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Fuzzy rank‑based fusion of CNN 
models using Gompertz function 
for screening COVID‑19 CT‑scans
Rohit Kundu  1, Hritam Basak  1, Pawan Kumar Singh  2, Ali Ahmadian  3,4*, 
Massimiliano Ferrara  4 & Ram Sarkar  5

COVID-19 has crippled the world’s healthcare systems, setting back the economy and taking the 
lives of several people. Although potential vaccines are being tested and supplied around the world, 
it will take a long time to reach every human being, more so with new variants of the virus emerging, 
enforcing a lockdown-like situation on parts of the world. Thus, there is a dire need for early and 
accurate detection of COVID-19 to prevent the spread of the disease, even more. The current 
gold-standard RT-PCR test is only 71% sensitive and is a laborious test to perform, leading to the 
incapability of conducting the population-wide screening. To this end, in this paper, we propose an 
automated COVID-19 detection system that uses CT-scan images of the lungs for classifying the same 
into COVID and Non-COVID cases. The proposed method applies an ensemble strategy that generates 
fuzzy ranks of the base classification models using the Gompertz function and fuses the decision 
scores of the base models adaptively to make the final predictions on the test cases. Three transfer 
learning-based convolutional neural network models are used, namely VGG-11, Wide ResNet-50-2, 
and Inception v3, to generate the decision scores to be fused by the proposed ensemble model. The 
framework has been evaluated on two publicly available chest CT scan datasets achieving state-of-
the-art performance, justifying the reliability of the model. The relevant source codes related to the 
present work is available in: GitHub.
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COVID-19 is considered one of the most infectious diseases of the 21st century that has brought the entire human 
society to a standstill. The spread of the novel coronavirus that started in Wuhan, China in December 2019, 
has already caused 87 million infected cases and nearly 2 million fatalities worldwide, as of January 2021. The 
epidemic has already caused severe damage to the human economy all over the world and the health system has 
been devastated due to the shortage of intensive care units (ICUs). The main concern in this is the uncontrolled, 
undetected spread of the virus.

The existing tests for the detection of COVID-19 consist of mainly swab-based Reverse Transcription Poly-
merase Chain Reaction (RT-PCR) test1, and blood sample-based antibody test2. The RT-PCR test takes a long time 
to produce the results, causing a delay in prognosis and diagnosis of the patients and assessment of the severity 
of the disease. Besides, in the case of over-populated, developing countries RT-PCR tests cannot be conducted 
on a large scale due to the shortage of apparatus. Therefore, there is a need for some alternative methods for the 
detection of COVID-19.

Examination of chest X-Ray or CT scan images can be one such alternative3,4. This method is much faster and 
easily accessible for patients from different economical backgrounds. An example of a lung CT-scan image of a 
COVID-19 infected patient is shown in Fig. 1. However, instead of expert radiologists or physicians, another way 
to determine the infection is by using Artificial Intelligence, which augments the physicians’ efforts, and it has 
been proven to be an effective alternative in other biomedical applications. Data mining or Machine Learning is 
a useful tool that has an advantage over traditional methods to extract features (like Gabor features, Gray-Level 
Co-occurrence matrix features, etc.) from medical images5–7. It is also practicable to analyze medical image 
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datasets in hospitals with huge volume and variations. There are different data mining methods like KNN and 
ANN-based classifiers8,9, Support Vector Machine (SVM)10,11, Bayesian method12, decision tree, etc. that have 
already been used in COVID-19 detection task. Ensembling decision scores from different Transfer Learning-
based CNN base models have been practised widely in recent years13. However, in this paper we propose screen-
ing of Covid-19 CT scans by utilizing a less explored strategy: by generating fuzzy ranks using the Gompertz 
function14, a mathematical model which has been not been explored previously in this domain, adding to the 
novelty of this research.

