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SUMMARY

Collagenous colitis is a nondestructive inflammatory bowel
disease that involves the innate and adaptive immune re-
sponses (ie, intestinal epithelial cell dysfunction and den-
dritic cell activation). The only effective treatment—the
corticosteroid drug budesonide—does not fully restore gene
expression.

BACKGROUND AND AIMS: The pathophysiology of the in-
flammatory bowel disease collagenous colitis (CC) is poorly
described. Our aim was to use RNA sequencing of mucosal
samples from patients with active CC, CC in remission, re-
fractory CC, ulcerative colitis (UC), and control subjects to gain
insight into CC pathophysiology, identify genetic signatures
linked to CC, and uncover potentially druggable disease
pathways.

METHODS: We performed whole transcriptome sequencing of
CC samples from patients before and during treatment with the
corticosteroid drug budesonide, CC steroid-refractory patients,
UC patients, and healthy control subjects (n ¼ 9–13). Bulk
mucosa and laser-captured microdissected intestinal epithelial
cell (IEC) gene expression were analyzed by gene set enrich-
ment and gene set variation analyses to identify significant
pathways and cells, respectively, altered in CC. Leading genes
and cells were validated using reverse-transcription quantita-
tive polymerase chain reaction or immunohistochemistry.

RESULTS: We identified an activation of the adaptive immune
response to bacteria and viruses in active CC that could be
mediated by dendritic cells. Moreover, IECs display hyper-
proliferation and increased antigen presentation in active CC.
Further analysis revealed that genes related to the immune
response (DUOX2, PLA2G2A, CXCL9), DNA transcription (CTR9),
protein processing (JOSD1, URI1), and ion transport (SLC9A3)
remained dysregulated even after budesonide-induced remis-
sion. Budesonide-refractoryCCpatients fail to restorenormal gene
expression, and displayed a transcriptomic profile close to UC.

CONCLUSIONS: Our study confirmed the implication of innate
and adaptive immune responses in CC, governed by IECs and
dendritic cells, respectively, and identified ongoing epithelial
damage. Refractory CC could share pathomechanisms with UC.
(Cell Mol Gastroenterol Hepatol 2021;12:665–687; https://
doi.org/10.1016/j.jcmgh.2021.04.011)
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ollagenous colitis (CC) is a debilitating inflammatory
Abbreviations used in this paper: auCC, active/untreated collagenous
colitis; aRCC, active/refractory (nonresponding) collagenous colitis;
CC, collagenous colitis; DEG, differentially expressed gene; DN, dou-
ble negative; FDR, false discovery rate; GSEA, gene set enrichment
analysis; GSVA, gene set variation analysis; IBD, inflammatory bowel
disease; IEC, intestinal epithelial cell; IFN, interferon; IHC, immuno-
histochemistry; itCC, inactive/treated (responding) collagenous colitis;
MMP, matrix metalloproteinase; PBS, phosphate-buffered saline;
RNA-seq, RNA-sequencing; RT-qPCR, reverse-transcription quanti-
tative polymerase chain reaction; TIMP, tissue inhibitor of metal-
loproteinase; UC, ulcerative colitis.
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Cbowel disease (IBD) that causes chronic, nonbloody
watery diarrhea, leading to a poor quality of life.1 The
macroscopic appearance of the colon is usually normal, and
noninvasive biomarkers do not discern between CC and
other gut disorders.1 Thus, CC diagnosis relies on histo-
pathological features, including a thickened collagenous
band (>10 mm) and increased lymphoplasmacytic infiltrate
into the lamina propria.1 The only effective, established
treatment is the corticosteroid drug budesonide.2 However,
clinical trials report disease relapse in 23%–39% of CC
patients during maintenance treatment, and up to 80% after
treatment is discontinued.3–5 In addition, patients can
become treatment-refractory.3,6 Therefore, understanding
CC pathogenesis is an unmet clinical need, and compre-
hending the mechanisms of action of budesonide would
open the door for new therapeutic opportunities for pa-
tients that do not respond to treatment.

Several human leukocyte antigen (HLA) genetic vari-
ants have been associated with CC, which indicates acti-
vation of the adaptive immune system through antigen
presentation events.7 As in the major IBD forms Crohn’s
disease and ulcerative colitis (UC), luminal antigens could
lead to the activation of an aberrant immune response.8

However, no association has been found between CC
and pattern recognition receptor genes to date. Interest-
ingly, nuclear factor kB, a key regulator of inflammatory
immune responses involved in cytokine production, is
activated in CC, specifically in intestinal epithelial cells
(IECs).9 Therefore, these cells might play a role in CC
pathogenesis.

