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Compelling evidence supports alterations in gut microbial diversity, bacterial composition, and/or relative abundance of several
bacterial taxa in attention-deficit/hyperactivity disorder (ADHD). However, findings for ADHD are inconsistent among studies, and
specific gut microbiome signatures for the disorder remain unknown. Given that previous studies have mainly focused on the
pediatric form of the disorder and involved small sample sizes, we conducted the largest study to date to compare the
gastrointestinal microbiome composition in 100 medication-naive adults with ADHD and 100 sex-matched healthy controls. We
found evidence that ADHD subjects have differences in the relative abundance of several microbial taxa. At the family level, our
data support a lower relative abundance of Gracilibacteraceae and higher levels of Selenomonadaceae and Veillonellaceae in adults
with ADHD. In addition, the ADHD group showed higher levels of Dialister and Megamonas and lower abundance of Anaerotaenia
and Gracilibacter at the genus level. All four selected genera explained 15% of the variance of ADHD, and this microbial signature
achieved an overall sensitivity of 74% and a specificity of 71% for distinguishing between ADHD patients and healthy controls. We
also tested whether the selected genera correlate with age, body mass index (BMI), or scores of the ADHD rating scale but found no
evidence of correlation between genera relative abundance and any of the selected traits. These results are in line with recent
studies supporting gut microbiome alterations in neurodevelopment disorders, but further studies are needed to elucidate the role
of the gut microbiota on the ADHD across the lifespan and its contribution to the persistence of the disorder from childhood to

adulthood.

Translational Psychiatry (2021)11:382; https://doi.org/10.1038/s41398-021-01504-6

INTRODUCTION

Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelop-
mental disorder characterized by a persistent pattern of symp-
toms of inattention, hyperactivity, and impulsivity, resulting in
dysfunction in two or more areas of an individual’s life [1,2,]. ADHD
is associated with deterioration in the social, family, academic,
and/or occupational functioning of the affected subjects and has a
high impact at the socioeconomic level [3].

The prevalence of ADHD in children is approximately 5.3%, and
of these, 50—70% will still show symptoms in adulthood [4]. The
etiology is complex and multifactorial, with an average heritability
of 74% [5]. Through the largest meta-analyses of genome-wide
association studies performed so far, the first genome-wide
significant loci for ADHD were identified [6,7,]. Evidence for a
strong genetic component of common variants in the polygenic
architecture of ADHD was found, with an SNP-based heritability of
22% [6]. Given that the large proportion of heritability still needs

to be explained, these data also suggest that other mechanisms
may provide a means for integrating the effects of genetic and
environmental risk factors and explaining additional phenotypic
variance in ADHD. Among such factors, compelling evidence
supports a possible role for the gut microbiome in ADHD.

The gut microbiome is essential for health and plays a role in
the bidirectional regulation of the brain-gut axis. Microorganisms
influence the brain through their ability to produce and modify
many metabolic, immunological, and neurochemical factors in the
gut that ultimately impact the central nervous system [8-10]; in
turn, brain activity also impacts the gut microbiota composition
[11,12,]. The gut microbiota influences gut barrier integrity and
produce neuroactive compounds such as neurotransmitters,
amino acids, and microbial metabolites, including short-chain
fatty acids [10,13,]. These metabolites can interact with the host
immune system, act on the central nervous system by regulating
gene expression, epigenetics and neuroplasticity and affect local
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neuronal cells and afferent pathways that signal directly to the
brain [13]. This dynamic bidirectional communication between the
gut microbiota and the central nervous system influences brain
function, cognition, and behavior and highlights the fact that gut
microbiota imbalance may contribute to the pathophysiology of
neurodevelopmental disorders and mental health outcomes.

