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Abstract

Gene therapy encompasses the transfer of exogenous genetic materials into the patient’s target 

cells to treat or prevent diseases. Nevertheless, the transfer of genetic material into desired cells is 

challenging and often requires specialized tools or delivery systems. For the past 40 years, 

scientists are mainly pursuing various viruses as gene delivery vectors, and the overall progress 

has been slow and far from the expectation. As an alternative, nonviral vectors have gained 

substantial attention due to their several advantages, including superior safety profile, enhanced 

payload capacity, and stealth abilities. Since nonviral vectors encounter multiple extra- and intra-

cellular barriers limiting the transfer of genetic payload into the target cell nucleus, we have 

discussed these barriers in detail in this review. A direct approach, utilizing physical methods like 

electroporation, sonoporation, gene gun, eliminate the requirement for a specific carrier for gene 

delivery. In contrast, chemical methods of gene transfer exploit natural or synthetic compounds as 

carriers to increase cellular targeting and gene therapy effectiveness. We have also emphasized the 

recent advancements toward enhancing the current nonviral approaches. Therefore, in this review, 

we have focused on discussing the current evolving nonviral gene delivery systems and their future 

perspectives.
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1. Introduction

Gene therapy is an emerging therapeutic strategy for the curative treatment of genetic 

disorders and numerous other diseases. The basic concept of gene therapy involves 

delivering a functioning copy of a gene into specific host cells to compensate for the missing 

or mutated endogenous counterpart or produce a beneficial protein [1]. In addition, the 

sequence-specific inhibition of a disease-causing gene with siRNA or antisense DNA has 

also been considered a type of gene therapy. Transgenes as a therapeutic modality facilitate 
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in situ expression of bioactive molecules at the target site in their native form [2] and offer 

better flexibility in their applications than the delivery of exogenous proteins or bioactive 

molecules. Furthermore, the sustained transgene expression ensures synchronization 

between the kinetics of signaling receptor expression and the availability of bioactive 

molecules [3].

Initially, gene therapy focused mainly on life-threatening monogenic orphan diseases that 

are hard to treat with conventional therapies such as adenosine deaminase-severe combined 

immunodeficiency, cystic fibrosis, and hemophilia [4–7]. However, the success of the 

Human Genome Project provided a better understanding of the role of genetics in various 

diseases and enabled the scope of gene-based medicine [8]. As a result, gene therapy is now 

evolving as a potential therapeutic modality against a large spectrum of diseases, including 

different types of cancers [9–12], cardiovascular diseases [13, 14], neurodegenerative or 

metabolic disorders such as Parkinson’s [15], Alzheimer’s [16, 17], Huntington’s disease 

[18], and diabetes [19]. Further, gene therapy could prevent infectious diseases through 

genetic immunization [20, 21].

Cancer remains the most popular for gene-based therapeutics out of various disorders as its 

development is associated with various mutations and genetic disorders. Gene therapy for 

cancer has explored various strategies, including immunostimulation against cancer, 

oncogene suppression, activation of suicidal genes, mutation correction, tumor suppressor 

gene activation, and downregulation of genes for angiogenesis. More information can be 

found in recent comprehensive reviews on nonviral gene therapy for cancer [22]. By 

February 2021, a total of 3180 gene therapy clinical trials had been approved worldwide; the 

majority (67.4%) accounts for cancers [23].

Over the last few decades, gene therapy has been extensively studied to prevent and treat a 

wide range of diseases. Based on the delivery techniques, gene therapy can be classified as 

in vivo gene therapy and ex vivo gene therapy. With the in vivo gene therapy, the targeted 

cells remain in the patient’s body, and genetic material is administered directly to the patient 

using various physical and chemical approaches. Examples of in vivo gene therapy include 

treatment of ADA-SCID or Leber congenital amaurosis. However, in ex vivo gene therapy, 

the targeted cells are first collected from the patient. Then, genetic material is administered 

to the cells in vitro before being readministered to the patient’s body—for instance, highly 

personalized cancer immunotherapy using CAR-T cells.

The clinical outcomes of gene therapies are often limited due to several technical barriers 

associated with gene delivery. The most critical challenge for successful in vivo gene 

therapy is transferring nucleic acid therapeutics into target tissue efficiently. Systemic 

administration of unprotected genes is impractical because of their vulnerability towards 

nuclease degradation [24]. While for both in vivo and ex vivo gene transfer, the genetic 

materials have to be delivered into the appropriate cellular machinery. The high negative 

charge density, large size, and strong hydrophilicity of these macromolecules make them 

difficult for intracellular delivery [25]. Even after endocytosis, these macromolecules are 

transported to lysosomes, where different hydrolytic enzymes degrade them. These factors 

together diminish the activity of gene-based therapeutics and requiring large quantities to be 
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effective. Therefore, the development of safe and efficient gene delivery systems is the 

cornerstone of any successful gene therapy.

2. Barriers to nonviral gene delivery

The success of gene therapy is largely dependent on the efficient delivery of the genetic 

cargo to the body’s target cell population in a safe manner. However, nonviral vectors 

encounter multiple extra- and intra-cellular barriers limiting genetic payload transfer into the 

target cells (Figure 1).

2.1. Extracellular barrier

Interaction of nonviral vectors with the extracellular environment is unavoidable irrespective 

of the administration route. Several factors in the extracellular environment are responsible 

for extensive clearance and degradation of the delivery system before reaching its target 

area. These factors include transportation across blood vessels, stability in biological fluids, 

and binding to the target ligand of interest. Moreover, blood cells and proteins also pose a 

significant challenge in efficiently delivering a therapeutic gene to its target site.

2.1.1. Stability in extracellular compartments—The extracellular stability implies 

both the chemical stability of nucleic acid and the physical stability of the delivery systems. 

The endo- and exonucleases in physiological fluids and extracellular space can degrade 

unprotected DNA within ten minutes following systemic administration [26]. This 

degradation can minimize by formulating genetic materials in a suitable delivery system, 

thereby protecting them from the extracellular enzymatic environment.

Colloidal instability of DNA complexes in an extracellular environment is a critical concern 

for carrier-mediated nonviral gene delivery. The increased salt concentration diminishes the 

electrostatics interactions between DNA and polycations and shields the interparticle 

electrostatic repulsive forces, leading to precipitation of gene carriers in physiological fluids 

[27]. Moreover, positively charged DNA-polycation complexes exhibit instability in the 

extracellular milieu due to their interactions with negatively charged blood components. 

These precipitates are promptly cleared from circulation by the mononuclear phagocytic 

system, preventing localization at target sites [28]. Several approaches have been adopted to 

improve the colloidal stability of nonviral gene delivery systems. PEGylation is one of the 

most effective strategies for improving colloidal stability and minimizing aggregation of 

nanoparticle-based delivery systems [29, 30]. In addition, the incorporation of neutral helper 

lipids such as 1,2-dioleoylphosphatidylethanpolymerolamine (DOPE) and cholesterol have 

been shown to enhance the colloidal stability of cationic lipid/DNA complexes [31, 32]. 

Alternatively, hydrophilic neutral polymers such as polyvinyl alcohol or 

polyvinylpyrrolidone can be used to form reversible neutral or anionic polyplexes and 

inhibits its degradation by nucleases [33, 34].

2.1.2. Extravasation—Extravasation of DNA complexes through capillary walls into the 

target tissues following systemic administration is another barrier to efficient gene delivery. 

The extravasation of DNA complexes depends on the physicochemical properties of the 

complexes like size, shape, and permeability through the vascular layers they encounter and 
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the biological parameters such as regional variations in the target tissue’s capillary structure 

and disease state. For example, contrary to most tissues, the liver and spleen capillaries have 

fenestrated and discontinuous endothelium with a pore size of up to 150 nm, thus favoring 

leakage of DNA complexes in these organs [35]. However, direct injection of DNA 

complexes into the target tissue has also been tried to overcome the extravasation barrier 

[36].