Ensemble learning is used to fuse the salient properties of its constituent models and enhances the overall 
performance, making better predictions than the individual contributing models. They are robust in the sense 
that ensembling reduces the spread or dispersion of the individual models’ predictions. Ensemble models achieve 
superior performance by minimizing the variance of prediction errors by adding some bias to the competing 
base learners. In this research, we have introduced a Fuzzy ranking method using the Gompertz function. The 
advantage of such fusion is that it uses adaptive weights based on the confidence scores of each classifier used to 
form the ensemble in order to generate the final prediction of each sample. The Gompertz function16 was origi-
nally formulated to map a collection of data in life tables through a single function, and was proposed based on 
the assumption that mortality decreases exponentially as a person ages, and then saturates to an asymptote. Such 
a function can be useful for fusing the confidence scores of classifiers for a complex image classification problem 
where the confidence score for a prediction class by a classifier hardly becomes truly zero, but some small value.

CT17,18 imaging are proven to have more discriminating patterns to ensure more sensitivity and specificity19–21 
as compared to the traditional RT-PCR method22. Therefore Artificial Intelligence (AI) has been widely used to 
extract patterns from the imaging datasets available to complement and augment the early detection of COVID-
19. In literature, there exist numerous applications of Machine Learning10,23,24 and Deep Learning25–27.

Jaiswal et al.28 and Das et al.29 used transfer learning with DenseNet-201 for COVID classification on the 
SARS-COV-2 CT-scan dataset. Panwar et al.30 used a pre-trained VGG-19 network and added five more fully 
connected layers to the original structure to classify COVID CT samples. Karbhari et al.31 proposed Auxiliary 
Classifier GAN (ACGAN) to generate synthesized chest radiograph images to mitigate the problem of scarcity 
of available data and uses a classifier to perform classification on the synthesized data. Angelov et al.32 used the 
GoogLeNet architecture to extract deep features, however, they trained the model from scratch rather than load-
ing the pretrained ImageNet weights. The deep features extracted were used to train an MLP classifier33 for the 
final classification on the chest CT-images dataset.

Motivation and contributions.  The COVID-19 global pandemic forced the medical workers to devote 
their time attending to patients with risk to their own lives, to not only COVID patients but also to attend to 
other disease infected people. Although extensive research is being carried out to develop a vaccine, it will take a 
long time to reach every citizen, and thus the need for the spread of the coronavirus is still of prime importance 
especially with new strains of the virus emerging across the world. The RT-PCR testing process is tedious and 
time-consuming and is only 71% sensitive to COVID-19. Keeping these facts in mind, in this paper, we develop 
a framework for the classification of COVID-19 patients from Non-COVID patients based on chest CT-scan 
images. The ensemble framework proposed can be used as a plug-and-play model by saving the model weights 
and passing the test images through the framework to generate the predictions. This allows the proposed frame-
work to be readily used by non-experts to generate predictions on new images, making it fit for use in the field. 
Thus, it is fit for use in the practical field for the Computer-Aided Diagnosis of COVID-19.

Highlights of the proposed work are as follows: 

1.	 For end-to-end classification using a deep learning model, a large amount of data is required, which is often 
not available in the biomedical domain, so we resort to using transfer learning to generate the initial decision 
scores using three standard CNN models: VGG-11, Wide ResNet-50-2 and Inception v3.

2.	 A novel ensemble technique has been used to fuse the decision scores of the said models since ensembling 
is a powerful tool for incorporating the discriminating properties of all the contributing models.

Figure 1.   Example of a COVID infected Lung CT-scan image. The CT-scan image has been taken from the 
SARS-COV-2 dataset15. The ground glass opacity marked with the red circle in the image is the distinguishing 
feature of the COVID-19 infection.
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3.	 The ensemble technique assigns fuzzy ranks to the constituent classifiers employing a re-parameterized 
Gompertz function. Fuzzy fusion has the advantage of using adaptive priority based on the confidence 
scores of the classifiers for each sample to be predicted, and hence performs better than traditional ensemble 
methods.

4.	 The Gompertz function has exponential growth and then it saturates to an asymptote, which is useful for 
ensembling the decision scores of the CNN models since the decision score of a class predicted by a classifier 
rarely becomes truly zero.