Additional pathomechanisms compatible with an intact
mucosa include changes in IEC electrophysiology and ho-
meostasis. Transepithelial ion exchange is impaired due to
low expression or loss of function of several ion channels in
the colonic epithelium, leading to defects in sodium reab-
sorption.10,11 The decreased osmotic pressure impairs the
paracellular reabsorption of water, which is exacerbated by
the loss of the water channel aquaporin 8 in the IEC apical
membrane; thus, resulting in watery diarrhea.12 Although
ion and water channel expression are almost restored
during clinical remission, the extent of epithelial dysfunc-
tion, immune responses, and dysbiosis contributing to CC
pathophysiology, response to treatment, and relapse are still
unclear.

It has been suggested that CC shares features with other
IBDs, especially UC1,7,13; however, whether the similar
clinical presentation of these disorders is caused by com-
mon molecular mechanisms is unclear. To address these
questions, we investigated the whole transcriptome of
colonic mucosa and microdissected IECs from CC patient
samples. Our patient cohort, which includes budesonide-
treated responding and nonresponding CC patients, has
enabled us to propose targets for the development of new
treatments for CC patients.
Results
Central Immune Response–Related Genes Are
Dysregulated in CC

The exact pathophysiology of the chronic diarrheal
disorder CC is incompletely understood. We therefore
investigated the transcriptome of CC, which features an
intact mucosa despite increased lymphoplasmacytic infil-
tration in the lamina propria (Figure 1A; Table 1). Prin-
cipal component analyses of bulk biopsy RNA-sequencing
(RNA-seq) data separated samples groups into different
clusters of gene expression according to the clinical
classification (Figure 1B). Active/untreated CC (auCC)
mucosa displayed 354 differentially expressed genes
(DEGs) compared with healthy control subjects
(Figure 1C). Gene set enrichment analysis (GSEA) indi-
cated that auCC-associated genes were related to antigen
folding and presentation (HLA, CD74, TAPBP), response to
lipopolysaccharide and bacteria (DMBT1, NLRC5, NOS2),
apoptosis (CD74/MIF), and DNA replication events
(DDX11, HMGA1) (Figure 1D–H and 2; Supplementary
Table 1). A substantial number of pathways also con-
tained genes of the response to interferons (IFNs)
(Figure 1D and 2; Supplementary Table 1). Of note, hu-
man leukocyte antigen (HLA)-I and -II genes that were
previously associated with CC7,14 have an increased
expression in active CC (Figures 1–2). Collectively, our
results corroborate the genetic association with HLA, and
indicate immune response activation and bacterial recog-
nition in CC pathogenesis.

To further explore the idea that CC displays common
features with UC, we compared the messenger RNA
expression of active CC with UC samples (Table 1, Figure 3).
When compared with active CC samples, UC samples
differed in the expression of 600 protein-coding genes. In
particular, UC mucosal gene expression was enriched for
extracellular organization and collagen-related genes, hu-
moral immune response, angiogenesis, wound healing, and
leukocyte cell adhesion processes when compared with
auCC mucosa (Figure 3). To identify which genes are spe-
cifically involved in CC but not in UC pathogenesis, we
compared the lists of DEGs between either auCC or UC
samples and healthy control subjects, and filtered for those
with absolute log2 fold changes above 2. The 161 resulting
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CC-specific genes were mostly involved in the metabolism of
fatty acids and prostaglandins, and in peroxisome
proliferator-activated receptor signaling pathways (Table 2;
Supplementary Table 2).
Budesonide Modulates CC Transcriptional
Program in Responsive Patients

Budesonide is the only effective treatment for CC,1,2,15

but its effects in colitis are not fully understood. We



Table 1.Clinical and Demographic Characteristics of the CC Patient “Exploratory” Cohort and Controls Included in RNA-Seq,
Microdissected Intestinal Epithelial Cell RNA-Seq, and Immunohistochemistry Analyses

Variable Hc auCC itCCa aRCC UCb

Total number of subjects 13c 9 9 9 4

On budesonide treatment No No Yes No No

Steroid responders — Yes Yes No —

Female, % 53.85 77.78 77.78 100 75

Average age, y 51 (17–71) 59 (27–86) 59 (27–86) 60 (25–79) 22 (19–30)