2.1.3. Cellular association and internalization—Once the delivery system reaches 

the target cells, the next significant challenge is crossing the cell membrane. Nevertheless, 

the high negative charges of naked DNA prevent its association with the anionic cell 

membranes. Thus, the use of polycations could significantly neutralize the negative charges 

on DNA and enhance its association to the cell membrane. The association of cationic 

delivery systems is thought to be mediated by its interaction with the membrane-bound 

heparin sulfate proteoglycans (HSPGs), promoting endocytosis of the DNA complexes. 

Additionally, the conjugation of cell-specific ligands to the delivery systems has been shown 

to enhance the cell surface binding of DNA in vitro [37, 38] and in vivo [39–41]. Adsorptive 

endocytosis [42], receptor mediated-endocytosis [43], macropinocytosis [25, 44], and 

phagocytosis [45] are the major pathways responsible for cellular uptake of nonviral gene 

delivery systems. However, physical gene delivery techniques can also promote intracellular 

delivery of genetic materials.

2.2. Intracellular barrier

Intracellular barriers, notably the physical barrier like membranes, help compartmentalize 

the biological functions of a cell. However, these barriers pose a set of new challenges for 

efficient gene delivery. Typically, cells can internalize gene delivery vehicles efficiently in 
vitro (> 95%); however, the conversion rate of these genes into proteins is abysmal (<50%). 

Furthermore, the endocytosis pathway, the major pathway for the internalization of nonviral 

vectors, leads to vesicles with acidic pH and degradation enzymes. Therefore, efficient gene 

delivery heavily relies on the escape of gene delivery vector from endosomes into the 

cytoplasm, crossing the nuclear membrane and release the desired gene for its transfection.

2.2.1. Endosomal escape—Following endocytosis, the intracellular vesicles carrying 

the vector-DNA complexes are fused with the cytosolic organelles to form early endosomes. 

The failure of vector-DNA complexes to escape from the endocytic pathway presumably 

leads to their trafficking via late endosomes to lysosomes. The harsh lysosomal environment 

characterized by low pH (approximately 4.5) and the presence of various hydrolytic 

enzymes such as nucleases, proteinases, and lipases can rapidly degrade the complexes and 

their attached cargos [24]. Therefore, effective endosomal escape of the DNA into the 

cytoplasm is necessary for efficient gene delivery and subsequent gene expression.

Lipoplexes (cationic lipid/DNA complexes) can escape from endosomes by fusing the 

cationic lipid membrane with the endosomal membranes, ultimately disrupting the 

endosomal membrane and facilitating DNA release into the cytoplasm [46]. Moreover, 

incorporating dioleoylphosphatidylethanolamine (DOPE) and cholesterol have demonstrated 

enhanced endosomal escape because of their transformation from bilayer to non-bilayer 
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inverted hexagonal-II structures in the acidic pH range of 5–6 [47]. However, it is worth 

mentioning that the membrane disruption resulting from lipid mixing amongst anionic 

membranes and cationic lipids occurs presumably at the endosomes rather than at the cell 

surface [27]. Unlike cationic lipids, the exact mechanisms involved in the endosomal escape 

of cationic polymer/DNA complexes are less clear, and two possible mechanisms have been 

proposed. One hypothesis suggests cationic polymer-mediated physical disruption of 

endosomes [48]. This mechanism is generally proposed for poly-L-lysine (PLL), 

polyamidoamine (PAMAM) dendrimers, polyornithine. Alternatively, cationic polymers 

with ionizable amines such as polyethyleneimine (PEI), PAMAM, and PLL are thought to 

release their contents via the proton sponge effect [49]. Although widely accepted, numerous 

reports have questioned the proton sponge theory primarily due to insufficient data in favor 

of polyplex-mediated endosomal escape through pH buffering [50, 51]. Alternatively, 

endosomal escape is proposed to rely on a time-dependent proton-mediated membrane 

perturbation due to strong binding of the inner endosomal membrane and the polyplexes.

Many other strategies have been used to enhance the endosomal escape of DNA. For 

example, pretreatment of cells with lysosomotropic agents (chloroquine and ammonium 

chloride) enhances endosomal escape through buffering endosome/lysosome pH [46, 52]. 

Similarly, high sucrose concentrations, glycerol, or polyvinylpyrrolidone have exhibited 

enhanced transfection, apparently by osmotic rupture of vesicles [53, 54]. However, these 

strategies are impractical for in vivo gene delivery applications and are limited to in vitro 

experiments.

2.2.2. Cytoplasmic trafficking—Upon successful release into the cytoplasm, nucleic 

acids must be transported to their target intracellular compartment to exert desired biological 

response. Thus, the final target of antisense oligonucleotides, mRNA, siRNA, and miRNA/

miRNA mimics is the cytoplasm, whereas plasmid DNA must be traversed the cytoplasm to 

access the transcriptional machinery in the nucleus. However, it has been demonstrated that 

the diffusion of DNA in the cytoplasm is size-dependent, and DNAs of 3000 base pairs or 

larger are virtually immobile [55]. Additionally, the naked DNA is rapidly degraded by the 

cytosolic nucleases with an apparent half-life of ~1–1.5 h [56]. This degradation presents a 

significant challenge for transferring free DNA and lipoplexes, which are thought to be 

detached before entering the nucleus.

Several studies demonstrated that DNA utilizes dynein motor proteins and microtubule 

networks for translocation through the cytoplasm to the nucleus [57, 58]. It has also been 

reported that transcription factors are the crucial components of microtubules-mediated 

DNA migration. Nevertheless, the inclusion of specific transcription factor binding sites 

within plasmids, such as cyclic AMP response-element binding protein (CREB) or 

modulating microtubule acetylation through histone deacetylase 6 (HDAC6) inhibition, 

enhances the rate of DNA migration [57]. Similarly, positively charged polyplexes could 

migrate along microtubules via nonspecific interaction with anionic microtubules or motor 

proteins. However, both free DNA and polyplexes could be redistributed throughout the cell 

during mitosis, and some might accumulate inside the nucleus.
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2.2.3. Nuclear localization—The nuclear entry of exogenous DNA is one of the 

significant limiting steps in nonviral gene transfer. It has been demonstrated that direct 

microinjection of the thymidine kinase (TK) gene inside TK-deficient cell nuclei leads to 

kinase expression in 50–100% of the cells [59]. In contrast, no thymidine kinase activity was 

detected in cells that received a cytosolic injection of the same DNA. These results suggest 

that cytoplasmic elements sequester most of the DNA that enters the cytoplasm, and only a 

small fraction successfully enters the nucleus. Therefore, studies designed to understand 

DNA nuclear translocation mechanism to enhance this process have been vital to improving 

nonviral gene delivery efficiency.

Nuclear transport of DNA occurs via three possible pathways: i) nuclear membrane 

disruption during mitosis, ii) entry via nuclear pores and iii) kariophilic proteins mediated 

nuclear entry [57]. In actively dividing cells, the nuclear membrane disintegrates during 

mitosis, thus allowing DNA passage into the nucleus [57]. However, in non-dividing cells, 

the nuclear transport of DNA occurs primarily via nuclear pore complex (NPC), which 

allows the free passage of molecules less than 9 nm in diameter (i.e., nucleic acids of ~300 

bp or proteins <60 kDa), but limits larger macromolecules [60]. Nuclear transport is energy-

dependent for larger macromolecules mediated through nuclear localization sequence (NLS) 

and their nuclear receptors [57]. Therefore, adding a karyophilic protein binding site to the 

DNA sequence can greatly enhance DNA delivery into the nucleus. For instance, the 

addition of SV40 enhancers to plasmids can help the localization of plasmids into the 

nucleus of quiescent cells within a few hours [61]. Several other approaches have been 

adopted to enhance nuclear localization of the DNA, including covalent modification of 

DNA for binding of NLS peptide, conjugation of NLS peptide to nonviral vectors, nuclear 

proteins, and small molecules ligands [57].