5.	 To evaluate the performance of this framework, two publicly available datasets of chest CT-scan images have 
been used which are both more widely available test to perform, and also more sensitive to COVID-19. The 
obtained results outperform the existing methods by a significant margin.

The overall workflow of the proposed method is shown in Fig. 2.

Results
Datasets.  To evaluate the performance of the proposed framework, we have used two publicly available 
datasets, namely the SARS-COV-2 dataset by Soares et al.15 and the Harvard Dataverse chest CT dataset35. Both 
datasets have unequal distribution of images, as seen in Table 1. The Harvard Dataverse dataset has been posed 
as a 2-class problem with COVID and Non-COVID classes for this study.

Implementation.  In the present research, the VGG-11 model has been employed instead of the other 
deeper CNN variants like VGG-13, VGG-16 or VGG-19 since the performance increment by the deeper models 
are only nominal while being more computationally expensive, as can be seen from Table 2. We can notice from 
Table 2 that even though VGG-13 and VGG-16 have about 1M and 6M more parameters than the VGG-11 vari-

Figure 2.   Overall workflow of the proposed framework. The CT Scanner image (open access) is obtained from 
the Progressive Diagnostic Imaging website34 and the chest CT scan images are from the SARS-COV-2 dataset15 
used in this research.

Table 1.   Distribution of images in the two datasets used in the present work.

Dataset Category Total no. of images No. of images in Train set No. of images in Test set

SARS-COV-2
COVID 1252 876 376

Non-COVID 1229 860 369

Harvard Dataverse
COVID 2167 1517 650

Non-COVID 2005 1404 601
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ant, the increase in accuracy is nominal (only 0.13% for VGG-13 and 0.4% for VGG-16). On the other hand, the 
VGG-19 model having 11 million more parameters than the VGG-11 model has dropped in performance. Since 
the amount of data available is low in the medical domain, only linearly increasing the number of layers does 
not make the model more capable of capturing the complex data pattern. Based on these experimental results, 
along with the VGG-11 model, we ensemble the other two said CNN models to capture the complementary 
information from the data.

To further justify the choice of VGG-11 among its other popular variants, we perform the proposed ensemble 
method using WideResNet-50-2 and Inception v3 models with the different VGG models. The results of the 
ensemble are shown in Table 3. From the table, we can see that performing the ensemble with VGG-11 gives 
the best results, indicating that complementary information is obtained by the VGG-11 model with respect to 
WideResNet-50-2 and Inception v3 models, thus enhancing the performance of the individual learners through 
the ensemble. Hence, in the present work, we have used three CNN models to form the ensemble: VGG-11, 
WideResNet-50-2 and Inception v3.

The results obtained by the proposed ensemble framework on two publicly available datasets are shown in 
Table 4. Both the class-wise results and the net results are given in the table. High classification accuracies of 
98.93% on the SARS-COV-2 dataset and 98.80% on the Harvard Dataverse dataset as well as high sensitivity 
values of 98.93% and 98.79% respectively on both the datasets have been achieved, thus proving the model to 
be reliable. The transfer learning-based CNN models used in the framework to generate decision scores have 
been fine-tuned for 50 epochs each using the Stochastic Gradient Descent optimizer with an initial learning rate 
of 0.001. Figure 3 shows the confusion matrices obtained on the two datasets used. Although the classification 
is not perfect, the number of misclassified samples as compared to the correctly classified samples between the 
“COVID-19” and “Non-COVID” classes are pretty low.

Discussion
In this paper, we propose a Fuzzy rank-based fusion of different CNN base models using the Gompertz function, 
leveraging more extensive features from different CNN modalities. False Positive Rate (FPR) is the phenomenon 
of classifying a negative quantity as a positive one mistakenly. The high rate of false-positive in medical data 
analysis can be detrimental, especially in the case of COVID-19 identification, because classifying an infected 

Table 2.   Performance (measured in terms of accuracy) provided by the different VGG variants along with 
their number of parameters on the SARS-COV-2 dataset.