Consistently, an increasing number of studies have shown gut
microbiome alterations in neurodevelopmental disorders [14-19].
For ADHD, an increasing number of studies have reported that the
gut microbial diversity, bacterial composition, and/or relative
abundance of several bacterial taxa differ between patients and
healthy controls [20-28]. Although not confirmed by others
[20,22,27,], some studies found differences in microbiota alpha
[23,28,] or beta diversity [23,24,] in ADHD. For example, Prehn-
Kristensen et al. observed decreased alpha diversity in ADHD
patients and differences in beta diversity between patients and
controls [23]. Wang et al. [28] also reported differences in alpha
diversity in ADHD, and Szopinska-Tokov found a significant
reduction in beta diversity in patients with ADHD [24,28,]. When
focusing on specific taxonomic groups, Aarts et al. reported a
nominal increase in Bifidobacterium in individuals with ADHD,
changes that were associated with a significantly enhanced
predicted synthesis of the dopamine precursor phenylalanine
[22]. Similarly, Jiang et al reported decreased amounts of the
genera Dialister, Lachnoclostridium, Sutterella, and Faecalibacterium
in treatment-naive children with ADHD compared with healthy
controls and a negative association between the abundance of
the last taxonomic group and parental reports of ADHD symptoms
[27]. These results were consistent with those from a recent study
by Wan et al.,, which also detected a reduced relative abundance
of Faecalibacterium, as well as higher amounts of Odoribacter and
Enterococcus, in ADHD patients [20]. Moreover, Prehn-Kristensen
observed distinct abundance in different microbial taxa, including
increased Neisseria and decreased Prevotella and Parabacteroides
in ADHD subjects [23]. Wang et al. compared the fecal microbiota
composition between medication-naive children with ADHD and
healthy controls and found Fusobacterium genus as a marker for
ADHD as well as enrichment of Lactobacillus in the control group
[28]. Finally, a recent study conducted by Szopinska-Tokov et al.
revealed an association between the relative abundance of the
Ruminococcaceae _UCG_004 genus and ADHD inattention symp-
toms [24]. All these previous studies, however, considered small
sample sizes (from 14 to 51 ADHD patients), mainly focused on the
childhood/adolescent form of the disorder, and showed no
overlap or lack of concordance between findings.

Additionally, clinical evidence shows that probiotic intervention
in early life may improve later outcomes and reduce the risk of
neuropsychiatric disorders [29], and mice colonized by microbiota
from subjects with ADHD displayed altered microbial composition
and behavioral and brain abnormalities compared with mice
transplanted with the microbiota from individuals without ADHD
[30]. These data further support that the gut microbiome
composition may influence brain function and behavior and play
a role in the disorder [30-33].

Considering this background, we performed the largest
characterization of the gastrointestinal microbiome composition
in 100 medication-naive adults with ADHD and 100 sex-matched
healthy controls and assessed differences in the microbiota
composition between both groups and whether such differences
were associated with ADHD clinical symptoms.

MATERIALS AND METHODS

Participants and clinical assessment

The clinical sample consisted of 100 adult medication-naive ADHD subjects
(DSM-5 criteria) who were referred to an ADHD program from primary care
centers and adult community mental health services. All subjects were
evaluated and recruited prospectively from a restricted geographic area of
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Catalonia (Spain) in a specialized outpatient program for adult ADHD and
by a single clinical group at Hospital Universitari Vall d’'Hebron of Barcelona
(Spain). A description of the sample is provided in Supplementary Table 1.

The clinical assessment consisted of structured interviews and self-
report questionnaires in two different steps: (i) ADHD diagnosis was based
on the results of the Structured Diagnostic Interview for Adult ADHD (DIVA
2.0) [34] by a psychiatrist; (ii) the severity of ADHD symptoms and levels of
impairment and comorbid disorders were assessed by a psychologist. In
this part of the evaluation, the following scales and questionnaires were
used: the ADHD Rating Scale (ADHD-RS), the Clinical Global Impression
(CGl), the Wender Utah Rating Scale (WURS), the Sheehan Disability
Inventory (SDS), and the Structured Clinical Interview for DSM-IV Axis | and
Il Disorders (SCID-I and SCID-Il). Afterward, the psychiatrist and psychol-
ogist integrated the clinical information and self-reports for valid
assessment of symptoms and impairments. In case of discordance
between the different raters for ADHD symptoms or inconsistencies
between the reporters in responses to items measuring similar symptoms,
clinician-identified symptoms on the DIVA 2.0 prevailed. Clinical informa-
tion was reordered at the moment of inclusion, at which time the stool
specimen was also collected. Exclusion criteria were as follows: an
intelligence quotient less than 70; lifelong or current history of mood,
psychotic, anxiety, substance abuse, and personality disorders; pervasive
developmental disorders; a history or the current presence of a condition
or illness, including neurologic, metabolic, cardiac, liver, kidney, or
respiratory disease; a chronic medication of any kind; birth weight <
1.5kg; and other neurological or systemic disorders that might explain
ADHD symptoms.

