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Abstract

Objective: To determine the optimal combination of imaging and biochemical biomarkers to 

predict knee osteoarthritis (OA) progression.

Methods: Nested case-control study from the FNIH OA Biomarkers Consortium of participants 

with Kellgren-Lawrence grade 1–3 and complete biomarker data (n=539 to 550). Cases were 

knees with radiographic and pain progression between 24–48 months from baseline. Radiographic 

progression only was assessed in secondary analyses. Biomarkers (baseline and 24-month 

changes) with p<0.10 in univariate analysis were selected, including MRI (quantitative (Q) 

cartilage thickness and volume; semi-quantitative (SQ) MRI markers; bone shape and area; 

Q meniscal volume), radiographic (trabecular bone texture (TBT)), and serum and/or urine 

biochemical markers. Multivariable logistic regression models were built using three different 

step-wise selection methods (complex vs. parsimonious models).

Results: Among baseline biomarkers, the number of locations affected by osteophytes (SQ), 

Q central medial femoral and central lateral femoral cartilage thickness, patellar bone shape, 

and SQ Hoffa-synovitis predicted progression in most models (C-statistics 0.641–0.671). 24-

month changes in SQ MRI markers (effusion-synovitis, meniscal morphology, and cartilage 

damage), Q central medial femoral cartilage thickness, Q medial tibial cartilage volume, Q lateral 

patellofemoral bone area, horizontal TBT (intercept term), and urine NTX-I predicted progression 

in most models (C-statistics 0.680–0.724). A different combination of imaging and biochemical 

biomarkers (baseline and 24-month change) predicted radiographic progression only, with higher 

C-statistics (0.716–0.832).
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Conclusion: This study highlights the combination of biomarkers with potential prognostic 

utility in OA disease-modifying trials. Properly qualified, these biomarkers could be used to enrich 

future trials with participants likely to progress.
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Introduction

There are currently no pharmacologic therapies approved by regulatory agencies to prevent 

or halt knee osteoarthritis (OA) progression (1), although some therapies have recently 

been found to beneficially modify structural progression (2, 3). Half of knee OA patients 

are estimated to progress to end-stage disease requiring total knee replacement (TKR) 

(4). Improvements in clinical trial design are critically needed to overcome barriers to the 

development of disease-modifying treatments to improve OA care. Biomarkers may enhance 

the success of every phase of the drug development process; they can improve predictability 

by identifying those more likely to benefit, those most likely to incur adverse events, or help 

better understand drug mechanisms and actions (5, 6).

Further refinement and improvement of measures of joint structural change based on 

imaging and/or biochemical markers are needed to identify individuals likely to progress 

radiographically and symptomatically and to overcome the limited responsiveness of 

existing imaging biomarkers (e.g. radiographic joint space width (JSW) loss) (7). To 

overcome these obstacles, the Foundation for the National Institutes of Health (FNIH) 

OA Biomarkers Consortium undertook an extensive phase 1 biomarker validation study 

from 2012 to 2015 using a nested case-control sample of symptomatic and/or radiographic 

knee OA progression within the Osteoarthritis Initiative (OAI) (8). The overarching project 

objective was to establish the prognostic validity of several imaging and biochemical 

biomarkers for knee OA progression. Some results of this study have been published in 

papers focusing on individual biomarker domains (9–13).

As some of these biomarkers may be highly correlated with each other, the specific purpose 

of the current work and ultimate aim of the FNIH phase 1 study was to determine the 

optimal combination of imaging and biochemical biomarkers in multivariable analyses. This 

final step will allow the development of a multifactorial model of biomarkers that best 

predict the risk of OA progression for further validation in the phase 2 of the OA Biomarkers 

Consortium. To this end, we evaluated the association and prognostic validity between 

biomarkers (assessed either at baseline or change over 24 months) with radiographic and 

pain progression over the longer-term (baseline to 48 months) in knees with mild to 

moderate tibiofemoral (TF) OA.
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Methods

Study Design

Six hundred participants in the OAI were selected for the FNIH Biomarkers Consortium 

based on presence of at least one knee with frequent pain and Kellgren Lawrence grade 

(KLG) of 1, 2 or 3 on knee radiograph at baseline (8). Selected participants were required 

to have baseline and 24 months of radiographic minimum medial TF JSW data (measured 

using automated software (14)), knee MRI, stored serum and urine specimens and clinical 

data.