2.2.4. Vector unpacking—The release of genetic materials from its delivery vector is 

considered to be crucial for subsequent gene expression. However, the effect of vector 

unpacking on the degree of gene expression remains unclear. In the case of cationic 

lipid/DNA complexes, the DNA release is facilitated by the fusion of positively charged 

lipid with the endosomal membrane [62]. On the other hand, polyplexes are known to 

internalize in an intact form inside the nucleus, where dissociation of the polyplexes occurs. 

It has also been reported that the slow release of DNA from its carrier resulted in diminished 

gene expression. Overall, lipoplexes are considered more efficient in transfection than their 

polymeric counterparts due to their better membrane interaction ability and superior 

biocompatibility [63].

Several additional strategies have been attempted to improve vector stability in the 

extracellular environment while ensuring the intracellular release of genetic cargos. For 

example, disulfide linkages are often incorporated into the polymer chain to form highly 

cross-linked polyplexes and prevent dissociation in the extracellular milieu [64–68]. 

However, in intracellular reductive environments where the glutathione concentration is 

~50−1000 fold greater than in the extracellular environment, these polyplexes dissociate to 

facilitate genetic cargo release. Researchers have shown more than 10-fold enhancement in 

transfection efficiency utilizing this technique in vitro [69]. The use of fusogenic cationic 

lipid is another strategy to promote cytosolic vector unpacking [70]. This fusogenic lipidic 

Sharma et al. Page 6

Int J Biol Macromol. Author manuscript; available in PMC 2022 July 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



polyplex vector fuses with the cell membranes and emits the polyplex into the cytoplasm. 

Subsequently, the cationic polymer undergoes oxidation by the intracellular reactive oxygen 

species (ROS) to become negatively charged, leading to the efficient release of the DNA. 

Similarly, the cationic polymer that can degrade into neutral thioether fragments in response 

to intracellular ROS has also been investigated for efficient DNA release [71].

3. Gene delivery systems

Numerous carriers and delivery techniques have been utilized in clinical trials that are 

broadly classified as viral and nonviral vectors. Viruses are highly efficient in carrying their 

genome to host cells and exploiting cellular machinery to initiate their genome expression. 

Several viruses have been transformed into gene-delivery carriers by replacing all or a part 

of the viral coding regions with a therapeutic gene. Nevertheless, viral vectors remain the 

most prevalent gene carriers, having been used in more than two-thirds of the clinical trials 

carried out to date [23]. The most commonly used viral vectors in clinical trials include 

adenovirus, retrovirus, adeno-associated virus, lentivirus, herpes simplex virus, and 

poxvirus. Each of these viral vectors exhibits specific features with unique advantages for 

clinical gene transfer but also accompanied by several intrinsic drawbacks, including 

immunogenicity, carcinogenesis, severe inflammatory responses, low target specificity, and 

limited DNA packaging capacity [72, 73]. Detailed information on recombinant viral-based 

gene delivery vectors has been explicitly discussed in several excellent reviews [74–76].

Nonviral vectors are capable of addressing many of these concerns, especially regarding 

biosafety. They are less toxic and far less immunogenic than their viral counterpart. Other 

potential benefits of nonviral vectors include the ability to delivering a larger genetic 

payload, ease of large-scale production, and the possibility of repetitive administrations. 

Therefore, numerous nonviral strategies, including various chemical carriers or physical 

techniques, have been explored for nucleic acid transport [77–81]. Nevertheless, the clinical 

applications of these systems are limited owing to their poor transduction efficiency 

compared to viral vectors. In addition, nonviral vectors are unable to overcome multiple 

extra- and intra-cellular barriers encountered prior to transferring their genetic payloads into 

their site of action.

3.1. Nonviral delivery systems

Nonviral gene delivery approaches have drawn increasing interest due to their excellent 

biosafety profile. Advances in transfection efficiency, specificity, and safety led to an 

increased number of nonviral vectors in gene therapy clinical trials [82]. Nonviral vectors 

can be broadly classified into physical methods and chemical carriers. Physical methods are 

used to remove the requirement for a specific gene carrier to deliver exogenous DNA into 

target cells. These approaches utilize physical force to make transient pores on cell 

membranes, allowing DNA entry into cells via diffusion. Figure 2 shows the pictorial 

representation of different physical transfection methods. Physical methods provide several 

benefits over other methods including, simplicity, safety, and, importantly, their potential to 

control process parameters toward specific therapeutic needs. However, the gene transfection 

efficiency of these techniques is low as compared to viral vectors. Furthermore, gene 
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delivery to internal organs is challenging since it requires surgical procedures to access 

target tissue.

Chemical methods use natural or synthetic compounds as carriers to deliver exogenous 

genetic materials into cells. The key benefits of chemical methods include simplicity, low 

cytotoxicity, and ease of large-scale production. Numerous chemical compounds have been 

developed since DEAE-dextran was first used as a nonviral vector in 1969 [83]. Table 1. 

summarizes the most utilized nonviral vectors.

The following section describes an overview of the prevailing nonviral gene delivery 

systems with their specific benefits and limitations.

3.1.1. Physical methods

3.1.1.1. Electroporation: Electroporation was initially developed as a laboratory 

technique for introducing DNA to bacteria and mammalian cells in culture. Electroporation 

uses a high-voltage pulse of electricity to create transient and reversible openings in the cell 

membranes. This temporary permeabilized state facilitates the delivery of normally 

impermeable macromolecules such as DNA into the cytoplasm. Once the electrical field is 

withdrawn, the pores destabilize and anneal over time (minute scale), allowing the 

membrane to return to its normal permeability state. Neumann and colleagues demonstrated 

for the first time that electroporation could be utilized to transfect mammalian cells in 

culture [84]. In the last four decades, tremendous advances have been achieved in the field, 

particularly in electrode development, allowed this technique to be appropriate for in vivo 

applications [85].

Electroporation has been proven safe and highly efficient for in vivo gene transfer among the 

different nonviral approaches. For in vivo purposes, DNA is usually injected locally, and 

then electric pulses applied surrounding the injection site. Several factors must be considered 

when selecting in vivo electroporation parameters, including electrode design, tissue type, 

size of the delivered DNA, and the pulse protocol used [86, 87]. The pulse parameters such 

as pulse type, length, magnitude, number, and frequency can be fine-tuned to control 

transgene expression levels and duration. Furthermore, proper optimization of the 

electroporation parameters leads to efficient gene transfection comparable to viral vectors 

[88]. However, no universal protocol results in the highest efficacy in every condition; 

tailoring is necessary for each new setting.

Although electroporation has been used in numerous in vitro gene transfer studies, it has 

several drawbacks regarding its potential for clinical gene therapy. First, electroporation is 

effective only within ~1 cm range between the electrodes, making it unlikely to transfect 

cells in a larger area of tissues. Second, electroporation of internal organs is a challenging 

task; surgical interventions are necessary for the implantation and removal of electrodes. 

Additionally, high voltage electric pulses usage result in the degradation of genomic DNA 

and permanent tissue damage [89]. However, some of these problems can be overcome by 

developing suitable electrodes, proper spatial arrangement, and selecting optimal pulse 

parameters such as applied voltage, pulse type, pulse length, and pulse numbers. 
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Electroporation has recently been successfully used in numerous DNA vaccine and gene 

therapy applications.