Model Accuracy (%) Number of Parameters (in millions)

VGG-11 96.38 132.86

VGG-13 96.51 133.05

VGG-16 96.78 138.42

VGG-19 95.17 143.67

Table 3.   Results obtained by the ensemble of WideResNet-50-2 and Inception v3 with varying VGG models 
on the SARS-COV-2 dataset.

VGG Model Used Accuracy (%) Precision (%) Recall (%) F1-Score (%)

VGG-11 98.93 98.93 98.93 98.93

VGG-13 98.25 98.26 98.25 98.25

VGG-16 98.12 98.13 98.12 98.12

VGG-19 97.04 97.05 94.04 97.04

Table 4.   Results obtained by the proposed ensemble framework on the test sets of both SARS-COV-2 and 
Harvard Dataverse datasets.

Dataset Class Accuracy (%) Specificity (%) Precision (%) Sensitivity (%) F1 Score (%)

SARS-COV-2

COVID 99.20 98.92 98.68 99.20 98.94

Non-COVID 98.65 98.94 99.18 98.64 98.91

Net Results 98.93 98.93 98.93 98.93 98.93

Harvard Dataverse

COVID 99.08 99.00 98.62 99.08 98.85

Non-COVID 98.50 98.62 99.00 98.50 98.75

Net Results 98.80 98.82 98.81 98.79 98.80



5

Vol.:(0123456789)

Scientific Reports |        (2021) 11:14133  | https://doi.org/10.1038/s41598-021-93658-y

www.nature.com/scientificreports/

case as a non-infected one can further spread the disease since the predicted non-infected person will become 
a super-spreader36.

The ROC curves obtained on the two datasets using the proposed approach have been shown in Fig. 4. The 
figures show the False Positive Rate to be significantly low on both the datasets used in this study, manifesting 
the superiority of the proposed method and its usefulness in medical data analysis. The Area Under the Curve 
(AUC) values obtained on the corresponding datasets are also mentioned. On the SARS-COV-2 dataset, an AUC 
value of 98.92% is obtained while on the Harvard Dataverse dataset, the AUC value obtained is 98.78%. In a 
ROC curve, the higher the value on the X-axis indicates the higher number of false-positive instances than the 
number of true negative instances. On the other hand, a higher value on the Y-axis suggests a higher number 
of instances of true positive cases than false negatives. The more the ROC curve is shifted toward the top-left 
corner of the Cartesian plane, the better is the ability of the classifier to distinguish between positive and negative 
class samples, because the point (0, 1) on the ROC graph indicates the point of highest sensitivity and specificity. 
As can be seen from the figure, the ROC obtained on the SARS-COV-2 dataset in Fig. 4a, lies more toward the 
top-left corner than the ROC obtained on the Harvard Dataverse dataset in Fig. 4b. Thus, we can say that the 
classifier can distinguish samples better for the SARS-COV-2 dataset and the ROC of it is thus higher than in 
the case of the Harvard Dataverse dataset.

Figure 3.   Confusion matrices obtained by the proposed ensemble model on the two datasets considered in the 
present work.

Figure 4.   ROC curves obtained by the proposed ensemble model on the two datasets.
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High sensitivity values obtained by the proposed method on the datasets, as seen from Table 4, indicate 
robust performance by the ensemble strategy, which even outperforms the RT-PCR testing procedure which has 
a sensitivity of only 71%. The high accuracies justify the reliability of the framework.

The loss curves obtained by the base learners on the SARS-COV-2 and the Harvard Dataverse dataset used 
in this research are shown in Fig. 5. Since we use transfer learning models pretrained on the ImageNet dataset, 
the models only need to be fine-tuned on the COVID dataset. For this, we train the models for 50 epochs each. 
As seen from the figures, the performance of the models saturates at around 20 epochs, since most of the model 
weights are already optimized through training on ImageNet. For both the datasets, we observe that in VGG-11 
and WideResNet-50-2 there is a problem of slight overfitting of the models, while the problem is not as promi-
nent in the case of Inception v3.

