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ABSTRACT

Introduction: While continuous glucose mon-
itoring (CGM) has been shown to decrease both
hyper- and hypoglycemia in insulin-treated
diabetes, its value in non-insulin-treated type 2
diabetes (T2D) and prediabetes is unclear.
Studies examining the reduction in hyper-
glycemia with the use of CGM in non-insulin-
treated T2D are limited.
Methods: We investigated the potential benefit
of CGM combined with a mobile app that links
each individual’s glucose tracing to meal com-
position, heart rate, and physical activity in a
cohort of 1022 individuals, ranging from non-
diabetic to non-insulin-treated T2D, spanning a
wide range of demographic, geographic, and
socioeconomic characteristics. The primary
endpoint was the change in time in range (TIR),
defined as 54–140 mg/dL for healthy and

prediabetes, and 54–180 mg/dL for T2D, from
the beginning to end of a 10-day period of use
of the Freestyle Libre CGM. Logged food intake,
physical activity, continuous glucose, and heart
rate data were captured by a smartphone-based
app that continuously provided feedback to
participants, overlaying daily glucose patterns
with activity and food intake, including
macronutrient breakdown, glycemic load (GL),
and glycemic index (GI).
Results: A total of 665 participants meeting
eligibility and data requirements were included
in the final analysis. Among self-reported non-
diabetic participants, CGM identified glucose
excursions in the diabetic range among 15% of
healthy and 36% of those with prediabetes. In
the group as a whole, TIR improved signifi-
cantly (p\0.001). Among the 51.4% of partic-
ipants who improved, TIR increased by an
average of 6.4% (p\0.001). Of those with poor
baseline TIR, defined as TIR below comparable
A1c thresholds for T2D and prediabetes, 58.3%
of T2D and 91.7% of healthy/prediabetes par-
ticipants improved their TIR by an average of
22.7% and 23.2%, respectively. Predictors of
improved response included no prior diagnosis
of T2D and lower BMI.
Conclusions: These results indicate that 10-day
use of CGM as a part of multimodal data col-
lection, with synthesis and feedback to partici-
pants provided by a mobile health app, can
significantly reduce hyperglycemia in non-in-
sulin-treated individuals, including those with
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early stages of glucose dysregulation.Key-
words: Continuous glucose monitor; Diabetes;
Digital health; Prediabetes; Time in range

Key Summary Points

The clinical benefit of continuous glucose
monitoring (CGM) in non-insulin-treated
type 2 diabetes (T2D) and those with
earlier stages of glucose dysregulation is
controversial and relatively unstudied.

In the largest study to date on the above
population, we showed that in 665
individuals with non-insulin-treated T2D,
prediabetes, or no history of diabetes,
10-day use of the Freestyle Libre CGM and
the Sugar AI mobile app that integrates
CGM data with food logging/physical
activity and provides continuous feedback
to users, TIR improved significantly in
both T2D and those without diabetes.
Among those with low baseline TIR,
improvement was 22.7% and 23.2%,
respectively, for T2D and nondiabetic
individuals.

Individuals without a prior diagnosis of
T2D and lower body mass index (BMI)
showed the greatest response to the
intervention.

Results from this study indicate that short-
term use of CGM along with exposure to
activity and food insights can significantly
improve TIR in participants with non-
insulin-treated T2D and earlier stages of
glucose dysregulation.

DIGITAL FEATURES

This article is published with digital features,
including a summary slide, to facilitate under-
standing of the article. To view digital features
for this article go to https://doi.org/10.6084/
m9.figshare.14561931.

INTRODUCTION

Type 2 diabetes (T2D) is a growing problem
worldwide and the prevalence continues to
increase. Presently, 34.2 million US adults have
T2D and another 88 million have prediabetes,
the majority of whom are unaware of their
diagnosis [1]. Of those with prediabetes, 70%
will convert to T2D during their lifetime [2]. As
demonstrated in the Diabetes Prevention Pro-
gram (DPP), lifestyle modifications, including
7% loss of initial body weight and 150 min of
exercise per week, are highly effective in pre-
venting transition to T2D in high-risk individ-
uals [3] and lower hemoglobin A1c in
individuals with T2D [4]. The success of this
intervention, however, is labor-intensive,
requiring individual case managers, frequent
contact with participants, a 16-session core
curriculum, supervised physical activity session,
and extensive network of training, feedback,
and support [5]. These labor-intensive require-
ments limit the reach and efficacy of programs.
Indeed, a meta-analysis of 28 National DPP
translational interventions showed an average
weight loss of only 4% with attrition rates as
high as 50% [6]. Technology-enabled diabetes
self-management approaches have gained trac-
tion as supplements or alternatives to tradi-
tional diabetes self-management models, with
demonstrated improvement in HbA1c [7].
These technologies provide a platform for the
development of personalized, patient-centered
interventions that integrate patient-generated
health data, tailored education, and individu-
alized feedback, which are effective behavior
interventions that extend access and feasibility
[8, 9]. Thus, new strategies that harness the
benefits of technology aimed at preventing and/
or treating T2D have the potential to address
gaps in current approaches to lifestyle inter-
ventions and to do so at scale.