The control sample consisted of 100 unrelated healthy donors matched
by sex and ethnicity with the clinical group. The exclusion criteria were
ADHD symptomatology according to the Adult Self-Report Scale A.S.R. S
v1.1. and any prior or current psychiatric comorbidity.

All subjects reported European ancestry, which was confirmed through
principal component analysis (PCA) using genetic data. Exclusion criteria
for all participants included treatment with antibiotics or probiotics up to
before stool collection.

The study was approved by the Clinical Research Ethics Committee
(CREC) of Hospital Universitari Vall d'Hebron. All methods were performed
in accordance with the relevant guidelines and regulations, and written
informed consent was obtained from all subjects before inclusion. None of
the participants received any financial compensation.

Sample collection and DNA isolation

Human fecal samples were collected at home, stabilized with the
OMNIgene-GUT (OM-200) (DNA Genotek Inc.) kit, and then transported
to the laboratory. The samples were aliquoted into 1.5-ml tubes and stored
at —80 °C. Microbial DNA was purified from 200 mg of each homogenized
fecal sample using the QIAamp” PowerFecal® DNA extraction kit (QIAgen,
Hilden, Germany). The isolated DNA was quantified using PicoGreen™
dsDNA Assay Kit [35].

Library preparation and lllumina sequencing

The V3—V4 hypervariable region of the bacterial 16S rRNA gene was
amplified for microbiome composition profiling. DNA library construction
was performed following the manufacturer’s instructions (lllumina). We
used the same workflow as described elsewhere [36] to perform cluster
generation, template hybridization, isothermal amplification, linearization,
blocking and denaturation, and hybridization of the sequencing primers.
Briefly, the V3—V4 region was amplified using key-tagged eubacterial
primers  5’CCTACGGGNGGCWGCAG3’ and  5'GACTACHVGGGTATC-
TAATCC3/, and 300-nt paired-end amplicons were subsequently
sequenced in two different rounds using the Illumina MiSeq platform.
The raw lllumina paired-end reads were merged considering an overlap
length > 70 bp with the PEAR software v. 0.9.1, providing a single FASTQ
file for each of the samples [37]. High-quality reads were extracted by
applying a minimum Phred score of 20 (Q20, 99% based call accuracy).
After primer sequences trimming, reads without both primer sequences or
with less than 200 bp were discarded with Cutadapt v.1.8.1 [38]. Chimeric
sequences were removed using the UCHIME software [39]. After quality
control filtering, we obtained 14.7 million high-quality sequences with 45
063—216 059 reads per sample from a total of 200 fecal samples. The raw
and clean number of sequences, mean length, total mega bases
sequenced, and mean quality per sample can be found in Supplementary
Table 2. The remaining reads were clustered into operational taxonomic
units (OTUs), in which unique sequences with a relative abundance above

Translational Psychiatry (2021)11:382



0.1% were clustered into OTUs based on 97% sequence similarity [40]
using the CD-HIT package [41] and the BLAST search against the NCBI 16S
rRNA reference database (September 2019) with bastn v.2.10.0+.
Taxonomic groups (phylum, family, and genus) were assigned with a
Python script developed by ADM-BIOPOLIS (Paterna, Valencia, Spain). To
remove genera with absent or low prevalence, the OTU table was filtered
at the genus level. OTUs with nonzero values in less than 10% of the
samples were removed. OUT counts were normalized by rarefaction with
the phyloseq R package according to Weiss et al. [42].