Average stools/day — 7.56 (6–10) 1.22 (1–2) 9.89 (4–20) —

Average watery stools/day — 7.56 (6–10) 0 (N/A)d 9.89 (4–20) —

Average collagenous band, mm — 35.00 (16–52) 28.33 (5–72)d 35.56 (10–72) —

Average stool frequency, Mayo score — — — — 2.25 (1–3)

Average endoscopy, Mayo score — — — — 2 (1–3)

NOTE. Values are n or mean (range), unless otherwise indicated.
auCC, active/untreated collagenous colitis; aRCC, active/steroid-refractory collagenous colitis; CC, collagenous colitis;
Hc, healthy control subjects; itCC, inactive/treated collagenous colitis; N/A, not applicable; RNA-seq, RNA sequencing; UC,
ulcerative colitis.
aMatched samples from itCC patients were collected before and during treatment with budesonide. Note that samples before
treatment (active disease) were included in the group of auCC samples, whereas samples during treatment were included as
itCC samples. One patient was not included for RNA-seq analysis of microdissected intestinal epithelial cells due to
unavailability of paraffin-embedded biopsy sample.
bUC disease extension included 1 patient with proctitis, 2 with affection of the descending colon, and 1 with pancolitis.
Patients were assessed following the Mayo score. This group was only included for bulk biopsy RNA-seq analysis.
cNine of these patients were included for intestinal epithelial cell microdissection and subsequent RNA-seq analysis.
dNote that the average stool frequencies and collagenous band thickness before treatment of itCC patients are nearly the
same as the auCC patient group.
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therefore analyzed the transcriptomic profile of active CC
patients that volunteered for extra biopsy sampling after
achieving clinical remission following budesonide treatment
after an average period of 6 weeks (inactive/treated CC
[itCC]), and another set of patients who, despite this ther-
apy, never responded to treatment and still suffered from
watery diarrhea after 12 weeks (active/refractory CC
[aRCC]). Of note, budesonide did not seem to affect the
thickness of the collagenous band in most of our patients,
independently of the response outcome (Table 1;
Figure 1A). RNA sequencing (RNA-seq) analysis of the 9 CC
samples obtained after successful treatment (itCC) revealed
that 307 protein-coding genes were differentially expressed
(DEGs) compared with the matched active disease samples
(auCC samples) (Figure 4A and B). In contrast, 92 genes
Figure 1. (See previous page). CC mucosa gene expression
pathways. (A) Representative histology of hematoxylin and eos
mucosa in a healthy control (Hc) subject, an auCC patient, an
analysis plot of the RNA-seq expression profiles of the different C
differentially upregulated (red) and downregulated (blue) genes in
gene expression in which orange nodes represent CC and green
value <0.05, and combined coefficient >0.375 with combined
transformed fold changes (using the regularized log functio
contributing to the enriched gene pathways in CC colonic muco
to bacterial stimuli, (G) response to lipopolysaccharide (LPS), a
subjects are shown in green, auCC samples are shown in orange
red. Heatmap rows and columns are split according to hierarch
retrieved from Gene Ontology Biological Process database. H
Reactome database; WP, WikiPathways database.
differed between steroid-responsive and nonresponsive
patients (itCC vs aRCC) (Figure 4B and C). Based on the
expression of all these genes and in comparison with
healthy control samples, active disease samples clustered
together and displayed very similar expression profiles
(Figure 4C). Genes that were associated with active CC
forms contributed to DNA regulation and expression, pro-
tein synthesis, and trafficking, and to immune responses, as
highlighted by GSEAs of itCC samples compared with auCC
or aRCC samples (Figure 4D and E; Supplementary Tables 3
and 4). Of note, of the 161 CC-specific genes identified
previously, the expression of 149 was normalized after
treatment with budesonide, as observed when itCC data
were compared with healthy control subjects
(Supplementary Table 2).
indicates activation of central immune response signaling
in–stained paraffin-embedded sections of the human colonic
itCC patient, and an aRCC patient. (B) Principal component
C subgroups, Hc, and UC samples. (C) Volcano plot showing
auCC compared with control subjects. (D) Enrichment map of
nodes represent Hc phenotype pathways created with FDR Q
constant ¼ 0.5. (E–H) Heatmaps showing normalized log2-

n in R) of RNA-seq transcript counts from leading genes
sa related to (E) antigen folding and presentation, (F) response
nd (H) apoptosis signaling. n ¼ 9–13 samples per group. Hc
. Genes associated with CC by immunochip are highlighted in
ical clustering. Unless stated otherwise, gene pathways were
M, Hallmark database; NCI, NCI-Nature curated data; RT,