Continuing glucose monitoring (CGM) has
demonstrated efficacy in improving HbA1c and
reducing hypoglycemia in patients with type 1
diabetes and insulin-treated T2D [10–17]. Flash
glucose monitoring (FGM) enables patients to
gain immediate information about current glu-
cose and trend (upward or downward) as well as
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a continuous curve showing glucose pattern
after swiping a Bluetooth receiver across an
implanted sensor. Real-time CGM (rtCGM) does
not require a swipe, and has the added benefit
of alarms set to alert patients to highs and lows.
Immediate feedback on glucose patterns from
both forms of CGM conveys a wealth of infor-
mation to the user about the impact of specific
foods, exercise, sleep, stress, and combinations
thereof, with potential for expanded use in non-
insulin-treated T2D and prediabetes as a tool to
support lifestyle changes aimed at reducing
hyperglycemia [13, 18]. Few studies have
addressed this. Three published studies have
demonstrated a benefit of rtCGM in non-in-
sulin-treated T2D in facilitating behavior
change, weight reduction, increased physical
activity, decreased calorie, carbohydrate, and/or
high glycemic index food consumption,
increased fiber intake, and significant reduc-
tions in HbA1c [19–21], and only one published
study in non-insulin-treated T2D showed ben-
efit from flash CGM in reducing HbA1c [22].
Thus, more research is warranted to explore the
utility of CGM in facilitating healthy lifestyle
changes in early-stage diabetes/prediabetes. The
Sugar Challenge Study was designed to examine
whether a 10-day use of CGM together with a
mobile app (Sugar AI), which captures dietary
and physical activity data, integrates these with
glucose patterns, and provides continuous
feedback, improves hyperglycemia.

We performed an observational study in a
cohort of 1022 individuals, spanning a wide
range of demographic, geographic, socioeco-
nomic backgrounds, and ranging from normo-
glycemic to non-insulin-treated T2D, in which
CGM was combined with a mobile app (Sugar
AI) to provide feedback on each individual’s
glucose patterns, along with food composition,
heart rate, and physical activity. Time in range
(TIR), a relatively new and validated measure of
hyperglycemia [14, 23], was used to quantify
short-term benefits in daylong glycemia, and
clinical factors that predicted improvement in
TIR were identified. We found a significant
improvement in TIR not only in individuals
with T2D but also in healthy individuals with
earlier stages of glucose dysregulation (predia-
betes and normoglycemia who on CGM

exhibited postprandial excursions outside the
normal range). This is the first study to
demonstrate a significant reduction in hyper-
glycemia as a result of CGM use, and the largest
to demonstrate a significant reduction in
hyperglycemia in non-insulin-treated T2D. It is
the first to evaluate the integration of CGM
with data gathered by a mobile app that tracks
lifestyle factors such as food and physical
activity, and provides users with continuous
integrated data that may enhance behavior
modification.

METHODS

Study Overview

The Sugar Challenge Study was designed to
ascertain whether the use of the Sugar AI app
along with CGM could reduce hyperglycemia in
individuals with early stages of glucose dysreg-
ulation who might benefit from lifestyle chan-
ges. The Sugar AI app allows participants to log
their food, water, medication, and physical
activity. Glycemic index (GI), load (GL), and
macronutrients for each logged food were cal-
culated and presented information back to the
participants in addition to daily summaries of
nutrition and activity patterns in relation to
glycemic excursions. The Sugar AI app did not
provide specific dietary or food recommenda-
tions. This prospective, unblinded observa-
tional trial included volunteers from 47 US
states plus the District of Columbia, spanned a
wide demographic range, and included a wide
range of glycemia, from healthy individuals to
those with prediabetes or non-insulin-treated
T2D (Table 1). Participants were provided a
heart rate monitoring (HRM) device and Abbott
Libre CGM and were instructed to wear them
for 10 consecutive days while scanning their
sensor with Abbott’s LibreLink app at least once
every 8 h to maintain signal capture. They were
also asked to log their physical activity, food,
medication, and water consumption. Partici-
pants were subsequently able to visualize glu-
cose curves, along with nutritional and activity
summaries (Fig. 1), on the Sugar AI app on their
mobile device. The Sugar AI app was designed
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by January AI specifically for this study. The
primary endpoint of the study was a compar-
ison of glucose TIR after 10 days of use as com-
pared with baseline.