Statistical analysis

Alpha diversity (within-sample diversity) was calculated on rarefied data
with the Richness, Simpson and Shannon diversity indices and compared
between individuals with ADHD and controls using the vegan R package
(https://github.com/vegandevs/vegan). Beta diversity (between-sample
diversity) was calculated by weighted and unweighted UniFrac and Bray
Curtis distances, as represented by two-dimensional principal coordinates
analysis (PCoA) plots, and compared between groups by permutation
multivariate analysis of variance (PERMANOVA) using the phyloseq R
package [43]. The local contribution to beta diversity (LCBD) test was
applied to evaluate the contribution of each sample to the diversity
between the groups using the adespatial R package (https://github.com/
sdray/adespatial). Canonical correspondence analysis (CCA), a multivariate
constrained ordination method, on rarefied OTUs was performed and
significance regarding the microbial community composition between
groups was assessed by permutational multivariate analysis of variance
(ADONIS) using the vegan R package (https://github.com/vegandevs/
vegan).

Differential abundance comparisons between groups were assessed in
taxonomic groups showing an average of normalized counts (baseMean) >
10 using the DESeq2 and randomForest R packages for the classification,
rfUtilities to estimate the significance of the classification and rfPermute to
evaluate the significance of specific taxa, with 1000 permutations. All
comparisons were performed at the phylum, family, and genus levels. Any
unknown taxonomic level was assigned to the next highest known
taxonomic rank.

Genera showing significant differences in relative abundance between
ADHD cases and controls after multiple comparison corrections in DeSeq2
and the random forest comparisons were considered for downstream
analyses. Multiple logistic regression models were applied to test the
association between ADHD and all selected genera while adjusting for age,
sex, and body mass index (BMI). Adjusted Pseudo-R2 was calculated with
the McFaddenAdj method and the DescTools R package (https://github.
com/AndriSignorell/DescTools); sensitivity and specificity were calculated
with the caret R package (https://github.com/topepo/caret/). A likelihood
ratio test with the Imtest R package (https://cran.r-project.org/web/
packages/Imtest/) was employed to assess whether the inclusion of
selected genera in the multiple logistic regression model fits the data
significantly better than the model including only age, sex, and BML. In the
first model, we considered affectation status as dependent variable and
age, sex and BMI as independent variables (ADHD — age + sex + BMI); in
the second model, we included selected taxa as independent variables
(ADHD ~— age + sex + BMI+ Megamonas + Anaerotaenia + Gracilibacter
+ Dialister). Spearman correlation tests were used to assess correlations
between selected genera, age, BMI, and inattention and hyperactive/
impulsivity subscale scores or total scores of the ADHD rating scale.

RESULTS

Bacterial composition based on 16S rRNA sequencing was
available for 100 adult ADHD cases and 100 controls. No
differences in intestinal microbial alpha diversity (microbial
community richness and evenness) were found between ADHD
cases and controls when measured by three different indices
(Richness, Simpson, or Shannon indices; Supplementary Fig. 1).
Beta diversity (between-sample community dissimilarity) accord-
ing to weighted and unweighted UniFrac distances as well as the
Bray-Curtis dissimilarity index showed no differences in the
microbial composition between the groups (PERMANOVA P-
value>0.05), with no evidence of separate clustering in PCoA
representations (Supplementary Fig. 2). No significant differences
in the gut microbiota composition between the ADHD and control
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groups were observed in the CCA either (ADONIS P-value = 0.31;
Supplementary Fig. 3).

Compositional analysis of samples revealed that Bacteroidetes,
Firmicutes, Proteobacteria, Actinobacteria, and Verrucomicrobia
were the most abundant phyla in our sample of 200 subjects
(Supplementary Table 3), with no significant differences in relative
abundance detected for any of them. When we explored the
relative abundance of specific microbial taxa, however, we found
evidence that several taxa differed significantly between ADHD
cases and controls by two different methods, DeSeq2 and/or
random forests: 1 phylum, 7 families, and 17 genera showed
differential abundance (Prpgr < 0,05; DESeq2: 1 phylum, 5 families,
and 15 genera; random forests: 5 families and 6 genera; Table 1,
Fig. 1, Supplementary Table 4 and Supplementary Fig. 4). When
combining the results of both methods, we found overlap for
three families (Gracilibacteraceae, Selenomonadaceae, and Veillo-
nellaceae) and four genera (Anaerotaenia, Dialister, Gracilibacter,
and Megamonas) (Table 1 and Fig. 1).