3.1.1.2. Gene gun: Biolistic particle delivery system or gene gun was initially developed 

for genetic transformation of plant cells [90] and later successfully employed for gene 

delivery in mammalian cells in vitro and in vivo [91, 92]. In this method, target cells are 

bombarded with high-speed DNA-coated heavy metal microparticles accelerated by a 

compressed inert gas such as helium. Generally, tungsten, gold, or silver microparticles in 

the range of 0.5 to 1 μm diameter are employed as the gene carrier [93, 94]. Particle size and 

density of the gene carrier, bombardment force, particles to DNA ratio, dosing frequency, 

and gene gun instrumentation strongly influence the penetration capacity, degree of tissue 

damage, and transfection efficiency of a biolistic procedure. Thus, optimizing these 

parameters is essential to deliver genes while minimizing cell/tissue damage efficiently. 

Further, the types of cells or tissues to be transfected can significantly influence these 

parameters.

The biolistic gene delivery is beneficial for being simple, fast, reliable, and highly efficient. 

It enables direct delivery of the transgene in target tissues without requiring any toxic 

chemical adjuvants as gene carriers, and the gene transfer is independent of DNA size, cell 

types, and cell surface receptors. Further, the gene is forced to enter the cytosol and nucleus 

of the target cells and evade the enzymes present in endolysosomal vesicles, substantially 

reducing the doses of transgenes required. Additionally, gene gun permits multiple gene 

delivery simultaneously to the same tissues, enabling investigation of interaction among 

various gene products. Finally, since gene guns can produce an adequate immune response 

with a minuscule amount of DNA, it is a promising genetic immunization technique.

Gene gun is frequently used for intramuscular, intradermal, and intratumoral DNA 

vaccination in numerous animal models and human clinical trials. Besides DNA vaccination, 

biolistic gene delivery has been modestly used in other gene therapy protocols where a small 

amount of therapeutic protein is sufficient to produce the desired response. However, the 

applications of gene guns are mainly limited to superficial tissues such as skin and muscles. 

This is because a gene gun can transport DNA to a shallow depth of 100–500μm, and it 

would not be easy to transfect entire organs using this technique. Furthermore, though the 

use of higher gas pressure delivers genes into deeper areas, it also results in cell damages at 

the surface. Hence, there is always a trade-off between penetration depth and cell/tissue 

damage. The other disadvantages are short-term gene expression, high input cost, and lack 

of cellular target (i.e., cytoplasm or nucleus).

3.1.1.3. Hydrodynamic injection: Hydrodynamic gene delivery utilizes the rapid 

injection of high-volume DNA solution (8–12% of body weight), which leads to momentary 

cardiac congestion and increases hydrodynamic pressure in the inferior vena cava. 

Consequently, DNA solution flows back to the kidney and liver through the renal and 

hepatic veins, respectively [95]. This raised pressure expands the liver’s fenestrae and 

creates pores on the hepatocyte membrane, facilitating intracellular delivery of DNA 

molecules. The hepatocytes reseal with time (< 2 minutes), trapping the DNA molecules 

inside [95, 96]. Notably, the effect of hydrodynamic pressure on the liver is reversible and 
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short-lived and disrupted sinusoids recover their original structure and function between 24 

– 36 h of injection [97]. The effectiveness of hydrodynamic gene delivery depends on 

several parameters such as capillary structure (fenestrated vs. continuous), the architecture of 

cells adjacent to the capillary, and the applied hydrodynamic force [98, 99].

The hydrodynamic procedure is considered the most efficient nonviral technique for gene 

delivery into rodents because of its high efficiency, simplicity, safety, and reproducibility. 

This procedure has been widely used for improving gene delivery to the liver [100], kidney 

[101], lungs [102], skeletal muscle [103], heart [104], and pancreas [105]. While all of these 

organs display considerable transgene expression, but especially the liver shows the highest 

level of transgene expression [106, 107]. The higher gene expression in the liver following 

hydrodynamic gene delivery via the tail vein could be attributed to several unique features of 

the liver, including big size, presence of fenestrated sinusoids, lack of basement membrane, 

proximity to inferior vena cava, low blood pressure, and high gene expression capacity of 

hepatocytes [108].

Though the hydrodynamic method is an effective gene transfer technique, its clinical 

application is mainly restricted due to high volume injection. Nevertheless, various 

modifications have been made to basic hydrodynamic techniques to meet clinical and 

experimental needs. For instance, the image-guided catheterization technique has been used 

for hydrodynamic gene transfer into the swine liver (Figure 3) [109]. These results suggest 

that hydrodynamic gene transfer is feasible for large animals, including humans with 

minimal tissue damage. However, the transgene expression level was not controllable even 

though the hydrodynamic procedure was performed by the same surgeon using the same 

procedure [110]. This is primarily due to the complication associated with placing a catheter 

at the same site precisely, resulting in variations in hydrodynamic pressure and consequent 

alterations in gene transfer efficiency. A computer-assisted automated injection device has 

been developed to overcome this issue [111]. This device uses real-time intravascular 

pressure as a controller for automatic adjustments of injection parameters. These results 

suggest that hydrodynamic-based gene delivery is feasible for human uses, especially after 

developing computer-controlled injection devices combined with image-guided 

catheterization.

3.1.1.4. Sonoporation: Sonoporation uses ultrasound waves for intracellular transport of 

macromolecules such as proteins and genes [112]. Although the exact sonoporation 

mechanism is not entirely identified, it is believed that ultrasound induces hyperthermia and 

microbubble cavitation, resulting in temporary openings on the membrane of the target cells 

[112, 113]. The biophysical and biological mechanisms contributing to enhanced cell 

permeabilization depend primarily on the variety of ultrasound settings (e.g., high-intensity 

ultrasound causes inertial cavitation, whereas low-intensity ultrasound leads to stable 

cavitation) [114]. However, most gene transfer studies use 1–3 MHz ultrasound with an 

intensity of 0.5–2.5 W/cm2) effectively delivering macromolecules in vitro and in vivo [115, 

116].

Though less effective than hydrodynamic injection and electroporation, sonoporation has 

received increasing attention due to its noninvasiveness, safety, simplicity, and flexibility 
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compared to other gene transfer methods [117]. Further, the efficacy of sonoporation can 

improve significantly in combination with microbubbles or echo-contrast agents. 

Microbubbles act as cavitation nuclei and enhance membrane permeability by minimizing 

the cavitation threshold of ultrasound [118]. One of the most frequently employed contrast 

agents is Optison, which consists of albumin-coated octafluoropropane gas-filled 

microspheres. The overall efficacy of sonoporation depends on several factors, including 

ultrasonic parameters (e.g., pulse length, frequency, repetition rate, duty cycle, and acoustic 

pressure), microbubble parameters (e.g., size, surface rigidity, gas species, and shell 

material), DNA concentration, cells, and tissue types, and even the ambient temperature 

[119]. For example, it has been shown in comparison to neutral microbubbles, pDNA bound 

cationic microbubbles are a more effective gene carrier [120]. Therefore, these parameters 

need to be carefully optimized depending on the target tissues, models, and therapeutic 

needs. Sonoporation technique has been used for gene delivery to different tissues and 

organs such as muscles [121], brain [122], liver [123, 124], heart [125], kidney [126], lungs 

[127], and solid tumors [128, 129].