Comparison with standard CNN Backbones.  Transfer Learning is a popular approach for problems 
in the biomedical image classification domain since often large datasets for training CNNs from scratch are 
scarce. Transfer Learning allows a model trained on a large dataset to be fine-tuned by the small data in the cur-
rent problem, making feature learning easier. The proposed ensemble-learning based framework is compared 
to standard CNN Transfer Learning models including the ones used to construct the ensemble, and the results 
obtained are presented in Table 5. VGG-1137, Wide ResNet-50-239 and Inception v341 have been used in the 
present study for fusing the decision scores, and clearly, the ensemble of these models outperform the individual 
models, justifying the reliability of the ensemble framework.

Figure 5.   Loss curves obtained on the two datasets used in this research by the base learners used to form the 
ensemble. (a)–(c) shows the loss curves on the SARS-COV-2 dataset and (d)–(f) shows the loss curves on the 
Harvard Dataverse dataset.

Table 5.   Comparison of the proposed framework with some standard CNN models.

Standard Model

Accuracy (%)

SARS-COV-2 Harvard Dataverse

VGG-1137 96.38 95.92

DenseNet16138 96.91 95.38

Wide ResNet-50-239 96.78 92.57

ResNet3440 96.11 96.87

ResNet15240 95.17 94.33

Inception v341 92.15 97.64

Proposed method 98.93 98.80
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Comparison with some conventional ensemble approaches.  Ensemble models allow the most 
important characteristics of all its contributing classifiers to be fused, thus performing superior to the individual 
models. Many popular ensemble techniques have evolved over the years, some of which have been explored 
in this study to justify the superiority of the proposed ensemble over existing methods. The fuzzy logic-based 
ensemble performs especially well since for every sample the confidence in the prediction of a classifier is taken 
into account to assign weights to the predictions for making the final decision on the class of an image. The 
results obtained using the same three CNN models to form the ensemble are shown in Table 6, where we can 
observe that the Gompertz function based decision fusion performs significantly better than the others. The 
Weighted Average based ensemble approach also achieves good results, but the fuzzy integrals based ensembles 
(Choquet Integral and Sugeno Integral) perform closest to the proposed ensemble technique. The Weighted 
Average ensemble is a static process where, at the prediction time, there is no scope for dynamically refactoring 
the weights to the classifiers. However, fuzzy fusion-based techniques can address this problem and gives prior-
ity to the confidence scores making it a superior strategy for the ensemble. Although the Choquet and Sugeno 
integrals-based ensembles use a similar strategy, the proposed Gompertz function-based fuzzy ranking ensem-
ble still outperforms those, justifying the superiority of the method.

Comparison with state‑of‑the‑art.  Several COVID detection methods have been proposed in the lit-
erature, since the outbreak of the pandemic, although a large fraction of them uses chest X-Ray datasets, which 
are, in general, less sensitive than chest CT-scan images. The results obtained by some of the recent state-of-
the-art methods in literature on the SARS-COV-2 and Harvard Dataverse datasets, used in the current study, 
are compared with our proposed ensemble model in Table 7. Most of the methods rely on Transfer Learning 
for classification due to the scarcity of publicly available chest CT data, however, end-to-end classification using 
transfer learning is not sufficient. Ensembling decision scores from multiple CNN models capture the comple-
mentary information provided by the models thus enhancing the overall performance. No published works have 
yet been found on the Harvard Dataverse dataset to the best of our knowledge, and thus, we compare our results 
to some popular transfer learning CNN models. The high classification accuracy and sensitivity obtained by the 
proposed method indicates robustness in performance.

Table 6.   Comparison of popular ensemble techniques with the proposed Gompertz function based ensemble 
method.