Participants

Recruitment for the study occurred via social
media channels and online classified ads, tar-
geting individuals from diverse geographic,
socioeconomic, age, and education levels.
Respondents were required to provide written
informed consent and complete an online
screening demographic and health question-
naire. Eligible participants could be healthy or
have a diagnosis of prediabetes or non-insulin-
dependent T2D (Table 1). Eligible participants
were required to wear a HRM device
20–24 h/day, and flash CGM for 10 consecu-
tive days, provide body weight at baseline, and

agree to comprehensive logging of food intake,
physical activity, medication, and water con-
sumption for 10 consecutive days using the
Sugar AI app. Individuals who met the online
eligibility criteria were further screened by
clinical coordinators via telephone who con-
firmed eligibility and completed enrollment.
Individuals were excluded from the study if
they did not meet the criteria described above
or if any of the following criteria were met: use
of vitamin C supplements in excess of 200% of
the US recommended daily allowance at least
14 days prior to starting the trial; allergy to skin
adhesives used in the trial; women who were
pregnant, lactating, had given birth in the past
6 months, or were planning to get pregnant in
the next 6 months; and individuals who were
taking any of the following medications: insu-
lin, oral hypoglycemic medications (sulfony-
lureas, meglitinides), progesterone, atypical

Table 1 Breakdown of subjects according to age, sex, race, geographic location, BMI, and fasting glucose in the total cohort
and subgroups defined as healthy, prediabetes, and type 2 diabetes based on their self-claimed classification

Characteristic Healthy
(n = 448)

Prediabetes
(n = 25)

Type 2 diabetes
(n = 192)

Entire group
(n = 665)

Geographic region 51 3 25 79

Northeast 97 5 89 191

South Midwest 83 4 48 135

West 93 12 29 134

Age (years) 34.6 ± 9 35.8 ± 7.7 43.1 ± 8.8 37.7 ± 9.7

Sex (F/M) 202/125 15/10 137/55 354/190

Race 215 11 139 365

White/Caucasian 27 5 28 60

Black American 30 5 19 54

Asian American 38 2 2 42

Indian or Alaska Native 2 0 1 3

Native Hawaiian/Other Pacific

Islander

2 1 0 3

Other 13 1 3 17

BMI (kg/m2) 28.5 ± 6.7 34.5 ± 5.4 39.2 ± 8.5 32.5 ± 8.9

Fasting glucose 76.6 ± 16.1 79.9 ± 14.9 115.1 ± 47.3 87.8 ± 33.6
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antipsychotics, oral corticosteroids, triphasic
oral contraceptives, blood thinners, deemed
unfit for participation by the study coordinator,
and allergy to nuts. Of the 192 people with
diabetes 152 took medication; of these, 97 were
on metformin and the rest were on other med-
ications. Participants that completed the Sugar
Challenge Study as outlined were remunerated
with a US $50 Amazon gift card.

Because not all subjects who completed the
10-day study wore the CGM continuously as
instructed, for the purposes of analysis, it was
predetermined that only those who wore the
CGM for at least 9 days with at least 33% daily
coverage were included in the final analysis. In
accordance with these criteria, 665 subjects out
of 1022 enrolled were included in this study.

Intervention

Enrolled participants were mailed an Abbott
Freestyle Libre flash CGM (henceforth referred
to as CGM) a MiBand 3 or Garmin watch to
record heart rate (HRM), and instructed to

download the Sugar AI app through which they
could search a large food database of over
15 million foods and log all food, physical
activity, water, and medications taken. Partici-
pants were provided with two nutritional bars
and a dextrose solution (TRUEplus, or CVS
Health Glucose Shot; 15 g) to generate glycemic
responses to standardized nutrient challenges.
The Sugar AI food database contains nutritional
information for each logged food. GI and GL
values calculated through January AI technol-
ogy were also available for each food in the
database. Participants were guided to scan their
CGM using the Abbott LibreLink app which
retrieves up to 8 h of CGM values. Aside from
the standard glucose drink (day 3) and the two
nutritional bars, participants determined their
own dietary and activity patterns but were
required to log their food, water, and physical
activity for the duration of the study. No dietary
recommendations were made while enrolled in
the Sugar Challenge Study.

GI, GL, total calories, macronutrient con-
tent, along with heart rate, and water con-
sumption were displayed to the participants via

Fig. 1 Study design, Sugar AI app, and subject selection.
a Ten-day study design to evaluate improvement in time in
range (TIR) as a result of continuous glucose monitoring
(CGM) and a mobile app (Sugar AI) that integrates
glucose curves with eating and physical activity patterns in
healthy nondiabetics and those with prediabetes or non-

insulin-treated type 2 diabetes. b Snapshot of the Sugar AI
app designed for this trial. Users visualize their concurrent
food and activity logs on top of their CGM and heart rate
signals. c Diagram showing the number of participants
recruited and the number of participants that were
included in this study
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a tracker feature that overlays multiple data
components on the CGM measurements and
heart rate signals (Fig. 1b). The overlay of
nutritional components of logged foods on
CGM glucose curves was presented to the sub-
jects at the time of logging. To encourage par-
ticipant engagement, a point system was
devised, in which participants were encouraged
to attain at least 10,000 points by logging food,
water, medication, and physical activity (Sup-
plementary Table S1).

