconstruct detailed 

anatomical structures and may generate hallucination image artifacts. The 

information from simultaneously acquired MRI scans can be used to provide 

anatomical information.

2. We applied middle fusion to integrate MRI and 18F-FDG PET images. Rather 

than concatenating the MRI and 18F-FDG PET at the input level, we combine 

them in the feature-space. We assume that early fusion might lose information as 

the characteristics of 18F-FDG PET and MRI modalities are quite different. The 

benefit of mid-fusion as opposed to early fusion was observed in the initial 

experiment and relevant study (30). The two modalities are integrated after the 

fourth main residual block. Note that the PET branch is built upon a residual 

block, while the MRI branch is built upon pure convolutional layers.

3. A skip-connection between the ultra-low-dose 18F-FDG PET input and the final 

prediction layer is added to alleviate the burden of carrying identity information 

in the reconstruction network.

4. The reconstruction network is a slice-wise model which considers multi-slice 

inputs. The input consists of 5-slice LAVA MRI and 5-slice ultra-low-dose 18F-

FDG PET images, and the output is a synthetic standard-dose 18F-FDG PET 

slice. Such input scheme provides the network with 2.5D information, reduces 

image noise and ensures vertical spatial consistency. The proposed network 

consists of 44 convolution layers in total.
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Attention-weighted Loss

Weighted loss function was initially proposed to tackle the common issue of imbalanced 

data in background/foreground classification. By weighing underrepresented categories, a 

weighted loss function compensates the bias of training loss for the minority categories (31). 

In our work, we designed the attention-weighted loss by augmenting the loss function with a 

weight value corresponding to the significant regions of whole-body scans, specifically 

visceral organs and lymph node regions that are common areas where tumors occur. While 

all 18F-FDG PET data are augmented by our algorithm, the CNN pays particular attention to 

these areas. This encoded prior knowledge in spatial anatomy could enable the network to 

converge quickly, simplify the training, and improve quality of enhancing image quality of 

images of cancer lesions. Figure 1(b) shows the calculation of the attention-weighted loss 

function in the training phase.

The Generation of Attention Mask

For the training dataset, we used ITK-Snap (32) to obtain the attention masks which 

highlight the high-clinical-value regions. Potential tumor areas along main vessels, the 

mediastinum, liver and spleen were segmented as attention areas with the MRI image as the 

reference. Then, the rigid attention mask was transformed to a soft attention mask via 

Gaussian distribution. The final attention mask to the loss function is a Gaussian heatmap 

produced by four variables: the center and standard deviations of the Gaussian distribution 

of the rough target region mask of the scan, as shown in Supplementary Figure 7.

Training Details

We trained our model using Stanford baseline 18F-FDG-PET/MR scans of 23 children and 

young adults with malignant lymphoma. The large data requirement for training CNN is a 

limitation for pediatric applications, as there are not many of these studies. Proof-of-concept 

studies of CNN for pediatric oncology applications are hampered by sparse data (33). To 

overcome the challenge, we adopted leave-one-out cross validation. The dataset was divided 

into 23 folds. During training 22 of the folds were used as training set whereas the remaining 

one-fold was used for testing. We iterated 23 times to go through all combinations and 

produce the final AI-reconstructed PET images.

For the comparison study which should show the superiority of adding the MRI input 

information and attention-weighted loss, we trained the comparison models on 14 subjects, 

validated on 3 subjects and then tested on the remaining 6 subjects (Supplementary Data).

Computational Assessment

For the evaluation part, we used three computational metrics in computer vision to evaluate 

the performance of our networks, including peak signal-to-noise ratio (PSNR), the structural 

similarity index (SSIM) and the normalized root-mean-square error (NRMSE) 

(Supplementary Data).
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Clinical Assessment

To understand the impact of our CNN on tumor detection, three clinical imaging experts 

(one radiologist, one nuclear medicine physician and one dual trained radiologist/nuclear 

medicine physician) determined the presence or absence of tumor lesions in 20 anatomical 

regions (Supplementary Table 1) per patient on the ultra-low-dose 18F-FDG PET scan, the 