Ensemble technique

Accuracy (%)

SARS-COV-2 Harvard dataverse

Multiplication Rule 95.82 98.24

Maximum 96.78 98.47

Majority Voting 97.65 97.54

Average 97.83 97.91

Weighted Average 98.12 98.64

Choquet Integral 98.52 98.48

Sugeno Integral 98.52 98.48

Proposed Gompertz function based ensemble 98.93 98.80

Table 7.   Comparison of the proposed ensemble framework with state-of-the-art methods on both SARS-
COV-2 and Harvard Dataverse datasets.

Dataset Method Accuracy (%) Precision (%) Recall (%) F1-Score Specificity (%)

SARS-COV-2

Silva et al.42 97.89 95.33 97.60 96.45 –

Horry et al.43 97.40 99.10 95.50 97.30 –

Halder et al.44 97.00 95.00 98.00 97.00 95.00

Jaiswal et al.28 96.25 96.29 96.29 96.29 96.21

Sen et al.27 95.32 95.30 95.30 95.30 –

Panwar et al.30 94.04 95.00 94.00 94.50 95.86

Soares et al.32 88.60 89.70 88.60 89.15 –

Proposed method 98.93 98.93 98.93 98.93 98.93

Harvard Dataverse

Krishevsky et al.45 94.72 95.17 94.72 94.94 95.17

Szegedy et al.46 92.64 92.64 93.54 93.09 92.64

Sandler et al.47 89.68 88.12 89.68 88.89 89.68

Proposed Method 98.80 98.82 98.81 98.79 98.80
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Statistical analysis: McNemar’s test.  We have performed the McNemar’s test48 to statistically analyse 
the performance of the proposed ensemble method, compared to the constituent models whose decision scores 
have been used to form the ensemble. Table 8 shows the results of McNemar’s test on both SARS-COV-2 and 
Harvard Dataverse datasets. To reject the null hypothesis, the p-value in McNemar’s test should ideally be below 
5%, and according to Table 8, clearly, for every case the p value < 0.05. Thus the null hypothesis is rejected for all 
the cases. This justifies that the proposed ensemble framework captures the complementary information sup-
plied by the contributing classifiers, and makes superior predictions, thus making the overall model dissimilar 
to any of the contributing models.

Methods
The proposed framework used for the COVID-19 classification from CT-scan images has two main stages: the 
generation of confidence scores from multiple models, and the fusion of the decision scores using the Gompertz 
function employing a fuzzy rank-based scheme for making the final predictions. These two stages are explained 
in the following sections.

Generation of confidence score.  In the proposed framework, at first, three transfer learning-based CNN 
models, VGG-11, Inception v3, and Wide ResNet-50-2 are utilized to generate the confidence scores on the 
sample images. Both the datasets are split into a 70%-30% ratio of train and test sets, and the same sets are used 
for all the models. The Stochastic Gradient Descent (SGD) optimizer, along with Rectified Linear Unit (ReLU) 
activation functions are used to fine-tune the networks for 50 epochs each on top of ImageNet weights. The three 
CNN models are described in brief in the following subsections.

VGG‑11.  VGG-1137 was proposed for the Visual Recognition Challenge (ILSVRC) in 2014 that was further 
modified and implemented in several image classification tasks. To exploit the utilization of depth in convolu-
tion networks, several other CNN architectures were proposed in the VGG group, we have used the VGG-11 for 
this purpose, which consists of 8 convolution layers and 3 fully connected (FC) layers, forming 11 layers in total, 
justifying the nomenclature. The network expects a 3-channel (i.e., RGB image) with dimension 224× 224 fol-
lowed by a series of convolution layers, having a very small receptive field of 3× 3 dimension and stride=1, with 
proper padding. This is followed by non-overlapping Max-pooling layers with size 2× 2 and padding size=2 
in between some of the convolution layers. The hidden layers of VGG-11 have ReLU activation functions. The 
architecture of the VGG-11 model is shown in Fig. 6.