Continuous Glucose Monitoring

The Abbott Freestyle Libre was provided at no
cost to participants who were instructed to
apply a 10-day sensor to the back of the arm
following the manufacturer’s written instruc-
tions and demonstration video. Clinical coor-
dinators were available by phone, video
conferencing, or in-person to troubleshoot
CGM sensor placement for those who had dif-
ficulties. The small CGM subcutaneous sensor
measures interstitial glucose values every
15 min which can be transmitted using near-
field communications. Participants obtained
their glucose values after scanning for up to 8 h
of data (i.e., Flash CGM). No alarms were used.

Structured Food Challenges

During the 10 days of monitoring, all subjects
were asked to consume three standardized
nutrient challenges in order to identify patterns
of glycemia that were not dependent on vari-
ability in nutrients consumed:
1. Oral glucose challenge: on day 3 while

wearing the CGM, after fasting for at least
10 h, participants (n = 328) drank over
5 min three 15-g portions of dextrose solu-
tion (TRUEplus or CVS Health Glucose
Shot), followed by 2 h of inactivity to
obtain a standardized glycemic response
pattern via CGM.

2. Mixed meal challenges: on day 5 of the
challenge after fasting for at least 10 h,
participants (n = 212) consumed a high-
protein bar (Garden of Life; S’mores) with
the following nutritional content: 200 cal

per serving [total carbohydrates (25 g), fiber
(14 g), protein (14 g), and total fat (8 g)]
followed by 2 h of inactivity to obtain
standardized glycemic response pattern via
CGM. On day 7 of the challenge after
fasting for at least 10 h, participants
(n = 286) consumed a Kind bar (Dark Cho-
colate Nuts & Sea Salt) with the following
nutritional content: 180 cal per serving [to-
tal carbohydrates (16 g), fiber (7 g), protein
(6 g), and total fat (15 g)].

Assessment of Time in Range

As a result of potential inaccuracy of CGM
during the first and last 24 h of sensor use, we
defined the change in percentage TIR dur-
ing days 8–9 relative to the percentage TIR at
baseline which was defined as days 2–3 (ex-
cluding day 3 for those who took the glucose
shot on day 3) of the 10-day study period. TIR
was defined as the percentage of time glucose
measurements were 54–140 mg/dL (3.0–-
7.8 mmol/L) for healthy and prediabetes and
54–180 mg/dL (3.0–10.0 mmol/L) for diabetes.
We used 54 mg/dL as the lower limit for TIR as
healthy individuals can have nonpathologic
glucose values below 70 mg/dL. The American
Diabetes Association has defined 54 mg/dL [24]
as clinically significant hypoglycemia and this
limit is used to diagnose hypoglycemic disor-
ders in patients who are not taking glucose-
lowering medications [24]. Thus, we chose this
lower limit so as to prevent overclassification of
hypoglycemia in nondiabetic individuals.
Upper limits of 140 mg/dL and 180 mg/dL were
chosen for healthy/prediabetes and T2D,
respectively.

Defining the Group with Poor TIR
at Baseline

Because our analysis was to determine whether
the use of CGM could improve TIR, we con-
ducted a secondary analysis on individuals with
suboptimal glucose patterns defined as follows:
for healthy and those with prediabetes we used
TIR of less than 83%, which corresponds to A1c
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of less than 5.7%, and for those with T2D we
used TIR of less than 72%, which corresponds to
A1c of less than 6.5% [25, 26].

Responders and Non-Responders

Self-reported demographic and clinical charac-
teristics of the best and worst responders were
compared to determine which participant
might be the best candidate for use of CGM plus
Sugar AI app. Responders were defined as the
top quartile of change in TIR (from baseline to
end of study), and non-responders were defined
as the bottom quartile of change in TIR within
the subgroups with suboptimal baseline glucose
profiles as defined above.

Statistical Analysis

The TIR for the last 2 days vs TIR for the first
2 days of complete data capture was analyzed
via the nonparametric Wilcoxon signed-rank
test [27, 28]. Mann–Whitney rank test [29] was
used to compare the continuous variables (e.g.,
age, BMI) between the good responders and bad
responders. Comparisons were considered sta-
tistically significant with p\0.05. To account
for the statistical analyses of multiple indepen-
dent variables in this study, the Ben-
jamini–Hochberg procedure (BH) was employed
to control the false discovery rate (FDR) [30, 31]
at the level of 0.05. These analyses were per-
formed on the subset of participants who pro-
vided the required information detailed in
Table 1.