A pre-determined number of index knees were selected based on outcome assessment at 

48 months (one knee per participant) in four mutually exclusive groups: 1) knees with 

both radiographic and pain progression (n=194); 2) knees with radiographic but not pain 

progression (n=103); 3) knees with pain but not radiographic progression (n=103); and 4) 

knees with neither radiographic nor pain progression (n=200).

The main analysis compared knees with both radiographic and pain progression (n=194) 

with all other knees (n=406). We took this approach to ensure the two main OA outcome 

domains (structural and symptomatic) were represented in the main progression definition. 

Radiographic and pain progression were determined as previously described (9). Briefly, 

radiographic progression was defined as minJSW loss of ≥0.7mm and pain progression was 

defined as a persistent (sustained at ≥2 time points) increase of ≥9 points on the WOMAC 

pain subscale (0–100 scale) (8, 15, 16). Knees were excluded if progression criteria were 

met by 12 months to enable the study of change in biomarker before the progression 

definition was met, if radiographic lateral joint space narrowing (JSN) grade 2 or 3 was 

present at baseline (17), or if TKR or THR had occurred prior to 24 months due to possible 

effects on biochemical markers. The complete flow diagram is provided in Figure 1.

Knees and participants were frequency matched for baseline KLG and body mass index 

(BMI) (kg/m2) categories, respectively (10).

Knee MRI Acquisition

MRI acquisition was performed using a 3 Tesla MRI system (Trio, Siemens Healthcare, 

Erlangen, Germany) at the four OAI clinical sites. Additional parameters of the full OAI 

pulse sequence protocol and sequence parameters have been published in detail elsewhere 

(18) (Supplementary Methods).

Biomarkers

Biomarkers included MRI (quantitative (Q) cartilage thickness and volume; semi-

quantitative (SQ) MRI markers; bone shape and area; Q meniscal volume), radiographic 

(trabecular bone texture (TBT)), and serum and/or urine biochemical markers, described 

in detail previously (10–13) (see Supplementary Methods for further details). The 

reproducibility of the biomarker measurements was overall satisfactory and has been 

previously reported (10, 12, 13, 19).
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Semi-Quantitative Analyses—Semi-quantitative scoring of MRI included assessment 

of cartilage and meniscal damage, bone marrow lesions, osteophytes and effusion/synovitis 

using water-sensitive conventional MRI acquisitions (20–23). MRIs were read according to 

the MRI Osteoarthritis Knee Score (MOAKS) system (24) in sequential order and without 

blinding to the time point of acquisition. The readers were blinded to clinical characteristics 

and case/control status.

Quantitative Cartilage Morphometry—Cartilage thickness analysis relied on sagittal 

double-echo steady-state (DESS) imaging (9). Segmentation of the femorotibial cartilage 

surfaces at the medial and lateral tibia and weight-bearing femur were processed as triplets 

by the same reader. The readers were blinded to case/control status and image acquisition 

order.

Bone shape and area—Femur, tibia and patella bone surfaces were automatically 

segmented from DESS-we images using active appearance models (AAM) (10). Two 

measures were used: i) subchondral bone area (tAB) (mm2) on the medial and lateral femur, 

tibia and patella; and, ii) position on 3D shape vectors for the femur, tibia and patella 

(Supplementary Figure 1). Shape measures were normalized to a z-scale with the mean 

non-OA shape represented as +1 and the mean OA shape as −1.

Meniscal volume—Medial and lateral meniscus volumes were automatically quantified 

using the computer-based Knee Imaging Quantification framework (KIQ). The framework 

combines multi-atlas registration and supervised classification to segment the knee tissues 

(25).