3.1.1.5. Microneedle: Microneedle-mediated delivery is an innovative strategy to deliver 

DNA therapeutics across the skin in a minimally invasive and patient-friendly manner. The 

microneedle-based delivery system consists of solid or hollow micro-projections typically 

ranging from 25–2000 μm in length, which can be fabricated into varying shapes, heights, 

and densities using diverse materials such as steel, ceramics, silicon, glass, polymers, 

amongst others (Figure 4) [130–132]. These projections penetrate the stratum corneum, a 

significant physical barrier for delivery through the skin, to form transient pores that enable 

the delivery of target DNA intra- or trans-dermally, a region rich in antigen-presenting cells 

such as Langerhans cells, dendritic cells, and macrophages) [133, 134]. The primary 

application of microneedles mediated delivery of nucleic acids is reported to treat genetic 

skin conditions (e.g., alopecia, allergy, psoriasis, hyperpigmentation), cancers, wounds, 

hyper-proliferative diseases, and vaccination [131, 135]. Mikszta et al. [136] were the first to 

report in vivo delivery of plasmid DNA encoding hepatitis B surface antigen using 

microenhancer arrays (MEAs) consisting of silicon projections. MEA-based topical 

immunization using naked DNA resulted in stronger and less variable immune responses 

and lowered number of immunizations required for full seroconversion. In 2016, Deng et al. 

[137] demonstrated non-invasive and efficient delivery of siRNA (GAPDH gene) in mouse 

skin through microneedle arrays reducing GAPDH expression up to 66% in the skin without 

accumulation in major organs.

Combining a microneedle-based delivery system with other technologies such as 

electroporation and gene gun has also been investigated to increase gene expression 

efficiency. Pioneer studies utilizing solid microneedle array in conjugation with electrical 

pulses to aid gene delivery were conducted by Hooper et al. [138]. Plasmid DNA for live 

vaccinia virus was dried on the microneedles’ tips (≤1mm long) and delivered in adult 

BALB/c mice using an Easy Vax™ DNA vaccine delivery system. Vaccinated mice 

demonstrated higher neutralizing antibody titers and protection against a lethal dose of 

vaccinia virus. Subsequently, researchers demonstrated highly efficient siRNA delivery into 

tumor xenograft and plasmid DNA delivery in healthy muscle tissue of C57BL/6 mice using 

Sharma et al. Page 11

Int J Biol Macromol. Author manuscript; available in PMC 2022 July 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



microneedle array technique in conjunction with low-voltage electroporation [139]. 

Moreover, a broad range of clinical trials has outlined safe and efficient use of microneedles 

for the delivery of biologics, which supports the potential to produce microneedle arrays on 

a large scale for clinically acceptable nucleic acid delivery [140]. However, limitations such 

as inability to incorporate high loading dose, difficulty in accurately estimating the 

administered dose, and significant loss of DNA cargo through residual formulation 

remaining on microneedle surface, and incomplete migration of nucleic acid in contact with 

the skin are significant issues that need to be resolved before clinical application of such 

delivery system [133].

3.1.1.6. Magnetofection: Magnetofection is an approach to transfect cells or tissues which 

is based on magnetic nanoparticles. Magnetic nanoparticles complexed with the therapeutic 

gene are directed to targeted cells under the influence of an external magnetic field [141]. 

This technique has already proven as an efficient tool for in vitro and in vivo gene delivery 

with high transfection efficiency [142, 143]. The high transfection efficiency of this 

technique is primarily due to the presence of an electric field gradient generated by placing 

electromagnets below the cell culture device, which results in increasing penetration of the 

magnetic nanocomplexes into the cells. Efficient in vivo transfection efficiency can be 

achieved upon intravenous administration of these magnetic nanoparticles. Under the 

influence of high gradient electromagnetic fields, the nanoparticles are held at a target site to 

release therapeutic genes via enzymatic cleavage, electrostatic interactions, or matrix 

degradation. Therefore, the underlying principle of magnetofection is similar to that for 

drug-targeted magnetic nanoparticles.

Magnetofection majorly employs the use of iron oxide particles. These iron oxide particles 

are usually dispersed in a polymer matrix like dextran or encapsulated in a metallic or 

polymeric shell [144]. Commonly, supramagnetic iron oxide particles are used due to their 

strong movement along the external field gradient. Polyethyleneimine is majorly used to 

form a shell around iron oxide particles as it can easily form an electrostatic complex with 

the therapeutic gene. One of the major advantages of superparamagnetic particles is that 

even in the absence of an external magnetic field, these nanoparticles have low chances of 

aggregating due to magnetic dipole interactions. Magnetofection is capable of transfecting 

primary cells, which is challenging to transfect with other methods [145, 146]. This 

technique has been investigated to treat breast cancer and other solid tumors [147, 148]. It 

has also been used in intradermal gene therapy for ischemic skin flaps in rats [149]. Even 

though magnetofection has shown promising results in various disorders, several challenges 

remain to overcome: low in vivo transfection efficiency, accumulation of iron oxide on 

multiple dosing, and rapid clearance of magnetic particles from systemic circulation upon 

intravenous administration. Also, particles with a size less than 50 nm or larger than 5 μm 

cannot be used for this technique [150]. Furthermore, the presence of blood flow in the 

human aorta and the reduction in magnetic flux density and gradient as distance increases 

from magnetic poles limit the transfection efficiency of the therapeutic gene [150].

3.1.2. Chemical methods—Chemical gene transfer methods use cationic lipids, 

cationic polymers, or polypeptides, condense DNA into nanosized complexes and provide 
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adequate protection against nucleases. It also aids in the cellular uptake of DNA and its 

migration towards the nucleus. Here we briefly discuss various chemical-based gene 

delivery methods.

3.1.2.1. Cationic lipids: Cationic lipids represent the most frequently used alternative to 

viral-based gene delivery vectors. To date, numerous cationic lipids with diverse chemical 

structures have been investigated for gene transfer. Chemical structures of a few commonly 

used cationic lipids are shown in (Figure 5). However, cationic lipids used for gene delivery 

purposes consist of three essential components: polar headgroup, linker, and a hydrophobic 

tail. The cationic headgroup binds to negatively charged nucleic acids via electrostatic 

interaction. Although primary, secondary, tertiary, or quaternary amines are the most 

prevalent cationic headgroups, guanidine, imidazole, pyridinium, and phosphorus groups 

have also been studied. The hydrophobic tail is typically composed of aliphatic chains 

(saturated or unsaturated), cholesterol, or other steroid rings. The linkers between the 

hydrophobic domain and polar head group are usually amino, carbamate, ether, or ester 

bonds and often influence the stability, transfection efficiency, and biocompatibility of the 

lipid.

The charges on cationic lipids allow their complexation with the anionic nucleic acid to form 

lipid/DNA complexes or lipoplexes. The transfection efficiency of lipoplexes depends on 

several parameters, including the lipids’ structure (e.g., the number of cationic charge 

molecules, anchor types, or overall geometric shape), natures of co-lipids used, and 

lipid/DNA charge ratio [151, 152]. The cationic lipids also provide efficient protection of 

genetic cargos from nuclease degradation and enabling the endosomal escape of the contents 

[152, 153]. Moreover, the positive charges on the lipoplexes facilitate their interaction with 

proteoglycans of cell membranes, promoting adsorption mediated cellular uptake of the 

lipoplexes. Overall, cationic lipids have emerged as attractive gene carriers since they can 

easily synthesize, formulate, and have a relatively simple transfection procedure. 

Nevertheless, cationic lipids can be easily modulated to impart cell specificity and 

environment-specific DNA release [154, 155]. Although cationic lipids are the most efficient 

nonviral gene carriers, their transfection efficiency needs to be further improved to become 

clinically relevant.