Compliance with Ethics Guidelines

All named authors meet the International
Committee of Medical Journal Editors (ICMJE)
criteria for authorship for this article, take
responsibility for the integrity of the work as a
whole, and have given their approval for this
version to be published. This study was per-
formed in accordance with the Helsinki Decla-
ration of 1964 and its later amendments. The
study was approved by WCG New England IRB
120190429.

RESULTS

The Sugar Challenge Study Cohort

A total of 22,788 subjects responded to public
advertisements and were assessed for eligibility
(Fig. 1c). Of these, 1022 individuals who self-
reported as healthy (without diabetes) or were
diagnosed with prediabetes or non-insulin-de-
pendent T2D were enrolled in the study. The
final study cohort included 665 participants
who met the pre-designated data quality
requirements, including nine or more days of
complete CGM data (Fig. 1c; see ‘‘Methods’’). Of
these 665 subjects, 448 were self-reported as
healthy (without diabetes), 25 with prediabetes,
and 192 with T2D (Table 1). Our diverse subject
pool included women (n = 354), men (n = 190),
and 121 with unreported sex, with a median age
of 36 years old, and a median BMI of 30.9 kg/
m2. Geographic, ethnicity, and other informa-
tion are summarized in Table 1. On average,
participants logged 10.7 food and activity
entries per day, 50% more than required by the
study criteria. In total, 25 million data points
were captured across participant logs, heart rate,
and continuously measured glucose data.

Many Healthy Participants Exhibit
Glucose Dysregulation

We first examined the fasting glucose levels of
the participants using the CGM-derived data.
Using American Diabetes Association (ADA)
definitions of greater than 126 mg/dL and
100–125 mg/dL to define T2D and prediabetes,
respectively, we found that 5.8% of the self-re-
ported healthy participants had fasting glucose
measurements consistent with prediabetes, and
1.2% consistent with T2D (Fig. 2a). These results
confirm prior studies showing that underdiag-
nosis of T2D and prediabetes is common
(Table 2), similar to a previous report [32].
Analysis of the daylong CGM data revealed that
many participants who self-reported as healthy
exhibited postprandial glucose dysregulation
(an example is shown in Fig. 2b). According to
this analysis, 15% of healthy, 36% of those with
prediabetes, and 81% of those with T2D
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demonstrated CGM values of 200 mg/dL or
higher at least once. Classification of individu-
als using the glycemic signature, or ‘‘glucotype’’
scale defined previously (which groups indi-
viduals on the basis of their frequency of glu-
cose levels in low, medium, and high glycemic

classes) [32], revealed 35.7% were low gluco-
type, 34.7% moderate, and 28.5% severe
(Fig. 2c). Interestingly, 8% of individuals with
self-reported T2D were in the low glucotype and
some (15%) of these were not on medication,

Fig. 2 Frequency of glucose dysregulation in self-claimed
healthy participants. a Classification as healthy, predia-
betes, and type 2 diabetes based on continuous glucose
monitor values (vertical axis) in each self-claimed classifi-
cation group (horizontal axis). b Variability in glucose
responses to a 45-g oral glucose drink administered after an
overnight fast in two healthy participants. c Heatmap
showing the fraction of time individuals (shown in rows)
spent in each of the glycemic signature classes, or
‘‘glucotype’’ (low, moderate, and high glucose values) as

defined by Hall et al. [32]. The heat map intensity
indicates the fraction of time individuals spent in each
glycemic signature class with 1 being 100% of the time.
Rows of individuals are arranged according to hierarchical
clustering. All participants (n = 665) were used to create
the heatmap and the left column ‘‘classification’’ shows the
self-claimed classification group. d Heatmap showing the
fraction of time T2D participants spent in each of the
glycemic classes. The column on the left shows the T2Ds
according to medication use

Table 2 Using January AI fasting glucose measurement users are classified as healthy, prediabetes, or T2D

Self-reported class Healthy Prediabetes Type 2 diabetes

Healthy 92.8% 5.8% 1.2%

Prediabetes 85.1% 14.8%

Type 2 diabetes 100%

This table specifies the percentage of users that were reclassified using fasting glucose metrics
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indicating that their glucose was well controlled
(Fig. 2d).

Improvement of Time in Range
over 10 Days

We examined the effect of the CGM used with
the Sugar AI app on glucose control across all
study participants. On average, TIR improved
significantly among the 665 participants inclu-
ded in this study as shown in Fig. 3a. Specifi-
cally, 51.4% demonstrated improvement in the
TIR by an average of 6.4% (p\0.001, Wilcoxon

signed-rank test). A representative example
shown in Fig. 3b. Importantly, individuals in all
classes of glucose dysregulation improved their
TIR significantly: those with T2D (Fig. 3c) as
well as healthy nondiabetic and those with
prediabetes (Fig. 3d).