For downstream analysis, we focused on genera that differed in
relative abundance between ADHD and controls with both of the
methods described above (Anaerotaenia, Dialister, Gracilibacter,
and Megamonas). When we assessed whether they correlated with
each other, we found a moderate correlation between Anaero-
taenia and Gracilibacter (r=0.35; P-value =3.6e—04), a weak
correlation between Angerotaenia and Megamonas (r = —0.24; P-
value = 0.018), and no correlation between the others (Fig. 2). A
model including the four genera and the covariates age, sex, and
BMI explained 15% of the variance in ADHD, with significant
improvement of the model which included only the covariates (P-
value = 8.2e—07), which explained 5.9% of the variance (Supple-
mentary Table 5). The microbial signature achieved an overall
sensitivity of 74% and a specificity of 71% for the detection of
individuals with ADHD versus healthy controls. We also assessed
whether the selected genera correlated with age, BMI, or ADHD
rating scale scores but found no evidence of correlation between
relative abundance and any of the selected traits (Fig. 2).

DISCUSSION

To clarify the relationship between ADHD and the gut micro-
biome, we performed the largest study to date and compared the
microbial composition between 100 medication-naive adults with
ADHD and 100 sex-matched unrelated healthy subjects. We found
evidence that ADHD subjects exhibit differences in the relative
abundance of several microbial taxa. At the family level, our data
support a lower relative abundance of Gracilibacteraceae and
higher levels of Selenomonadaceae and Veillonellaceae in adults
with ADHD. In addition, the ADHD group showed higher levels of
Dialister and Megamonas and lower abundances of Anaerotaenia
and Gracilibacter at the genus level.

These results are in line with recent studies supporting gut
microbiome differences in neurodevelopmental disorders.
Although the mechanistic explanation for these associations
remains unknown, a positive correlation between Dialister
abundance and activity level has been described in toddlers
[44]. Additionally, decreased levels of Dialister were found in
autism spectrum disorder (ASD) patients [45,46,] or in treatment-
naive children with ADHD [27] compared with healthy controls
and in ADHD individuals on medication compared with non-
medicated individuals [24]. Furthermore, multiple taxonomic
groups that differed in relative abundance between ADHD cases
and controls in the present study, including Selenomonadaceae,
Veillonellaceae, and Megamonas, have previously been associated
with other psychiatric conditions that often coexist with ADHD,
such as ASD or depression [27, 47-51]. Given that the ADHD
subjects in this study displayed no comorbid psychiatric disorders,
we cannot discount a possible pleotropic effect of these
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Table 1.

Relative abundance (% mean (SD)

ADHD
Phylum Candidatus Melainabacteria 0.072 (0.24)
Family Eubacteriaceae 2.105 (1.51)
Gracilibacteraceae 0,503 (0.85)
Lactobacillaceae 0.965 (1.52)
Peptostreptococcaceae 0,327 (0.55)
Selenomonadaceae 0,387 (1.14)
Veillonellaceae 1,658 (1.90)
Verrucomicrobiaceae 0,036 (0.11)
Genus Acetivibrio 0.021 (0.05)
Alloprevotella 0.380 (1.63)
Anaerotaenia 0.072 (0.13)
Dialister 1.377 (1.76)
Flintibacter 1.967 (1.46)
Fucophilus 0.036 (0.11)
Gracilibacter 0.509 (0.86)
Herbinix 0.024 (0.05)
Leclercia 0.084 (0.42)
Megamonas 0.323 (1.04)
Megasphaera 0.209 (0.72)
Odoribacter 0.547 (0.34)
Parasutterella 0.751 (1.30)
Porphyromonas 0.129 (0.52)
Prevotellamassilia 0.356 (1.82)
Romboutsia 0.228 (0.52)
Vampirovibrio 0.073 (0.24)

Summary of differential abundance results between ADHD patients and controls considering Deseq2 and random forest results.