Wide ResNet‑50‑2.  Wide ResNet architecture was proposed in 2016 by Zagoruyko et  al.39 2016. The Wide 
ResNet model mitigates some of the problems of ResNet40 by making the network shallow and wide, thereby 
reducing the training time and parameters without compromising the performance. The authors of ResNet have 
made the network shallow to increase the depth, thereby opening up the possibility of the network’s inability to 
learn anything during training due to the absence of anything to force it to go through the residual block weights. 
That might lead to a problem of feature reuse: a problem of only a few blocks having important information 
and the rest of the blocks sharing a small contribution towards the final output. The architecture of the Wide 
ResNet-50-2 CNN model is shown in Fig. 7.

Inception v3.  Inception v341 is one of the most used deep learning models, belonging to the Inception fam-
ily that uses various improvements like using an auxiliary classifier, factorized convolution operations, batch 
normalization, RMSProp optimizer, and label smoothing to mitigate the problems of the previous Inception 

Table 8.   Results of the McNemar’s Test performed on the individual models of the ensemble, on both datasets: 
Null hypothesis is rejected for all cases.

McNemar’s Test p value

Compared with SARS-COV-2 Harvard Dataverse

VGG-11 4.49E-02 9.50E-03

Wide ResNet-50-2 1.05E-04 1.93E-15

Inception v3 2.88E-02 8.40E-03

Figure 6.   Architecture of the VGG-11 base model.
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models46. It takes an input image of size 299× 299× 3 and produces feature maps of different dimensions in 
different layers. The inception block of Inception v3 allows us to utilize the facilities of using different filters of 
feature extraction from a single feature map. These features with different filters are concatenated and passed on 
to the next layer for deeper feature extraction. The architecture of the Inception v3 model used in the present 
work is shown in Fig. 8.

Proposed fuzzy‑ranking based ensemble using Gompertz function.  The main motivation behind 
using a fuzzy rank-based approach is that, in such a technique, for every individual test case, priority is given 
to each classifier’s confidence in its predictions, unlike traditional ensemble approaches like the average rule, 
weighted average rule, etc., where classifiers need to be associated with a pre-defined fixed weight. We use the re-
parameterized Gompertz function49 to generate the fuzzy ranks of each CNN classifier in detecting the COVID-
19 cases from the CT-scans, and we fuse three CNN classifiers’ predictions, namely VGG-11, Wide ResNet-50-2, 
and Inception v3.

Biologically, the Gompertz model indicates an increase in mortality rate with increasing age, representing an 
increased vulnerability towards causes of death suffered by young adults. How rapidly this vulnerability enhances 
with age is depicted by the exponential term of the Gompertz function, where it is assumed that increasing age 
implies a greater probability of death50. Figure 9 shows the proposed re-parameterized Gompertz function, where 
the independent variable ‘x’ represents the predicted confidence score for a test sample by a classifier.

Let there be M number of decision scores (confidence factors of classifiers) {CF(1),CF(2), . . .CF(M)} for each 
image I . In our case, M = 3 , since we have used three CNN models to generate the confidence scores on the 
datasets. The decision scores are normalized which follow Eq. (1), where C is the number of classes in the dataset.

Corresponding to all samples belonging to different classes in the dataset, the confidence scores are used to 
generate the fuzzy ranks. The fuzzy rank for a class c using the ith classifier’s confidence scores is generated by 
the Gompertz function as in Eq. (2).

(1)
C
∑

c=1

CF(i)c = 1.0; ∀i, i = 1, 2, 3, . . . ,M

(2)R(i)
c =

(

1− exp
[

−exp
[

−2.0× CF(i)c

]])

, ∀i, c; i = 1, 2, . . . ,M; c = 1, 2, . . .C

Figure 7.   Architecture of the Wide ResNet-50-2 base model.

Figure 8.   Architecture of the Inception V3 base model.
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The value of R(i)
c  lies in the range [0.127, 0.632] where the smallest value 0.127 is analogous to rank 1 (best 

rank), i.e., a higher confidence gives a lower (better) value of rank. Now, if K (i) represents the top k ranks, i.e. 
ranks 1, 2, . . . , k , corresponding to class c, the fuzzy rank sum ( FRSc ) and the complement of confidence factor 
sum ( CCFSc ) are calculated as in Eqs. (3) and (4), respectively.