The Group with Poor TIR at Baseline

In order to focus on the group that might ben-
efit most from improvement in glucose control,
we analyzed the 84 participants including those
with T2D (n = 60) as well as those who were

Fig. 3 Time in range (TIR) improvement across all
cohorts. a Histogram of number of participants within
each TIR bin over the first 2 days (days 2–3: day 1
excluded for potential CGM inaccuracy) compared to TIR
over the last 2 days (days 8–9: (day 10 excluded for
potential CGM inaccuracy) of the Sugar Challenge Study.
TIR improved significantly overall. b An example of the
first 2 days (top panel) compared to the last 2 days
(bottom panel) of CGM data of a T2D participant on

metformin. c Histogram of T2D participants within each
TIR bin over days 2–3 compared to TIR over days 8–9 of
the Sugar Challenge Study, showing significant improve-
ment. d Histogram of healthy/prediabetes participants
within each TIR bin over days 2–3 compared to TIR
over days 8–9 of the Sugar Challenge Study, showing
significant improvement
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healthy or self-classified as prediabetes (n = 24)
who exhibited suboptimal TIR at the study
onset, chosen as above ( less than 83% TIR for
healthy and those with prediabetes; 72% for
those with T2D, corresponding to A1c diag-
nostic thresholds of 5.7% and 6.5%, respec-
tively, for these glycemic classifications; see
‘‘Methods’’ [26]). This subgroup was defined as
those with ‘‘poor’’ TIR at baseline and was of
interest as they represent a group that would
potentially benefit from improved TIR.

For those with poor TIR at baseline with
diabetes, 58.3% showed TIR improvement with
an average of 22.7% (Fig. 4a). Among the heal-
thy individuals and those with prediabetes
whose baseline TIR was less than 83%, 91.7%
showed TIR improvement with an average of
23.2% (Fig. 4a). Importantly, for 62.9% and
86.4% of those who improved their TIR (those
with diabetes and healthy/prediabetes, respec-
tively), the amount of improvement was greater

than their own daily TIR variation, indicating
this improvement was not due to daily fluctu-
ations (Fig. 4b). For the poor TIR group, we
found the TIR improved considerably from a
median of 51.2% to 62.8% for all users
(p\ 0.004, Mann–Whitney rank test) (Fig. 4c),
39.6% to 43.2% those with T2D (Fig. 4d), and
69.7% to 99.0% for those who are healthy/pre-
diabetes (Fig. 4e). Figure 4f shows the histogram
of TIR improvements for the entire group; the
median improvement is 11.5%.

Responders vs Nonresponders

We examined the characteristics of the indi-
viduals who improved their TIR in response to
the intervention relative to those that did not.
In the poor TIR group, we analyzed the char-
acteristics of the top 25% who showed the
highest TIR improvement (termed ‘‘good

Fig. 4 The group with poor time in range (TIR) at
baseline. a Percentage of users within each cohort with
TIR improvement. b Percentage of users within each
cohort for whom the 8-day improvement exceeded the
daily TIR variation. c Comparison of days 2–3
and days 8–9 TIR for participants who started below
72% (6.5% HbA1c equivalent for T2D users) and below
83% (5.7% HbA1c equivalent/Healthy users) at baseline.

d Comparison of days 2–3 and days 8–9 TIR for T2D
participants who started below 72% at baseline. e Com-
parison of days 2–3 and days 8–9 TIR for healthy/predi-
abetes participants who started below 83% at baseline.
f Histogram of TIR improvement over T2D participants
who started below 72% and healthy participants who
started below 83% at baseline
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responders’’) relative to the 25% at the bottom
of this group (termed ‘‘poor responders’’). The
TIR improvements for these groups are shown
in Fig. 5 for all (Fig. 5a), those with T2D
(Fig. 5b), and those who are healthy or with
prediabetes (Fig. 5c).

Analysis of these groups revealed that the
good responders for all and healthy/prediabetes
had a lower BMI (p = 0.05 for all and 0.01 for
healthy/prediabetes, Mann–Whitney rank test,
BH-corrected). There was a trend towards
greater response in those who were younger
(p = 0.06 for all and 0.05 for healthy/predia-
betes, Mann–Whitney rank test, BH-corrected).
Lastly, those with classification of prediabetes or
healthy nondiabetic were more likely to
respond.