3.1.2.2. Cationic polymers: The ability of cationic polymers to form polyelectrolyte 

complexes with DNA has enabled their application as gene carriers. These polymeric/DNA 

complexes (polyplexes) enhance the complexed gene’s hydrodynamic characteristics and 

offer protection against nucleases. Since these cationic polymers do not comprise any 

hydrophobic moieties, they are generally water-soluble [156]. These polymers can condense 

DNA more efficiently into smaller complexes than their lipid counterparts [157]. This 

characteristic is crucial for gene transfer, as smaller-sized complexes are favored for cellular 

internalization and subsequent gene expression. PEI, PLL, and chitosan are some of the 

most commonly used cationic polymers for gene therapy.

PEI has been widely investigated for in vitro and in vivo gene transfer and is considered the 

gold standard for nonviral gene carriers. Commercially, PEI is available as both linear or 

branched structures with different molecular weights. PEI comprises a very high density of 
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amine groups (primary, secondary, or tertiary). The majority (~80%) of these amine groups 

remain uncharged at physiological pH and provide substantial buffering capacity over an 

extended pH range. It enables polyplexes to escape from endosomes efficiently, leading to 

improved gene expression [49]. Additionally, the higher charge density of PEI than PLL and 

other cationic polymers confer it with better complex formation, DNA protection, and 

transfection efficiency under the physiological environment. However, this high charge 

density is also responsible for its high cytotoxicity. Numerous parameters such as the degree 

of branching and molecular weight of PEI, the PEI/DNA weight ratio, and polyplex size 

dictates the cytotoxicity and gene expression efficiency of PEI-based formulation [158]. The 

non-biodegradable nature and high toxicity of this polymer is the major obstacle for its 

clinical applications. Various approaches such as the use of amino acid-conjugated low 

molecular weight PEI [159], linking targeting ligands to PEI [160–162], steric stabilization 

of PEI with inert polymers such as dextran [163], polyethylene glycol (PEG) [164, 165], 

pluronic triblock polymers [166], or PLL [167] have been utilized to improve transfection 

efficiency while reducing its cytotoxicity. Similarly, conjugation of lithocholic acid with PEI 

demonstrated improved gene transfection efficacy and safety [168].

PLL, a polypeptide of L-lysine, is another cationic polymer commonly used for in vitro and 

in vivo gene delivery [169, 170]. It is biodegradable and produced from the polymerization 

of N-carboxyanhydride of lysine. However, the PLL-based polymers are less efficient than 

PEI, primarily due to their inability to facilitate the endolysosomal escape of the genetic 

cargo [171]. The use of high molecular weight PLL results in higher DNA condensation and 

subsequent gene transfection. However, it is also associated with higher cytotoxicity. 

Therefore, numerous strategies are employed to enhance transfection and reduce the toxicity 

of PLL, such as the incorporation of buffering moieties to the PLL backbone [172, 173], 

design of PEG conjugated PLL [174], and addition of targeting ligand [175]. In a recent 

study, agmatine-grafted bioreducible PLL polymer has been used for highly efficient gene 

delivery with low cytotoxicity [176]. SPION-loaded PLL/hyaluronic acid micelles have also 

been explored as a magnetic resonance imaging and gene delivery carrier for cancer 

theranostics [177].

Chitosan is a natural polysaccharide of D-glucosamine and β-(1–4)-linked N-acetyl-D-

glucosamine residues [178]. It is synthesized from the deacetylation of chitin at alkaline pH. 

Chitin is obtained from the exoskeleton of crustaceans (e.g., shrimp, crab, and lobster) and 

the cell wall of fungi [179–181]. The relative percentage of D-glucosamine units in a 

chitosan molecule is denoted as the degree of deacetylation (DDA). In general, the DDA of 

chitosan varies between 60–100%. The pKa of primary amino groups of chitosan is ~6.5, 

enabling their protonation at pH ≤ 6.5. Chitosan being positively charged can form 

polyelectrolyte complexes with genetic materials and imparts improved stability by 

protecting them from enzymatic degradation [182, 183]. Several factors, such as molecular 

weight and DDA of chitosan, pH of the transfection medium, and N/P ratio (chitosan 

amines: nucleic acid phosphates), majorly influence the stability and transfection efficiency 

of these complexes.

Over the last few years, chitosan and its derivatives have been used widely to transfer 

genetic materials due to their excellent safety profile and biodegradability. However, the 
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gene delivery potential of unmodified chitosan is inadequate and clinically irrelevant. Thus, 

structural amendments of chitosan with various chemical moieties, including lipids [184], 

fatty acids [185], and cell-penetrating peptides [186], have been tried to enhance its 

transfection ability. Furthermore, chitosan-based polymers have also functionalized with 

numerous ligands to impart target specificity [39, 183].

3.1.2.3. Dendrimer-based vectors: Dendrimers are a class of nanoscale, radially 

symmetric three-dimensional macromolecules with a well-defined, homogenous, tree-like 

structure consisting of a central core, inner branches, and functional surface groups [187, 

188]. PAMAM, polypropylenimine (PPI), PLL, triazine, phosphorus, carbosilane, and 

viologen dendrimers have been explored as gene carriers [189]. PAMAM and PPI are the 

most frequently used cationic dendrimers owing to their high gene transfection efficiency 

and low cytotoxicity [190]. The presence of free amine groups on cationic dendrimers’ 

surface allows them to efficiently condense nucleic acids, protect them from enzymatic 

degradation, and increase their internalization via adsorption mediated endocytosis [189]. 

Numerous tertiary amine groups in the core of these dendrimers confer strong pH buffering 

capacity (pKa ~6.0), facilitating the endosomal escape of DNA-dendrimer polyplexes 

through the proton-sponge mechanism [191]. Different alterations to PAMAM dendrimer 

structures have been investigated to reduce cytotoxicity, optimize complex formation with 

nucleic acids and endosomal release, and promote cell binding and targeting [192, 193]. For 

instance, histidine and arginine were conjugated to PAMAM generation 2 dendrimer to 

enhance its gene delivery efficiency while reducing cytotoxicity [194]. PPI-based 

dendrimers consist of basic primary amine groups on their surface, which form polyplexes 

with DNA, and comparatively acidic core with tertiary amine groups available to act as a 

proton sponge [195]. Like PAMAM dendrimers, various surface functionalities have been 

investigated to overcome limitations by improving cytocompatibility, cellular transfection, 

and cell-specific targeting of PPI dendrimers [196–198].

3.1.2.4. Polypeptide-based vectors: Peptide-nucleic acid conjugates have been shown to 

deliver DNA and siRNA with high transfection efficacy alongside cellular targeting [199]. 

Most peptide-based vectors contain short basic amino acid sequences termed as protein 

transduction domains or cell-penetrating peptides, which are usually lysine-rich such as 

model amphipathic peptide (MAP), MPG, transportan peptide, or arginine-rich such as 

Antennapedia homeodomain peptide, trans-activating transcriptional activators (TAT) 

peptide [200]. These peptides can either be directly covalently conjugated to oligonucleotide 

sequences [199, 201] or attached to nanocarriers, forming electrostatic polyplexes with 

nucleic acid [202]. Various researchers have investigated the mechanisms of cellular uptake 

for these polypeptide-DNA complexes. Endocytosis by caveolae-dependent for TAT-DNA 

conjugates, micropinocytosis for transportan-DNA complexes, direct insertion into cellular 

transmembrane by MPG-like peptides, and energy-dependent pathway for Antp-DNA 

complexes have been reported (Figure 6) [190].

Furthermore, amino acid alterations, mutations, and conjugation to other peptides like RGD 

or mu (μ) have been investigated to achieve improved cellular uptake and gene transfection 

efficiency of such peptide-based vectors [203–205]. Although peptide-based vectors allow 
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high cell specificity and uptake, the primary factor limiting gene transfection is inefficient 

endosomal release. Conjugation to basic amino acid residues like cysteine or histidine or 

cationic polymers like lipofectamine and PEI have been reported to increase gene 

transfection efficacy using such vectors [203, 204, 206].