Radiographic Trabecular Bone Texture (TBT)—Trabecular bone texture (TBT) is a 

way of representing the state of the vertical and horizontal bone trabeculae. Quantification of 

TBT is a two-step process (Supplementary Methods) using a semi-automated software (12, 

26).

Biochemical markers—Biochemical markers were quantified in both serum and/or urine 

(13). All urinary markers were normalized to urinary creatinine (Cr) concentration. Inter-

assay coefficients of variation (CVs) ranged from 3.0% to 12.3% (13).

Patient and public involvement

Consumers are part of the steering committee guiding the design and ongoing conduct of the 

study. Once published, the results will be disseminated through advocacy groups, twitter and 

other mainstream media to engage with the wider public.

Statistical Analysis

All variables with p<0.10 in univariate analysis were advanced to multivariable modeling. 

In total, 27 and 43 biomarkers were tested in the baseline and change in biomarker over 

24 months analyses, respectively. Models were fit separately for baseline and change in 

biomarkers. For both sets of models, we first considered models with imaging parameters 

only (models 1 to 3) and then added the biochemical markers in a second step (models 4 
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to 6) in order to assess the additional prognostic value of adding biochemical markers to 

imaging parameters only. Three different stepwise selection methods were used to determine 

the best subset of predictors: 1) Akaike Information Criterion (AIC) (models 1 and 4); 2) 

Schwarz Bayesian Criterion (SBC) (models 2 and 5); and 3) p-value (models 3 and 6) 

(p=0.2 for entry/0.1 for retention). Results were compared across the three types of selection 

procedures in order to assess the robustness of the results. Multivariable logistic regression 

was used for the analysis including participants with complete data on all biomarker 

parameters.

To assess the prognostic ability of each multivariable model, we present the Area Under 

(AUC) the Receiver Operating Characteristic (ROC) curve (C-statistic), the integrated 

discrimination improvement (IDI) and the category-less net reclassification (NRI) for each 

model (27, 28). The AUCs are presented for the unadjusted, adjusted for covariates (sex, 

race, and the following baseline measures: minJSW, WOMAC pain score, age, BMI, KLG, 

use of pain medications), and adjusted with 10-fold cross-validation. The IDI and NRI are 

calculated as improvement vs. the model with covariates only and are calculated under 

10-fold cross-validation (28) (Supplementary Methods).

For the TBT and biochemical markers, change over 24 months was quantified as time-

integrated concentration (TICs). TICs are equivalent to the area under the curve defined by 

the individual values for the specific time interval (13).

Sensitivity Analyses

Outcome: We used structural (i.e. radiographic) progression, irrespective of pain 

progression (n=297), as the progression definition in secondary analysis using all 

radiographic non-progressors as controls (n=303).

Definition of change in TBT and biochemical markers: As a sensitivity analysis, 

we ran models using absolute change of biomarkers over 24 months (24-month value minus 

baseline value) for TBT and biochemical markers.

Missing Data: Because most missing data was in TBT parameters, we ran a sensitivity 

analysis excluding the TBT parameters (n=600 and 596 in the baseline and 24-month change 

analysis, respectively).

Results

Study sample

Of the 600 participants included in the FNIH study, 46 participants were missing TBT 

data. Initial univariate analyses were run in the cohort of n=554 with TBT data. The results 

of the univariate analysis using baseline and 24-month change in biomarkers are provided 

in Appendix 1 and 2, respectively. After further excluding participants that did not have 

complete data on all selected biomarkers, 550 (92%; 173 cases and 377 controls) and 539 

(90%; 171 cases and 368 controls) participants were included in the baseline and 24-month 

change multivariable analysis, respectively. The demographic characteristics of the study 
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sample included in the baseline and 24-month change analysis are provided in the Table 1 

and Supplementary Table 1, respectively.