AI-augmented ultra-low-dose 18F-FDG PET scan and the standard 100% dose 18F-FDG 

PET scan (in total 20 regions x 23 patients = 460 anatomical regions analyzed by each 

reviewer). The reviewers were blinded to clinical data and the type of the exam and analyzed 

the three different scan types in a random order and with an interval of at least 2 weeks to 

minimize recall bias. The clinical experts rated the visibility of lesions in these regions 

according to a Likert scale (1 - tumor definitely not present, 2 - tumor probably not present, 

3 - undecided, 4 - tumor probably present, 5 - tumor definitely present). The combination of 

all clinical imaging tests and biopsies on all available imaging studies were used to generate 

a standard of reference for these evaluations. The lesion diagnostic metrics on the ultra-low-

dose 18F-FDG PET scan, the AI-augmented ultra-low-dose 18F-FDG PET scan and the 

standard 100% dose 18F-FDG PET scan were compared with the standard of reference using 

confusionMatrix() function from R package caret.

Measurements of SUV values from tumors in the PET images are important for tumor 

detection and for quantitative monitoring of tumor therapy response. Reducing the 18F-FDG 

radiotracer dose can lead to increased image noise and affect these measurements. To 

evaluate, whether flawed SUV measurements could be recovered by our CNN, one nuclear 

medicine physician measured the SUVmax and SUVmean (standardized uptake value) of the 

lesion with the highest SUV in the 20 refined regions per patient as well as the SUVmean, 

SUVstd , SUVmax of the liver (3cm ROI) and mediastinal blood pool (2cm ROI) across the 

simulated ultra-low-dose 18F-FDG PET scan, the AI-augmented ultra-low-dose 18F-FDG 

PET scan and the standard 100% dose 18F-FDG PET scan. The measurement was obtained 

using MIM 6.5 (MIM Software, Inc., Cleveland, OH, USA) as “SUVmax = (tissue tracer 

activity (mCi/g))/((injected dose (mCi)*patient body weight (kg))). All metrics were 

compared across ultra-low-dose 18F-FDG PET scan, the AI-augmented ultra-low-dose 18F-

FDG PET scan and the standard 100% dose 18F-FDG PET images using a Wilcoxon signed 

rank test.

Statistical Analysis

To evaluate the ability of the different scan types to provide clinically relevant information, 

we compared imaging experts’ scan assessments with the ground truth of whether lesions 

were present in each scan/region or not. All experts’ lesion classification results were 

grouped by scan types and the classification accuracy of each scan type was calculated as the 

positive predictive value (PPV), negative predictive value (NPV), and the balanced accuracy 

(average of sensitivity and specificity). All PPV, NPV, and balanced accuracy estimates were 

calculated using the confusionMatrix() function from R package caret. To evaluate the 

degree of agreement in Likert scale assessments between the 100% standard-dose PET scan 

and the other 2 scan types, we calculated weighted kappa statistics (using both linear 

weights and quadratic weights). All kappa estimates were generated using the kappa2() 
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function from R package irr. The Wilcoxon signed rank test was used to compare all image 

quality metrics and SUV values that are paired between scan types.

Results

CNN reduces image noise of simulated ultra-low-dose PET scans

Figure 2 and Table 1 show the qualitative and quantitative results of the reconstruction 

model. A major problem of reducing radiotracer doses for 18F-FDG PET scans was an 

increased image noise (16). The CNN-augmented ultra-low dose 18F-FDG PET images 

demonstrated significantly less noise and better image quality compared to simulated 6.25% 

dose 18F-FDG PET images, measured by PSNR, SSIM and NRMSE. PSNR and SSIM were 

significantly higher, and NRMSE was significantly lower on the CNN-augmented ultra-low 

dose 18F-FDG PET as opposed to simulated 6.25% dose 18F-FDG PET images (all pair-wise 

t tests p < 0.001; Table 1). In addition, the standard deviation of the mean standardized 

uptake value (SUV) measurements of the liver and mediastinal blood pool were significantly 

lower on the CNN-augmented ultra-low dose 18F-FDG PET images compared to simulated 

6.25% dose 18F-FDG PET images (Table 3 and Supplementary Figure 4). These qualitative 

and quantitative results show that the proposed CNN model reduces image noise of the ultra-

low-dose 18F-FDG PET scans and reaches an overall image quality on CNN-augmented 18F-

FDG PET images, which are similar to 100% dose 18F-FDG PET scans.

