Skip to main content
. 2021 May 13;10(13):4615–4628. doi: 10.1002/cam4.3965

TABLE 2.

Area under ROC curve of machine‐learning methods in predicting mutations and subtypes

Characteristic Logistic regression

Random

forest

Support vector machine
Somatic mutation
TP53 0.715 0.930 0.885
CDKN2A 0.689 0.913 0.816
NOTCH1 0.697 0.903 0.825
NSD1 0.723 0.828 0.815
PIK3CA 0.726 0.871 0.827
Transcriptional subtype
Basal 0.726 0.954 0.845
Mesenchymal 0.783 0.930 0.864
Atypical 0.723 0.905 0.862
Classical 0.592 0.864 0.733
Methylation subtype
Normal‐like 0.680 0.942 0.835
Hypo‐methylated 0.781 0.881 0.814
Hyper‐methylated 0.740 0.968 0.859
CpG island hyper‐methylated 0.732 0.911 0.844