Baseline biomarkers predicting pain and radiographic progression over 48 months

For the imaging biomarkers, the adjusted AUCs with 10-fold cross-validation ranged from 

0.641 to 0.669 with inclusion of number of locations affected by osteophyte (SQ) and 

patella shape in all models (Table 2). Quantitative central medial femoral cartilage thickness 

(external) (ecMF), central lateral femoral cartilage thickness (internal) (icLF.ThCtAB) and 

Hoffa-synovitis (SQ) were associated with case status in two of the three models. When 

biochemical markers were added to the imaging biomarkers, no biochemical markers 

were selected using the BIC or p-value based approaches, while the AIC based approach 

additionally selected serum NTX-1 (AUC 0.671).

Change in biomarkers over 24 months predicting pain and radiographic progression over 
48 months

In models including only imaging markers, worsening in SQ effusion-synovitis and SQ 

meniscal damage were predictive of progression in all three models, with the addition of the 

intercept (horizontal) TBT parameter (Table 3). Other markers were significantly associated 

with case status in two of the three models: increase in the number of areas with worsening 

SQ cartilage morphology, loss of Q cartilage thickness in the central medial femur (center), 

loss of Q cartilage volume in the medial tibia, and change in Q lateral patellofemoral bone 

area. AUCs ranged from 0.680 to 0.713. Increases in serum or urine NTX-I were associated 

with outcome in at least one model. The AUCs of the models including biochemical markers 

ranged from 0.683 to 0.724.

Sensitivity analyses

Change in biomarkers over 24 months predicting pain and radiographic 
progression over 48 months (absolute change used for biochemical markers 
and TBT)—Compared to the model using TICs for biochemical markers and TBT, the 

same selection of imaging markers was associated with case status, with the main difference 

that no biochemical marker or TBT parameter was selected when absolute change in these 

markers was used (Supplementary Table 2). The adjusted 10-fold cross-validated AUCs 

were slightly lower, ranging from 0.668 to 0.700.

Baseline biomarkers predicting radiographic progression over 48 months—
The number of locations affected by SQ osteophytes, medial meniscus volume and Q 

cartilage thickness at the central lateral femur (internal), medial tibia (external) and lateral 

tibia (posterior) were associated with case status in all three models (Supplementary Table 

3). Semi-quantitative cartilage morphology (maximum full-thickness cartilage loss score) 

and SQ Hoffa-synovitis were included in two of the three models. The adjusted 10-fold 

cross-validated AUCs, using imaging markers only, ranged from 0.716 to 0.723. When 

biochemical markers were added, AUCs ranged from 0.716 to 0.732. The same imaging 

markers were selected, with the addition of urinary CTXII and serum PIIANP, in two of the 

three models.
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Change in biomarkers over 24 months predicting radiographic progression 
over 48 months—The adjusted 10-fold cross-validated AUCs were higher in the models 

predicting radiographic progression only (AUCs 0.793 to 0.832) compared to the models 

using pain and radiographic progression as the outcome (Supplementary Table 4). A 

different set of biomarkers was associated with progression in all three models including 

imaging and biochemical markers: the number of areas of cartilage damage with worsening 

in surface area (SQ MRI), worsening meniscus extrusion (SQ), reduction in mean cartilage 

thickness at the central medial femur (ccMF) (Q MRI), and decrease in serum PIIANP. 

Several other markers were found to be significant in models 1 (AIC) and/or 3 (p-value) 

including measures of bone shape and area, Q cartilage thickness and volume, SQ effusion-

synovitis, SQ cartilage and meniscal damage, the number of locations with osteophytes (SQ) 

and serum NTX-1 and CTX-1.

Baseline and change in biomarkers predicting pain and radiographic 
progression, excluding TBT parameters—The results of the analysis using baseline 

biomarkers as predictors were overall consistent with the main analysis including TBT 

parameters, with three main exceptions: i. Hoffa-synovitis was not significant in any model; 

ii. medial meniscus volume was significant in all models; iii) urinary CTX-II was associated 

with case-status in the AIC and p-value models. The AUCs ranged from 0.668 to 0.694 

(Supplementary Table 5). In the 24-month change analysis, the imaging markers were 

overall consistent with the original analysis; however, a different biochemical marker was 

significant in all models: serum CTX-I (Supplementary Table 6). The AUCs were similar 

compared to the main analysis.