Combining MRI and PET improves reconstruction quality

Supplementary Figure 1 shows the qualitative and quantitative performance of our CNN 

with and without additional MRI inputs. The CNN that predicts the standard-dose 18F-FDG 

PET with the least error is the CNN trained on both contrast-enhanced MRI and simulated 

ultra-low-dose 18F-FDG PET images, which demonstrates the benefit of including the MRI 

modality. The simultaneous 18F-FDG PET and MRI acquisition mode facilitates the 

integration of input data from the two modalities. The MRI images provided complementary 

anatomical information for depicting detailed high-resolution features that could be missed 

if only the simulated ultra-low-dose 18F-FDG PET images were used as input.

Attention-weighted loss boosts performance

Supplementary Figure 2 shows the performance comparison of two models - one with the 

attention-weighted loss function and one with a traditional mean-square-error (MSE) loss 

function. The attention-weighted loss function demonstrated a tendency to boost the 

performance of the CNN.

AI-reconstructed PET scans enable accurate tumor detection

Figure 3, Supplementary Figure 3, and Table 2 show the qualitative and quantitative results 

in terms of image diagnostic quality. Since pediatric tumors are highly metabolically active, 

there were only small differences in the clinical experts’ ability to detect tumor lesions on 

the different imaging scans: The clinical experts detected 225 of 249 tumors on the 100% 

dose 18F-FDG PET scan, 221 tumors on the simulated ultra-low-dose 18F-FDG PET scan 

and 223 tumors on the AI-augmented ultra-low-dose 18F-FDG PET scans. Most lesions were 
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noted on all scans. Sensitivities, specificities and diagnostic accuracies were not significantly 

different for the three imaging modalities (Supplemental Table 2).

However, the confidence of the readers regarding the presence or absence of tumor lesions in 

specific anatomical regions, as measured by a Likert scale, were significantly different 

between the different scans. The readers demonstrated a significantly lower confidence in 

the detection of lesions on 6.25% dose scans as opposed to on the AI-augmented ultra-low-

dose 18F-FDG PET scans and the 100% dose 18F-FDG PET scans. The 100% dose 18F-FDG 

PET scans demonstrated significantly higher agreement with the AI-augmented ultra-low-

dose 18F-FDG PET scans (kappa = 0.942) than the 6.25% dose 18F-FDG PET scans (kappa 

= 0.650). This also applied when considering tumors in different anatomical regions: The 

100% dose 18F-FDG PET scans demonstrated significantly higher agreement with the AI-

augmented ultra-low-dose 18F-FDG PET scans for tumor detection in lymph nodes (kappa = 

0.955), visceral organs (kappa = 0.910) and the bone marrow (kappa = 0.828) compared to 

corresponding results of the simulated ultra-low-dose 18F-FDG PET scan for tumor 

detection in lymph nodes (kappa = 0.702), visceral organs (kappa = 0.573) and bone marrow 

(kappa = 0.278).

AI-reconstructed PET provides accurate quantitative tumor SUV measurements

Compared to the 100% dose 18F-FDG PET scans, SUVmax values of tumors, liver and 

mediastinal blood pool were significantly higher on the simulated 6.25% ultra-low-dose PET 

scans as a result of added image noise. On AI-augmented ultra-low-dose 18F-FDG PET 

scans, the SUVmax values were recovered to values which were similar to the standard-dose 

PET (Table 3 and Supplementary Figure 4).

Tumor SUV values are often compared to SUVmean values of liver and mediastinal blood 

pool as an internal standard of reference. Compared to 100% dose 18F-FDG PET scans, liver 

SUVmean and mediastinal blood pool SUVmean values were higher on 6.25% dose 18F-FDG 

PET scans (p=0.028 and 0.036, respectively), but were not significantly different on the AI-

augmented ultra-low-dose 18F-FDG PET scans (p=0.523 and 0.316, respectively).

The CNN model generalizes in independent data

Next, we evaluate the model’s generalization by examining how the model performs when it 

augments reduced dose PET images from PET cases at another institution (Tübingen). We 

applied our CNN to PET scans of 11 additional subjects. The qualitative and quantitative 

reconstruction results on the 11 Tubingen scans are shown in Supplementary Table 3 and 

Supplementary Figure 5. The image quality is significantly improved on AI-augmented 

ultra-low-dose 18F-FDG PET scans as opposed to the original simulated reduced dose PET 

images, by 3.7 dB in PSNR, 2.8% in SSIM and 12.6% in NRMSE, which demonstrates good 

model generalization across data from different institutions. This is particularly noteworthy 

as the two institutions used different scanners from different vendors.