Adjusted P-value

Controls DEseq2 Random forests
0.22 (0.76) 3.1E-03 0.11
2.269 (1.35) 0.81 0.02
0,949 (1.49) 0.035 0.05
1.077 (1.24) 0.93 0.02
0,199 (0.23) 0.016 0.27
0,071 (0.26) 3.5E-07 0.05
0,837 (1.43) 0.012 9.9E-03
0,063 (0.17) 0.012 0.73
0.056 (0.17) 6.1E—03 0.099
0.182 (0.97) 4.4E-04 0.21
0.248 (0.49) 2.3E-09 9.9E-03
0.649 (1.26) 0.041 0.02
1.588 (1.37) 0.26 0.045
0.064 (0.17) 0.012 0.42
0.958 (1.50) 0.040 9.9E-03
0.042 (0.08) 0.024 0.24
0.025 (0.12) 9.8E—-03 0.30
0.029 (0.20) 3.2E-29 9.9E-03
0.091 (0.42) 7.5E-20 0.80
0.751 (0.83) 0.039 0.14
1.588 (1.37) 0.70 9.9E-03
0.110 (0.55) 6.1E—03 0.36
0.340 (1.69) 6.4E—15 0.31
0.126 (0.16) 9.8E-03 0.93
0.225 (0.77) 2.6E-03 0.38

Differentially abundant taxa identified by both methods, DEseq2 and random forests, are shown in bold.

taxonomic groups and that their relative abundance may explain,
in part, ADHD phenotypic variability.

Although previous gut microbiome analyses on ADHD have
mainly focused on pediatric samples [20,23, 26-28] and there is
limited research on adults [22,24,], we focused our study on
adulthood ADHD. Nevertheless, given that the gut microbiome
evolves throughout the lifespan [16,52,53,], whether early-life
exposure to environmental risk factors contributes to the gut
microbiota and impacts neurodevelopment and mental health
outcomes later in life remain to be investigated. Further
longitudinal studies are warranted to provide additional informa-
tion on the role of the microbiome in ADHD symptom trajectories
from childhood to adulthood as well as mental health outcomes
and comorbid profiles across the lifespan.

We did not detect substantial changes in alpha or beta diversity
between ADHD cases and controls. The high heterogeneity in
terms of age, sample size, sex, clinical characteristics, and type of
controls may explain nonreplicable results and discrepancies
between studies. We sex-matched ADHD cases and controls and
restricted the clinical sample to ADHD medication-naive adult
subjects, which is a major strength of our study design that may
allow us to identify an imbalance in the gut microbiome
composition that might be neglected by broader study designs.
In addition, the sample sizes of previous studies on ADHD, were
relatively small; although our study may also have limited
statistical power to estimate the magnitude of the differences
identified in microbial relative abundance, we assessed the largest
sample size considered thus far. The results, however, need to be
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interpreted with caution given that we selected genera of interest
and estimated the variance in ADHD explained by these taxa as
well as the sensitivity and specificity of the regression model using
the same dataset, which may have led to overfitting and further
support the use of independent datasets to obtain more accurate
estimates.

Microbiome composition is strongly influenced by environ-
mental factors such as diet, overall health status, and medication
use [52, 54-56]. The participants in this study were not on
medication and had not used antibiotics or probiotics in the three
months before sample collection, which may not explain the
differences detected between ADHD cases and controls. None-
theless, no other environmental exposures, including smoking,
stress, dietary habits, or other lifestyle information, that may have
an effect on microbiota composition were considered. For
instance, animal models and population-based cross-sectional
studies support an effect of nicotine or smoking status on the gut
microbiome composition and the fecal metabolome [57-59]. In
addition to environmental factors, consistent evidence suggests
that the host genetic background impacts the composition of gut
microbial communities and that genetic factors influence micro-
biome composition and explain a significant proportion of the
variation in the gut microbiome [60-63]. Hence, further integrative
studies considering multiple data sources (i.e., larger sample sizes),
including environmental factors, human genetic variation, and gut
microbial composition, are warranted to provide deeper insight
into the mechanisms underlying the relationship between the
microbiota, host genetics, and individual habits, and behavior, as
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Fig. 2 Spearman correlation between the relative abundance of
four bacterial genera (Anaerotaenia, Dialister, Gracilibacter, and
Megamonas) and age, BMI, and ADHD rating scale scores. Colored
correlations are statistically significant (P-value < 0.05), with positive
and negative correlations in blue and red, respectively. Inattention:
score of the inattention subscale of the ADHD rating scale;
hyperactivity_impulsivity: score of the hyperactive/impulsivity sub-
scale of the ADHD rating scale; total: total scores of the ADHD

rating scale.
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well as their roles in ADHD and other neurodevelopmental
disorders across the lifespan.
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