PRc  and PCFc  are the penalty values imposed on class c, if it does not belong to the top k class ranks. The value of 
PRc  is 0.632, which is calculated by putting CF(i)c = 0 in Eq. (2), and the value of PCFc  is set to 0.0. The penalty 
values ensure that class c does not become an unlikely winner.

The final decision score is realized by the product of FRSc and CCFSc which is used to generate the final pre-
dictions of the ensemble model. The final decision score (FDS) is calculated as in Eq. (5).

The final predicted class of instance I of the dataset is calculated by finding the class having the minimum 
FDS value and is given in Eq. (6).

The computational complexity of the proposed ensemble approach is O(n) where ‘n’ is the number of classes 
in the dataset.

Conclusion
With an increasing threat of novel coronavirus worldwide, early and accurate detection of COVID-19 becomes 
necessary because of the shortage of medical facilities faced by almost every country of the world. To this end, in 
this paper, we have proposed a fully automated COVID-19 detection framework employing deep learning that 
eliminates the need to undergo the tedious RT-PCR testing process but instead uses the more commonly available 
chest CT-scan images for classification. We have also demonstrated the application of fuzzy rank-based fusion on 
decision scores obtained from multiple CNN models to identify the COVID-19 cases. As far as our knowledge, 
the proposed framework is the first of its kind to form an ensemble model using the Gompertz function for 
COVID-19 detection. The low false-positive rate and high classification accuracies of 98.93% and 98.80% and 
sensitivities of 98.93% and 98.79% on the SARS-COV-2 and Harvard Dataverse datasets respectively, are the key 
achievements of the proposed method. The proposed framework has been compared to several techniques in 
literature, popular ensemble schemes adopted in different research problems and purely transfer learning-based 
approaches. In every case, the proposed fuzzy rank-based fusion scheme has outperformed the said methods, 
justifying its superiority.

In future, we aim to experiment with other CNN architectures as well as different fusion strategies to improve 
the performance. We also plan to validate the proposed method on other datasets, thereby proving the robustness 

(3)FRSc =

M
∑

i=1

{

R
(i)
c , if R

(i)
c ∈ K (i)

PRc , otherwise

(4)CCFSc =
1

M

M
∑

i=1

{

CF
(i)
c , if R

(i)
c ∈ K (i)

PCFc , otherwise

(5)FDSc = FRSc × CCFSc

(6)class(I) = argmin
c=1,2,...,C

{FDSc}

Figure 9.   Displaying the re-parameterized Gompertz function used in the present study.



11

Vol.:(0123456789)

Scientific Reports |        (2021) 11:14133  | https://doi.org/10.1038/s41598-021-93658-y

www.nature.com/scientificreports/

of the proposed model. We may try to develop a more computationally efficient model for COVID-19 detection 
since an ensemble of different models requires a comparatively larger computation cost than a single model 
architecture. For this, we may try techniques like snapshot ensembling, etc. Also, from the loss curve analysis, 
we have seen that some models had overfitting issues, so we may try to address that using techniques like data 
augmentation, or we can try to acquire larger datasets to test on. We may also apply segmentation of the lung 
CT scans before classification to further enhance the recognition capability of the CNN models. We expect that 
the proposed model will be of great help to the medical practitioners for early detection which may lead to an 
immediate diagnosis of the COVID-19 patients since it can be used as a plug-and-play model where new test 
images can be passed through the saved model weights and the ensemble prediction can be computed.

Data availability
No datasets are generated during the current study. The datasets analyzed during this work are made publicly 
available in this published article.

Code availability
The source codes used for the present research work are made publicly available in the GitHub repository: https://​
github.​com/​Rohit-​Kundu/​COVID-​Detec​tion-​Gompe​rtz-​Funct​ion-​Ensem​ble.
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