Discussion

Our data show that our CNN model could generate 18F-FDG PET images of the whole body 

from ultra low dose 18F-FDG PET inputs while maintaining clinically relevant information 
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in terms of diagnostic accuracy and quantitative SUV measurements. Reducing the exposure 

to ionizing radiation from medical imaging procedures is important to minimize a potential 

risk of secondary cancer development later in life (10). Our CNN concept takes advantage of 

simultaneous 18F-FDG PET and MRI data acquisitions and could substantially advance the 

development of safer imaging tests for pediatric patients. We found that the inclusion of 

MRI data in addition to 18F-FDG PET images in the CNN model improves the depiction of 

anatomical detail in PET reconstruction. The rationale for this is that the MRI data provides 

detailed anatomic information that helps the CNN improve spatial detail in the reconstructed 

images. In addition, incorporation of attention-weighted loss into our model emphasizes the 

high-diagnostic-value regions on medical images, which further boosts the model 

performance. To our knowledge, this is a novel approach to enhancing low dose 18F-FDG 

PET image reconstruction.

Most prior PET low-dose reconstruction work focused on the brain. Previous authors (18, 

19) showed that a low-dose PET scan of the brain can be obtained by combining 75% dose 

accelerated PET scans with T1-weighted MRI images as inputs to a CNN model to predict 

standard-dose brain PET images. Besides CNN, other frequently used neural network 

models in brain PET reconstruction are Generative Adversarial Networks (GANs) (20, 21), 

where the generator part of a GAN learns to create synthetic images with the goal of fooling 

the discriminator which is designed particularly to distinguish between real and synthetic 

images. Furthermore, several other attempts have focused on dose reduction below 10% 

(22–24). Chen et al (25) used ultra-low-dose brain PET images and MRI sequences as inputs 

to create AI augmented PET scans of the brain. However, brain image reconstruction is 

fundamentally different from whole-body image reconstruction, which is a much more 

challenging task due to its much more variable anatomical detail. Only two recent works 

(26, 27) focused on whole-body PET image reconstruction. A residual CNN was proposed 

to reconstruct full-dose PET images from 10% low dose counterparts (26). However, the 

research was conducted on only two whole-body scans which largely limits the 

generalizability of the developed model. In addition, the model was not tested with regards 

to its ability to render clinical diagnoses. The second proposed scheme (27) was built upon 

50% low dose images which saves substantially less ionizing radiation than provided by our 

CNN model.

There are several limitations of our study. Some small lymph nodes can be less well 

delineated on the AI-reconstructed PET compared to the original standard-dose PET. In 

Supplementary Figure 6, we can see that sub-centimeter hypermetabolic lymph nodes are 

better delineated on the AI augmented scan than on the 6% dose scan. The AI augmented 

scan does not discriminate each individual lesion as well as the original 100% standard-dose 

scan. This technical limitation will be addressed with further improvements of our 

algorithm. The limitation of FDG-PET for the detection of sub-centimeter lesions is a well-

described problem not only for our studies, but for the field in general. Another limitation is 

the need for simultaneously acquired MRI. There might be situations where only PET 

images are present or if the PET and MRI data are acquired separately on different scanners. 

It is worth noting that the proposed model could potentially be applied in PET/CT scenario 

where the CT provides the anatomical information for PET reconstruction. While this 

approach would not save irradiation, it could be used to save time by acquiring ultra-fast 
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PET scans and augmenting them with CT data. Related problems due to sequential rather 

than simultaneous PET and CT data acquisition would have to be investigated. Meanwhile, 

hallucination signals could be introduced during reconstruction due to the lack of 

performance guarantee in deep learning models.

Conclusion

We have demonstrated that high quality 18F-FDG PET images can be reconstructed from 

ultra-low-dose imputs using a new CNN that includes the simultaneously acquired MRI in 

addition to PET data. The AI-augmented ultra-low dose 18F-FDG PET images maintain 

clinically relevant information in terms of diagnostic accuracy, diagnostic confidence and 

quantitative SUV measurements.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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KEY POINTS

QUESTION:

Can Artificial Intelligence augment whole body PET scans with minimal radiation 

exposure to the quality of standard-dose PET?