Effect of Popular Health Bars

We were interested in the effects of common
‘‘health’’ foods on TIR and therefore examined

the effects of two popular nutritional bars, a
Garden of Life protein bar, and a Kind bar, to
determine their effects on glucose excursion. Of
the 212 and 286 participants who consumed a
Garden of Life protein bar and a Kind bar and
adhered to our instructions in terms of fasting
and logging, respectively, we found that those
with normal glycemic control and the small
number with prediabetes generally had excur-
sions below 200 mg/mL. By contrast, 25.9% and
19.2% of those with T2D spiked to greater than
200 mg/mL after consumption of the Garden of
Life bar and Kind bar, respectively, indicating a
strong hyperglycemic reaction. A substantial
fraction (ca. 20%) of participants with T2D on
metformin or other antidiabetic drugs as well as
T2D not on medication exhibited glucose
excursions upon consuming these nutritional
bars (Fig. 6). We also examined the level of
glucose excursion by measuring areas under the
curve (AUC) of glucose signals after bar con-
sumption; 14.4% and 28.8% of those with T2D

Fig. 5 TIR responders vs non-responders. a All partici-
pant probability density function (PDF) of TIR change for
good responders vs poor responders b T2D participant
probability density function (PDF) of TIR change for
good responders vs poor responders. c Healthy/prediabetes
participant probability density function (PDF) of TIR
change for good responders vs poor responders. d (All

participants) Poor responders are older than good respon-
ders. e (Healthy participants) Poor responders are older
than good responders. f (All participants) Poor responders
have higher BMI than good responders. g (Healthy/
prediabetes participants) Poor responders have higher BMI
than good responders
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had AUC of CGM greater than 25 mg/dL after
consumption of Kind and Garden of Life bars,
respectively, figures rarely (0.6% and 0.0%
respectively) observed in healthy individuals
(extended data are shown in Fig. S1 in the
supplementary material). Thus, these nutri-
tional bars may not be suitable for many with
T2D who want to control their glucose excur-
sions, regardless if they are on medication.

DISCUSSION

As CGM becomes increasingly popular not just
among individuals with T1D but ultimately also
for those with T2D, prediabetes, and potentially
even healthy individuals, it is important to
understand its effects and whether its

concurrent use with a digital health app that
links glucose patterns to modifiable behaviors,
such as food choices and physical activity, is
useful for the prevention and management of
T2D. We have demonstrated that a 10-day use
of continuous exposure to glucose levels cap-
tured by a CGM as well as logging of food,
water, and physical activity tracking with data
synthesis, including analysis of food consump-
tion such as total calories, GL, and GI, and
continuous insights provided by the app results
in significant TIR improvement across a large
and heterogeneous cohort from across the USA,
spanning multiple ethnicities and both sexes,
and a wide range of baseline dysglycemia.
Improvement was significant in the group as a
whole, and even more dramatic among those
with suboptimal baseline TIR: a median of

Fig. 6 Effect of standardized meals. a Percentage of
participants within each cohort who spike (i.e.,
CGM[ 200 mg/dL) after consuming glucose shot, Kind
bar, and Garden of Life high-protein Bar. b Correlation
between each participant spike to Kind bar (horizontal
axis) and their spike to Garden of Life bar (vertical axis)
(Pearson correlation) where marker size indicates their
spike to a 45-g glucose drink across healthy, prediabetes,
T2D on metformin, T2D on no antidiabetic medication,
and T2D on multiple medications. c Percentage of

participants within each medication cohort of T2D
population who spike (i.e., CGM[ 200 mg/dL) after
consuming glucose drink (45 g), Kind bar, and Garden of
Life bar. d Correlation between each participant spike to a
45-g glucose drink (horizontal axis) and their spike to
Garden of Life bar (vertical axis) (Pearson correlation)
where marker size indicates their response to Kind bar
across healthy, prediabetes, T2D on metformin, T2D on
no antidiabetic medication, and T2D on multiple
medications
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11.5% for those in the poor groups (Fig. 4a) vs
0.2% for those overall. Furthermore, TIR
improvement was noted not only in T2D but
also in those with normoglycemia or predia-
betes. In fact, those without diabetes were
found to be better responders. Thus, this
approach has the potential not only to improve
hyperglycemia in T2D but also to delay or pre-
vent the onset of T2D in at-risk individuals.

While one might consider that the use of this
approach, like CGM, would be most useful in
the most hyperglycemic patients, our results did
not show this. We demonstrated that individ-
uals who were not self-classified as having T2D
were among the better responders. Other pre-
dictors of good response were young age and
lower BMI. The finding that those with nor-
moglycemia and those with prediabetes
respond well to CGM plus Sugar AI and improve
TIR suggests that we should not limit the use of
this technology to those with T2D, and high-
lights that the application of CGM yields health
benefits in those whose TIR is out of range after
eating, and by quantifying glycemic excursions
and linking them to modifiable dietary and
activity behaviors, significant reductions in
hyperglycemia are possible, and highlights the
potential to prevent the onset of diabetes in a
broader group of individuals.