Figure 2. CC mucosa displays an imbal-
ance in IFN response, DNA replication,
and metabolic processes. (A–D) Heat-
maps showing normalized log2-trans-
formed fold changes (using the regularized
log function in R) of RNA-seq transcript
counts (log TC) from leading genes
contributing to the enrichment of gene
pathways in CC colonic mucosa displayed
in Figure 1C related to (A) IFN response, (B)
DNA replication, (C) electron transport, and
(D) protein complex remodeling. Healthy
control (Hc) subjects are shown in green,
auCC samples are shown in orange. Genes
associated with CC by immunochip5 are
highlighted in red. n ¼ 9–13 samples per
group.
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Because the main CC histological feature is a thick
collagenous band, we explored the expression of extracel-
lular matrix components, including collagen, matrix metal-
loproteinases (MMPs), and MMP inhibitors (tissue inhibitors
of metalloproteinases [TIMPs]). Of collagens, we not only
failed to detect an increase in gene expression but identified
a decrease of the COL17A1 gene in active CC forms, which
encodes for collagen type XVII a1 chain (Figure 5). In
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addition, we detected an increase in the expression of TIMPs
1 and 3, mostly in aRCC samples (Figure 5).

To define the profile of cells present in the mucosa of
each CC patient sample group, we computed gene set vari-
ation analysis (GSVA) of stroma and immune populations as
previously described (Figure 6A; Supplementary Table 5).16

We particularly noticed an apparent decrease of CD34þ

GDF10þ stroma cell profile in auCC samples (Figure 6A). In
contrast, immune cells such as active dendritic cell and T
helper cell profiles were estimated to be increased in active
CC, especially in steroid-refractory mucosa (Figure 6A). The
dendritic cell infiltration in CC mucosa was confirmed by
immunohistochemistry staining for CD1a (Figure 6B).
Enteric neuron and innate immune response cells did not
change (Figure 6A).

Of the 11 DEGs identified between auCC and aRCC
samples, we opted to validate by reverse-transcription
quantitative polymerase chain reaction (RT-qPCR) the 3
genes with higher fold change between these 2 groups using
an extended CC patient cohort (Figure 7; Table 3). However,
none of them resulted statistically different in auCC when
compared with aRCC samples (Figure 7).

Taken together, GSEA and GSVA indicate that budesonide
affects the immune response in CC by decreasing the protein
trafficking and antigen presentation in cells, and possibly
decreasing the number of active antigen-presenting cells,
but only in steroid-responsive patients. To note, active CC
forms (ie, naïve untreated CC and budesonide-refractory CC)
do not significantly differ at the transcriptomic level.
Budesonide Fails to Completely Restore the
Expression of Dysregulated Immune-Related
Genes in Responding CC Patients

Budesonide efficiently maintains clinical remission in
61%–77% of the patients during long-term treatment, but



Table 2.Enriched Gene Pathways From CC-Specific Differentially Expressed Genes

Database Term
Adjusted P

Value
Odds
Ratio

Combined
Score Genes

GO Biological
process

cellular protein complex localization
(GO:0034629)

.2483 20.9082 154.6912 MIOS;NACC2;KLHL21

GO Biological
process

protein complex localization (GO:0031503) .2483 19.8068 143.7553 MIOS;NACC2;IFT46

GO Biological
process

prostanoid metabolic process (GO:0006692) .3624 24.9421 137.5235 HPGD;ACOX1

GO Biological
process

regulation of monooxygenase activity
(GO:0032768)

.2483 18.8155 134.0420 DDAH2;CALM1;CYGB

GO Biological
process

alpha-linolenic acid metabolic process
(GO:0036109)

.3624 22.6735 121.3471 FADS2;ACOX1

GO Biological
process

prostaglandin metabolic process (GO:0006693) .2550 17.1033 117.5756 EDN2;HPGD;ACOX1

GO Biological
process

unsaturated fatty acid metabolic process
(GO:0033559)