3.1.2.5. Inorganic, polymeric, and lipid nanoparticles: Remarkable progress in 

nanotechnology has made nanoparticle-mediated gene delivery an attractive strategy for the 

treatment of genetic disorders. The incorporation of nucleic acids (plasmids DNA, mRNA, 

siRNA) into functionalized nanoparticles has been continuously investigated to deliver genes 

selectively to tissues and cells [207]. Nanoparticles can be easily tuned to obtain desirable 

properties, including biodegradability, biocompatibility, non-immunogenicity, high payload 

carrying capacity alongside suitable cellular internalization and transfection. Various types 

of nanoparticles have been evaluated as vectors for gene delivery, such as inorganic 

nanoparticles like carbon nanotubes [208], quantum dots [209], magnetic nanoparticles 

[210], gold nanoparticles [211], and silica nanoparticles [212], polymer-based nanoparticles 

[213, 214], and lipid-based nanoparticles [215].

Quantum dots can be covalently conjugated to plasmid DNA for gene delivery [216]. They 

provide the simultaneous benefit of labeling and tracking nanoparticles in vivo attributed to 

their function as an efficient fluorescent probe [216]. However, chemical modifications to 

DNA can negatively affect transfection efficiency. Carbon nanotubes are cylindrical 

graphene structures with unique physicochemical properties. They have been investigated 

for gene therapy due to their small size and chemical inertness. However, covalent or non-

covalent surface functionalization is necessary to make them suitable for biological 

application [207]. Magnetic nanoparticles prepared from iron oxides can be used for 

magnetic resonance imaging-assisted tracking [207]. They can also be coated with natural 

(e.g., proteins, carbohydrates) or synthetic polymers (e.g., PEI) for enhancing DNA 

complexation and cellular uptake [217]. Gold and silica-based nanoparticles are attractive 

owing to their robust stability, inertness, and low cellular toxicity. These nanoparticles are 

often modified with cationic functional groups or polymers to modulate their function and 

effectiveness [212, 218].

Lipid-based nanoparticles such as SLNs and NLCs are an extensively used category of 

nonviral gene delivery strategies. NLCs differ from SLNs in that the composition of NLCs is 

a mixture of solid and liquid lipids [219]. They are well recognized for their ability to be 

easily processed and stored in a stable form, protect the genetic material from enzymatic 

degradation, and be functionalized to improve cell-specific targeting, internalization, and 

gene transfection [220, 221]. SLN and liposomes prepared using the same cationic lipids 

showed equipotent transfection efficiencies [222]. Asasutjarit et al. reported that cationic 

SLN formed electrostatic complexes with plasmid DNA and demonstrated higher 

transfection efficiency than naked DNA, although significantly lower than commercially 

available transfection reagent Fugene [223]. Gene delivery potential of lipid-based 

nanoparticles can further be improved by functionalization with targeting ligands and pH-

sensitive lipids to enhance cellular internalization and endosomal escape, respectively [220, 

224].
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Polymer-based nanoparticles prepared from natural or synthetic polymers have been widely 

investigated for gene delivery due to the versatility of physicochemical properties through 

variation in structure, molecular weight, nature of the monomers, and complete entrapment 

of genetic material, unlike lipoplexes and polyplexes [190, 207, 225]. Natural polymers, 

including cyclodextrins and lignin, have been investigated for pDNA and siRNA delivery, 

with and without modifications by different groups [226–228]. Chen et al. demonstrated 

amine-functionalized cationic polylactides to possess superior transfection ability compared 

to FuGENE 6 [229]. Similar to lipid-based nanoparticles, they offer the advantages of 

surface functionalization, efficient internalization, endosomal escape, and low cell toxicity 

and immunogenicity [230]. Additionally, polymeric nanoparticles have been shown to 

possess excellent stability under physiological conditions making them an attractive 

candidate for oral gene delivery.

3.1.2.6. Gemini Surfactants: Gemini surfactants are a relatively new class of amphiphiles 

with a general structure of two surfactant monomers connected by a rigid spacer group 

[231]. Typically, they consist of two hydrophilic cationic head groups, two hydrophobic 

tails, and a linker between head groups. This distinct structure enables gemini surfactants to 

bind and condense nucleic acid and subsequently facilitate their cellular uptake [232, 233]. 

In a study, Cardoso et al. [234] demonstrated successful mitochondrial delivery of plasmid 

DNA in HeLa cells using conventional bis-quaternary gemini surfactant 14–2–14 (A) and 

serine-derived bis-quaternary gemini surfactants (nSer) 2N5 (n = 14 and 16) in combination 

with the helper lipids DOPE and cholesterol. Furthermore, the transfection efficiency and 

toxicity of gemini surfactants can be significantly modulated by varying the head group, 

spacer, and length of the hydrophobic tail. For instance, the use of bis-transfection efficiency 

of gemini surfactants [235, 236]. Also, unsaturated alkyl tails increase the transfection 

efficiency of the pyridinium-based gemini surfactant [235]. At the same time, amino acid 

moieties have been attached to the spacer region to improve biocompatibility and 

transfection efficiencies [237]. A recent review by Damen et al. [238] details the 

physicochemical and transfection properties of gemini surfactants.

Table 2 represents a brief list of chemical vectors used in gene delivery.

4. Nonviral vectors used in clinical trials

Numerous nonviral gene delivery approaches have been explored to enhance the transfer of 

nucleic acids to the target site for achieving clinically relevant protein expressions. 

Polymeric and lipid nanoparticles remain popular as nonviral vectors and have made 

substantial advancements for delivering various types of genetic materials to treat a diverse 

range of disorders [255]. This fact can be validated by the sheer number of these vectors 

under clinical trials (Tables 3 and 4). Moreover, due to the recent COVID-19 pandemic, 

these advancements have been accelerated tremendously, resulting in the approval of 

nonviral gene therapies against severe acute respiratory syndrome coronavirus-2 [256]. It 

resulted in the emergency approval of the first mRNA-based vaccines developed by 

BioNtech/Pfizer and Moderna therapeutics. The vaccine developed by Moderna 

Therapeutics (mRNA- 1273) is a lipid nanoparticle-based formulation consisting of one 

proprietary (SM-102) and three commercially available (DSPC, cholesterol, and PEG2000- 
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DMG) lipids [257]. On the other hand, BNT162b2 vaccine developed by BioNtech/Pfizer 

used 4-hydroxybutyl)azanediyl)bis(hexane-6,1-diyl)bis (2-hexyldecanoate), 2 [(polyethylene 

glycol)-2000]-N,N-ditetradecylacetamide, DSPC, and cholesterol [258]. These vaccines 

claimed efficacy over 94% due to their robust cellular response and higher antibody titers 

[256]. Moreover, these nonviral vectors are versatile and scalable and can be adapted rapidly 

for mutations or future epidemics. Besides, mRNA delivery is considered safer than their 

viral counterparts due to their inability to integrate into the host genome and be non-

infectious. However, long-term storage of these formulations requires subzero temperatures 

leading to logistic barriers for their administration and distribution worldwide. Nevertheless, 

these therapeutics’ development represents a huge milestone for biotechnology and 

nanomedicine by overcoming the translation challenges.