PERTINENT FINDINGS:

Using a cohort study of 23 clinical whole body 18F-FDG PET/MRI subjects, we 

demonstrated that the AI-reconstructed ultra-low-dose 18F-FDG PET images resemble 

high similarity with standard-dose 18F-FDG PET images, based on both quantitative and 

qualitative clinical evaluations. The proposed PET reconstruction model also generalizes 

in an independent cohort study of 11 clinical whole body 18F-FDG PET/MRI subjects.

IMPLICATIONS FOR PATIENT CARE:

We anticipate that our proposed model will enable a new generation of imaging exams 

for children that can be widely applied to interrogate health and disease without the risk 

of secondary cancer development later in life.
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FIGURE 1. The pipeline of the CNN reconstruction net.
a). The evaluation framework of the PET reconstruction CNN. It inputs the simulated ultra-

low-dose 18F-FDG PET and contrast-enhanced T1-weighted MRI images and outputs the 

synthetized standard-dose 18F-FDG PET images. The PET and MRI images are integrated at 

the mid-level after feature extraction; A skip-connection is added to the CNN in order to 

connect the ultra-low-dose 18F-FDG PET images with the final reconstruction. b). The 

calculation process of the attention-weighted loss. The attention mask highlights the tumor 

area.
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FIGURE 2. Representative 18F-FDG PET/MRI scan of a 16-year old female patient with 
Hodgkin lymphoma (HL).
a). Coronal contrast-enhanced T1-weighted LAVA (liver acquisition and volume acquisition) 

MRI; b). Coronal view of a standard dose 18F-FDG dose PET scan (3 mBq/kg); c). 

Simulated ultra-low-dose PET scan at 6.25% 18F-FDG dose; d). The AI-reconstructed ultra-

low-dose 18F-FDG PET image, reconstructed based on the 6.25% ultra-low dose PET and 

MRI scans as combined inputs. The red arrows point to the hypermetabolic tumors in the 

mediastinum. Additional hypermetabolic tumors are noted at the right hilum and left lower 

neck (yellow arrows). All lesions can be detected on all scans, but tumor-to-background 

contrast and confidence for lesion detection is improved on the AI-reconstructed 18F-FDG 

PET.
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FIGURE 3. Illustration of image quality improvement in terms of tumor delineation on the AI-
reconstructed 18F-FDG PET scan.
Representative 18F-FDG PET/MRI scan of a 10-year old male patient with diffuse large B-

cell lymphoma (DLBCL). a). Axial T1-weighted contrast-enhanced LAVA MRI; b). Axial 

standard-dose 18F-FDG PET scan (upper panel), fused with T1-weighted MRI (lower 

panel); c). Axial simulated 6.25% ultra-low-dose 18F-FDG PET scan, fused with with T1-

weighted MRI; d). Axial AI-reconstructed 18F-FDG PET image, fused with T1-weighted 

MRI. The arrows point to a tumor in the pancreas. The tumor can be well depicted in the 

original 100%-dose 18F-FDG PET scan and the AI-reconstructed 18F-FDG PET, but is 

nearly invisible on the 6.25% dose 18F-FDG PET scan.
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TABLE 1.

Image quality metrics compare for simulated 6.25% ultra-low-dose18F-FDG PET and AI-

reconstructed18F-FDG PET scans.

The AI-reconstructed 18F-FDG PET scan demonstrates improved image quality and significantly less noise for 

all three metrics compared to the ultra-low dose 18F-FDG PET scan: higher peak signal-to-noise ratio (PSNR), 

higher structural similarity index (SSIM) and lower normalized root-mean-square error (NRMSE), n=23 scans 

per group, Wilcoxon signed rank tests.