Discussion

The baseline biomarkers that predicted subsequent pain and radiographic progression in 

most models were the number of locations affected by osteophyte (SQ MRI), Q central 

medial femoral and central lateral femoral cartilage thickness, patellar bone shape, and 

SQ Hoffa-synovitis. Only the number of locations affected by SQ osteophytes and patella 

shape were significantly associated with case status in all models. The 24-month change in 

biomarkers that predicted pain and radiographic progression in all models were worsening 

in SQ effusion-synovitis (vs. improvement), increase in the number of knee regions with 

worsening in SQ meniscal damage and the horizontal TBT (intercept term). An increase in 

the number of areas with worsening SQ cartilage morphology, loss of Q cartilage thickness 

in the central medial femur (center), loss of cartilage volume in the medial tibial, and 

change in Q lateral patellofemoral bone area were significantly associated with case-status 

in two of the models. For TBT parameters and biochemical markers, 24-month TIC values 

performed better than change scores. The fact that the strongest biochemical predictor in 

univariate analysis in this cohort, urinary CTX-II, did not contribute to model predictions 

containing the core set of cartilage MRI markers suggests its collinearity with these imaging 

parameters, which is in line with previous studies (29, 30). The overall AUCs were similar 

with the addition of the biochemical markers as compared to the earlier models with the core 

set of MRI markers only (adjusted AUCs with 10-fold cross-validation 0.669 vs. 0.671 in the 
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baseline analysis and 0.713 vs. 0.724 in the 24-month change analysis, for models 1 and 4, 

respectively).

Higher AUCs yielded by a different set of imaging and biochemical markers were found 

in the secondary analysis to predict radiographic progression only. This is important since 

surrogate endpoints such as radiographic progression might in theory be accepted by the 

Food and Drug Administration (FDA) for initial drug approval of a disease modifying OA 

agent, although post-marketing studies showing benefits on clinically important outcomes 

would be required (31). Imaging and biochemical markers of structural progression are 

objective and more fully developed than biomarkers of pain, which to date are largely 

subjective, self-reported measures. A recent genome-wide association study of knee pain 

identified GDF5 as the primary locus (32); GDF5 is the same gene most strongly and 

repeatedly associated with OA based on structural diagnoses. Therefore, it may not be a 

different underlying pathological process driving symptom and structural progression but 

our ability to measure them with adequate sensitivity.

Although synovitis (Hoffa- or effusion-) was consistently selected in all models, this 

study demonstrates that the other biomarkers that predict progression vary dependent upon 

whether baseline biomarkers or changes in biomarkers over 24 months are evaluated for 

their ability to predict longer-term (48 month) outcomes of radiographic and symptomatic 

progression. Both biomarker types may be useful for the same clinical trial, but with 

different purposes, namely 1) participant selection for inclusion (baseline biomarkers), 

and 2) structural end-point (longitudinal change). These could be particularly important 

in enhancing the efficiency and shortening the duration of phase 2 and 3 clinical trials, 

thereby reducing the cost, increasing the likelihood of drug approval (6) and improving time 

to market (33).

Other studies have also developed models to predict OA progression using baseline and/or 

longitudinal biomarker data. A recent study has used a machine learning approach in the 

same FNIH dataset to identify differences in a variety of baseline characteristics between 

progressors and non-progressors (34). Similar to our study, the number of locations with 

osteophytes was a strong contributor to the progressor phenotype which supports previous 

findings showing the role of osteophytes in OA progression (35). BMLs and uCTXII were 

also highlighted as prognostic biomarkers, which is in line with our findings, although 

BMLs were not included in the final multivariable model. However, synovitis did not 

differentiate progressors and non-progressors in that study despite robust evidence indicating 

that inflammation plays an important role in OA progression (36). It is of note that their 

control definition was different (knees with neither clinical nor radiographic progression). 