5. Conclusion and future perspective

Genes are the blueprint for proteins that serve as building blocks for tissue and crucial 

regulators of biochemical reactions inside all living cells. Thus, genetic defects can often 

disrupt the expression of essential proteins resulting in various diseases. While conventional 

therapies can only alleviate disease symptoms, gene therapy has the potential to eradicate the 

underlying cause by repairing or replacing the genetic code of the patients. However, the 

transfer of genetic materials to the target cells is challenging and often required specialized 

delivery systems or techniques. The current gene delivery methods are broadly classified as 

viral and nonviral systems. The viral gene carriers include retrovirus, lentivirus, adenovirus, 

adeno-associated virus, poxvirus, and herpes simplex virus. The nonviral gene transfer can 

be achieved through various physical methods (e.g., gene gun, electroporation, sonoporation, 

hydrodynamic injection, microneedles, and magnetofection) or chemical methods (e.g., 

cationic lipids, cationic polymers, dendrimers, polypeptides, and nanoparticles of various 

compositions). Recently, nonviral gene delivery systems have been increasingly utilized in 

gene delivery as an alternative to viral vectors due to their superior safety profile and ease of 

development. Although nonviral vectors’ transfection ability has improved significantly over 

the years, they still lack a lot compared to their highly efficient viral counterparts. Currently, 

viral vectors are prevailing in clinical trials, and they consist of more than two-thirds of the 

total gene therapy protocols. However, there has been a gradual reduction in these gaps with 

continuous improvement in nonviral approaches due to the better understanding of their 

limitations in vivo.

There are multiple ways to improve the transfection potential of nonviral gene delivery 

systems ranging from exploring the topology of genetic material being transferred to 

changing the composition of the delivery system. The topology of the genetic material (e.g., 

linear, open circular, and supercoiled) plays a significant role in gene expression. For 

example, it has been shown that the supercoiled and circular form of the DNA induced 

superior transgene expression compared to their linear counterpart [259, 260]. However, the 

exact mechanism by which the DNA topology affects overall gene expression is poorly 

understood. Nonetheless, supercoiled DNA is least susceptible to intracellular degradation 

[260], and the smaller size of supercoiled DNA is believed to be responsible for their 

improved intracellular mobility to reach the nucleus [260–262]. Additionally, promoters 

used in the plasmid design should be chosen carefully according to the cell line being 
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targeted. For instance, human cytomegalovirus (CMV) demonstrates poor transgene 

expression in stem cells but showed high transfection efficiency in various immortalized cell 

lines [263, 264].

The design of safe and efficient delivery systems is crucial for the desired level of gene 

expression. Over the decades, tremendous efforts have been made to design and engineering 

polymers and lipids to overcome major barriers to gene therapy. However, few features of 

these moieties remain constant for achieving high transfection efficiencies, such as high 

cationic charge, good buffering capacity, and low cytotoxicity. On the other hand, there has 

not been a consensus on the influence of the molecular weight on transfection efficiency 

since various researchers have demonstrated conflicting results [265, 266]. Additionally, the 

N/P ratio, composition of the complexation buffer, and incubation period should be 

evaluated thoroughly to achieve the best transfection. Recently, lipid and polymer mixtures 

have also been used to achieve superior transfection efficacy [63, 267].
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Highlights:

• Gene therapy provides curative treatment of genetic disorders and many other 

diseases

• Nonviral gene delivery vectors can overcome the safety concerns of viral 

vectors

• Lipid and polymer-based carriers have been extensively used for targeted 

gene therapy

• Development of nonviral COVID-19 mRNA vaccines have augmented 

nonviral gene delivery
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Figure 1. 
Extra- and intracellular barriers for nonviral gene transfer of DNA-based therapeutics.
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Figure 2. 
Pictorial representation of various physical methods of gene transfer.
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Figure 3. 
Computed tomography (CT) study during a hydrodynamic injection from a catheter, which 

was placed at a branch of the hepatic vein. (a–e) CT images at the same axial level were 

repeatedly obtained with a 0.5 s interval before, during, and after a regional hydrodynamic 

injection of contrast medium at a constant speed of 20 mL/s in 7.5 s. Each image was taken 

before the injection, (a); 1 s, (b); 2.5 s, (c); 7.5 s, (d); and 12 s, (e); after the injection. Closed 

arrows: hepatic vein (HV) branches in the target area; closed arrowhead: main trunk of the 

portal vein (PV); open arrow: splenic vein. (f) An oblique multi-planar reconstruction image 

immediately after the end of a hydrodynamic injection before removing a balloon occlusion. 

The coronal image was reconstituted with a 17.7-mm thickness. A catheter (*) with a 

balloon (**) was placed in the branch of hepatic vein via the right jugular vein. Arrows: 

periphery of the target HV; closed arrowheads: portal vein of the target area; open 

arrowheads: another hepatic vein beginning from the inside of the target area. (Reprinted 

from T. Yokoo, T. Kanefuji, T. Suda, K. Kamimura, D. Liu, S. Terai, Site-Specific Impact of 

a Regional Hydrodynamic Injection: Computed Tomography Study during Hydrodynamic 

Injection Targeting the Swine Liver, Pharmaceutics 7(3) (2015) 334–343 under the terms of 

the Creative Commons CC BY license).
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Figure 4. 
Microneedle array patch. (A) The size of the microneedle array patch; (B) Configuration of 

the microneedle array patch and (C) Structure of a single microneedle model. (Reprint from 

Y. Deng, J. Chen, Y. Zhao, X. Yan, L. Zhang, K. Choy, J. Hu, H.J. Sant, B.K. Gale, T. Tang, 

Transdermal Delivery of siRNA through Microneedle Array, Scientific Reports 6 (2016) 

21422, under the terms of the Creative Commons CC BY license).
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Figure 5. 
Structures of frequently used lipids for gene transfer. DOTAP: 1,2-dioleoyl-3-

trimethylammonium propane (chloride salt); DOTMA: 1,2-di-O-octadecenyl-3-

trimethylammonium propane (chloride salt); DDAB: dimethyldidodecylammonium 

(bromide salt); DOPE: 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine.
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Figure 6. 
Schematic representation of pathways for peptide-mediated penetration of biological barriers 

to address key issues in non-viral gene carriers. Peptides can provide stealth properties to 

prevent opsonization while in circulation. Furthermore, peptides can facilitate the 

penetration of non-viral carriers across various cellular and sub-cellular barriers. Peptide-

mediated transport mechanisms across the plasma membrane include uptake through 

endocytosis or macropinocytosis (right); active uptake through receptor-mediated 

endocytosis (bottom); and pore formation (left). Some peptides can mediate transcytosis 

through sequential endocytic uptake, subcellular transport, and exocytosis. Within cells, 

peptides can facilitate endosomal escape or nuclear targeting, leading to increased RNA 

delivery or gene transfection. (Reprint from R.K. Thapa, M.O. Sullivan, Gene delivery by 

peptide-assisted transport, Current Opinion in Biomedical Engineering 7 (2018) 71–82 

under the terms of the Creative Commons CC BY license).
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Table 1.

Nonviral gene delivery systems.

Category Gene delivery systems

Physical 
methods

1. Electroporation
2. Gene gun
3. Hydrodynamic injection
4. Sonoporation
5. Microneedle
6. Magnetofection

Chemical 
methods

1. Cationic lipids: 1,2-dioleoyl-3-trimethylammonium propane (DOTAP); 1,2-di-O-octadecenyl-3-trimethylammonium 
propane (DOTMA); 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE); Dimethyldidodecylammonium bromide 
(DDAB)
2. Cationic polymers: PEI, chitosan, PLL
3. Dendrimers: PAMAM, polypropylenimine (PPI), PLL, triazine based dendrimers
4. Polypeptide-based vectors: trans-activating transcriptional activators (TAT) peptide, MPG, model amphipathic peptide 
(MAP)
5. Inorganic, polymeric, and lipid nanoparticles: Carbon nanotubes, quantum dots, silica nanoparticles, gold nanoparticles, 
poly (d,l-lactide-co-glycolide) (PLGA) nanoparticles, solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs)
6. Gemini surfactant
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