In line with the above observation, the Sugar
Challenge Study also revealed that when mon-
itored by CGM, many self-reported non-diabetic
participants have frequent glycemic excursions
into the diabetic range: 15% of healthy and 36%
of those with prediabetes demonstrated glucose
values exceeding 200 mg/dL on CGM. These
results extend those of a prior study in which
CGM monitoring demonstrated that 15% and
2% of self-reported ‘‘normal’’ or ‘‘healthy’’ indi-
viduals had postprandial glucose excursions to
levels consistent with prediabetes and/or T2D,
respectively [32]. Thus, many people have glu-
cose dysregulation and are not aware of it. Fur-
thermore, the present study showed that those
who most frequently exhibited glucose excur-
sions outside the upper limit of the desired
range (greater than 180 mg/dL) responded best
to the CGM/Sugar AI app. These data thus
highlight the value of CGM in identifying
individuals with early stages of glucose

dysregulation who might be missed by tradi-
tional testing methods, and who respond well
to an intervention such as that presented that
enables individuals to visualize glycemic
excursions and link them to modifiable behav-
iors such as dietary intake and physical activity.

The results of this study demonstrated the
value of concurrent CGM and food monitoring
in evaluating the impact of foods that individ-
uals might think are healthy. Choosing healthy
foods presents a continual challenge for indi-
viduals with diabetes and even prediabetes.
Foods marketed as healthy may significantly
raise blood glucose levels to levels commonly
observed in T2D. In the current study, a signif-
icant portion of participants (19–25%) with T2D
exhibited glucose excursions to greater than
200 mg/dL after eating popular nutritional
‘‘protein’’ bars. There are large numbers of these
bars commercially available and many are
noted for their high protein and/or fiber con-
tent. Our data indicate that these bars may not
be healthy for many individuals with T2D as
their sugar levels will spike into the diabetes
range. CGM combined with multimodal data
capture, including food logging as presented
here, thus has the potential to reveal unex-
pected effects of foods such as health bars on
glycemic responses.

Our study has several unique strengths. First,
it is the largest study to date on the use of CGM
for the treatment of hyperglycemia. Further-
more, there are few published studies in non-
insulin-treated T2D as well as prediabetes or
healthy individuals. Thus the current results are
the first to demonstrate an impact on individ-
uals in the early stages of glucose dysregulation.
Our subjects were recruited from all over the
USA and thus, unlike other published studies,
are geographically and ethnically diverse.
Lastly, this is the first study to our knowledge to
evaluate the impact of CGM in concert with an
application that enhances the ability of the user
to interpret data relating glucose excursions to
modifiable behaviors. We did not evaluate the
impact of this tool with physician involvement
which might produce even better results. Other
limitations of the current study include the
duration of 10 days. While it is impressive that
significant reductions in hyperglycemia are
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noted within this short timeframe, demonstra-
tion of durability of benefit is needed. We did
not engage a control group because this was an
observational trial. Recruiting subjects across
the country to participate in the non-interven-
tion arm would have been exceedingly difficult
in a study of this size.

Overall, the results of the current study add
novel and important insights into the use of
CGM-related technology to identify at-risk
individuals with postprandial glucose dysregu-
lation, and its potential to improve TIR in these
individuals as well as those with T2D. Specifi-
cally, results demonstrate that a multimodal
approach entailing CGM, food and activity
logging, with data synthesis and continuous
feedback by a smartphone app showing an
overlay of glucose curves on food choices and
physical activity, along with GL/GI and
macronutrient tracking can improve TIR in self-
described healthy, prediabetic, and T2D groups.
It further has the potential to enhance con-
sumer knowledge about healthy food choices by
enabling the consumer to evaluate the impact
on glucose response rather than relying on the
food label and advertising. In addition to
improving glycemic control in patients with
diagnosed T2D, this intervention is potentially
important for the healthy population with the
earliest postprandial glucose dysregulation and
those with prediabetes since they can begin to
modify their diet at an early stage prior to a
diagnosis of T2D and associated symptoms (e.g.,
insulin resistance) and thereby likely delay the
onset of T2D. Thus, the potential benefits of
CGM have not been fully explored, and the
capacity to gather and link data from multiple
modalities may significantly enhance the clini-
cal impact of CGM in a very large population
including those at risk for diabetes.

CONCLUSION

Results from the Sugar Challenge Study indicate
that short-term use of CGM along with Sugar AI
app to guide lifestyle modification can be an
effective approach to improve glucose regula-
tion in healthy, prediabetes, and non-insulin-
treated T2D. By adjusting lifestyle choices that

contribute to the development of hyper-
glycemia, one can potentially alleviate the risks
of microvascular and macrovascular complica-
tions associated with the pathogenesis of T2D.
While many of the study participants achieved
glucose control rapidly, long-term studies are
needed to determine if these beneficial effects
are persistent.
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