In this study, we utilized logistic regression because our focus was not only on the 

variable selection but also on computing interpretable effect estimates (i.e., odds ratios) 

for each parameter. Another study tested different models to predict moderate to severe OA 

(clinical and/or radiographic) over 8 years and found that adding MRI biomarkers (cartilage 

morphology and T2 and meniscal tear) significantly improved the prognostic ability of the 

model compared to clinical and radiographic characteristics only (37). The AUCs were 

similar to this study (0.71–0.72 for the models including biomarkers). We have used a 

shorter follow up (4 years) in order to make the results more informative for clinical trial 
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design. Although OA progression is typically slow, a large epidemiological study has shown 

that radiographic progression over a 5 year-interval occurs in 12% to 23% of knees with 

radiographic OA (38). Other more sophisticated methodological approaches have also been 

tested such as different machine learning and regression algorithms but to date, no prediction 

model has been sufficiently validated and qualified for use in trials (39, 40).

There are a few limitations related to this study. Firstly, these analyses were performed 

on a subsample of the FNIH cohort for which all biomarkers were available; missing data 

were largely related to missing TBT biomarker, mostly secondary to poor radiographic 

positioning. The sensitivity analyses excluding TBT showed similar results for the imaging 

markers and a different selection of biochemical markers. Secondly, the results may not 

be generalizable to race/ethnicities not represented in the OAI, which mostly included 

Caucasians. Thirdly, there are no reproducibility data for meniscal volume on scan-rescan 

images. Fourthly, the analyses were conducted first with imaging parameters only, with 

subsequent addition of biochemical biomarkers; because the order of addition can affect the 

incremental explanatory power of the variable, results could vary with a different approach. 

In addition, participants with radiographic and pain progression by 12 months were 

excluded, which may have excluded a small number of cases with very fast progression. 

It is also worth noting that the control definition used in the main analysis included knees 

with pain only and radiographic only progression, which may have reduced the strength 

of the association between biomarkers and case status. The approach we used has been 

pre-defined for the overall FNIH project and used in previous papers studying individual 

biomarker domains (9–13). Finally, we did not explicitly control for multiple testing. 

Instead, we sought to examine the robustness of the models by comparing the variables 

selected across the different selection methods. Machine learning methods that can assess 

enormous numbers of predictors could be an alternative strategy to variable selection and 

model fitting.

In conclusion, our study highlights the combination of biomarkers that could provide 

prognostic utility in the context of OA disease-modifying trials. At baseline, SQ 

(osteophytes and Hoffa-synovitis) and Q (cartilage thickness and patella shape) imaging 

markers were selected. Different biomarkers were selected in the 24-month change analysis 

including SQ (effusion-synovitis, meniscal and cartilage morphology) and Q measures of 

cartilage thickness and volume, radiographic TBT and urinary or serum NTX-I. The phase 

2 of the OA Biomarkers Consortium is currently underway to externally validate these 

findings and enable the submission of these biomarkers for regulatory review and formal 

qualification for use as prognostic biomarkers in disease-modifying OA trials.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Key messages:

What is already known about this subject?

Several imaging and biochemical markers have been shown to have prognostic validity 

for knee osteoarthritis progression.

What does this study add?

This study evaluated biomarkers from all biomarker domains (i.e. MRI, radiograph and 

biochemical) in multivariable models and demonstrated the biomarkers (measured at 

baseline and change over 24 months) with prognostic value for knee OA progression.

How might this impact on clinical practice or future developments?

These findings indicate the most promising biomarkers that could be used in future 

structure-modifying OA trials to select participants more likely to progress (baseline 

biomarkers) and for use as structural end-point (longitudinal change biomarkers), if 

properly qualified.
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Figure 1. 
Participant’s flow diagram.

BL, baseline; BMI, body mass index; JSN, joint space narrowing; JSW, joint space 

width; KLG, Kellgren and Lawrence grade; WOMAC, the Western Ontario and McMaster 

Universities Arthritis Index.
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