6.25% ultra-low-dose PET
(N=23)

Al-reconstructed PET
(N=23) P-value*

PSNR

 Mean (SD) 51.6 (8.50) 55.6 (7.62) <0.001

 Median [Q1, Q3] 53.6 [43.9, 59.3] 58.1 [48.8, 62.3]

SSIM

 Mean (SD) 0.925 (0.0449) 0.967 (0.0175) <0.001

 Median [Q1, Q3] 0.929 [0.916, 0.957] 0.972 [0.961, 0.978]

NRMSE

 Mean (SD) 0.257 (0.102) 0.158 (0.0453) <0.001

 Median [Q1, Q3] 0.228 [0.182, 0.305] 0.156 [0.127, 0.191]

*
P-values were calculated using Wilcoxon Signed Rank Test.
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TABLE 2.

Agreement between expert reviewer tumor diagnoses on 100% standard-dose18F-FDG 

PET and simulated 6.25% ultra-low-dose18F-FDG PET and AI-reconstructed18F-FDG 
PET scan.

Three expert reviewers determined the presence of absence of tumor lesions in 20 anatomical regions per 

patient according to a Likert scale (1 - tumor definitely not present, 2 - tumor probably not present, 3 - 

undecided, 4 - tumor probably present, 5 - tumor definitely present). The agreement between 100% standard-

dose PET images and 6.25% ultra-low-dose 18F-FDG PET and AI-reconstructed 18F-FDG PET scans was 

calculated with weighted Kappa estimates.

Procedure Weighted Kappa
(Linear)

Whighted Kappa
(Quadratic)

Lymp Nodes

 625% ultra-low-dose 0.702 0.859

 Al-reconstructed PET 0.955 0.984

Extralymphatic

 6.25% ultra-low-dose 0.573 0.765

 AI-reconstructed PET 0.910 0.965

Bone Marrow

 6.25% ultra-low-dose 0278 0.444

 AI-reconstructed PET 0.828 0.916

Whole Body

 6.25% ultra-low-dose 0.650 0.820

 AI-reconstructed PET 0942 0.977
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TABLE 3.

Standardized uptake values (SUV), as measured on 100% standard-dose18F-FDG PET, 

simulated 6.25% ultra-low-dose18F-FDG PET and AI-reconstructed18F-FDG PET scans.

Data represent mean and median SUVmax, SUVmean and SUVstd values of representative tumors, the liver and 

medastinal blood pool.

100% standard-dose PET 6.25% ultra-low-dose PET A1-reconstructed PET

Liver

 SUV_max

  Mean (SD) 2.65 (1.12) 5.87 (2.44) 2.92 (1.06)

  Median [Q1, Q3] 2.47 [2.19, 2.69] 5.49 [4.79, 6.23] 2.71 [2.46, 2.97]

 SUV_mean

  Mean (SD) 1.89 (0.817) 1.98 (0.866) 1.90 (0.852)

  Median [Q1, Q3] 1.80 [1.54, 1.94] 1.78 [1.56, 1.96] 1.73 [1.48, 1.91]

 SUV_std

  Mean (SD) 0.216 (0.0826) 0.774 (0.277) 0.270 (0.0894)

  Median [Q1, Q3] 0.200 [0.170, 0.240] 0.710 [0.670, 0.845] 0.250 [0.225, 0.300]

Mediastinal Blood Pool

 SUV_max

  Mean (SD) 2.44 (1.13) 5.11 (2.55) 2.60 (121)

  Median [Q1, Q3] 2.22 [1.68, 2.68] 4.22 [3.29, 6.40] 2.44 [1.77, 2.97]

 SUV_mean

  Mean (SD) 1.53 (0.863) 1.61 (0.809) 1.59 (0.794)

  Median [Q1, Q3] 1.25 [1.02, 1.67] 1.38 [1.12, 1.82] 1.47 [1.08, 1.70]

 SUV_std

  Mean (SD) 0.237 (0.0951) 0.690 (0.316) 0.262 (0.119)

  Median [Q1, Q3] 0.220 [0.175, 0.275] 0.580 [0.445, 0.905] 0.240 [0.180, 0.330]

Tumor

 SUV_max

  Mean (SD) 11.9 (6.44) 15.0 (7.19) 10.6 (5.95)

  Median [Q1, Q3] 11.6 [7.04, 15.4] 14.2 [9.92, 18.8] 9.77 [6.29, 13.8]

 SUV_mean

  Mean (SD) 3.87 (2.33) 3.79 (2.23) 3.63 (2.24)

  Median [Q1, Q3] 3.17 [2.32, 5.39] 3.24 [2.37, 4.94] 2.90 [2.23, 4.96]
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