.2483 12.6108 97.8342 FADS2;SCD;ACOX1;MGLL

GO Biological
process

unsaturated fatty acid biosynthetic process
(GO:0006636)

.3624 19.1834 97.1681 HPGD;SCD

GO Biological
process

peptidyl-threonine dephosphorylation
(GO:0035970)

.3624 17.8122 87.9383 PPM1A;DUSP10

GO Cellular
Components

DNA-directed RNA polymerase II, core complex
(GO:0005665)

.3937 16.6239 80.0785 URI1;POLR2D

KEGG PPAR signaling pathway .0046 11.2548 117.5080 RXRB;FADS2;GK;
ACOX1;SCD;AQP7

KEGG Biosynthesis of unsaturated fatty acids .1033 15.6764 104.1832 FADS2;SCD;ACOX1

WikiPathways Estrogen Receptor Pathway WP2881 .1777 22.6735 121.3471 ACOX1;PDK4

WikiPathways Sulindac Metabolic Pathway WP2542 .3563 30.9922 100.0630 MSRA

WikiPathways ID signaling pathway WP53 .2153 17.8122 87.9383 PAX8;ID3

WikiPathways PPAR signaling pathway WP3942 .0308 10.2238 86.8204 RXRB;FADS2;ACOX1;
SCD;AQP7

GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; PPAR, peroxisome proliferator-activated receptor.
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remission continues only in approximately 20% when it is
discontinued. To explore possible underlying patho-
mechanisms, we first aimed to identify CC-associated DEGs
that are unaffected by steroid treatment and may thus
contribute to the reoccurrence of symptoms. To this end, we
analyzed DEGs between healthy control and itCC samples,
and selected the genes with higher fold changes between
these 2 groups and similar expression pattern in itCC and
active CC samples for subsequent validation (Figure 8A). Of
the 11 selected genes, qPCR analyses confirmed that several
genes related to immune response (DUOX2, PLA2G2A,
CXCL9), DNA transcription and protein ubiquitination
(CTR9, JOSD1, URI1), and ion transport (SLC9A3) were not
restored to normal levels after budesonide treatment
(Figure 8B; Table 3).

Next, we asked if any DEGs could have predictive value
for disease relapse. For this, we separated itCC samples
included in our RNA-seq analysis into patients that suffered
from a disease relapse or not in the following months and
found 8 DEGs (Figure 9A; Table 3). However, we were not
able to identify any of them as potential CC relapse bio-
markers b RT-qPCR analyses did not show significant
changes in gene expression either in biopsy or in peripheral
blood samples in the validation cohort (Figure 9B and C;
Table 3).

In summary, genes that remain dysregulated despite
treatment with budesonide could be targets for new ther-
apies for CC patients, and validation in alternative patient
cohorts could be of interest. In contrast, we failed to find a
biomarker that predicts CC relapse when patients are under
budesonide treatment.
The Intestinal Epithelial Cell Transcriptome Is
Altered in CC

Despite the mucosal immune activity in CC, the mucosa
is macroscopically intact.1 Synergistic electrolyte and water
transport imbalance as well as nuclear factor kB activation
implicates involvement of intestinal epithelial cells (IECs) in
CC pathogenesis.9–12 Thus, we microdissected intestinal
epithelia from paraffin-embedded tissue sections from
samples of our initial patient cohort (Table 1) to explore the
role of IECs in CC pathogenesis by RNA-seq. Comparison of
active untreated CC samples with healthy control subjects
showed only 5 enriched pathways, which belonged to DNA
organization in the cell nuclei, with leading genes involved



Figure 4. Budesonide treatment dampens cell proliferation and the immune response but not in steroid-resistant CC
patients. (A) Diagram displaying the numbers of DEGs coding for proteins between CC patient subgroups. The expression of
271 genes changed between auCC and itCC samples (green), while 59 between itCC and aRCC samples (yellow), and 8
between auCC and aRCC (pink). A total of 36 genes changed between different CC subgroups. (B) Volcano plots showing
differentially regulated protein-coding genes in auCC compared with itCC (left), and to aRCC (center) samples, and between
itCC compared with aRCC samples (right). Red and blue colors indicate the group whose genes are upregulated in. (C)
Heatmap showing normalized log2-transformed fold changes (regularized log function in R) of RNA-seq transcript counts from
all the differentially expressed protein-coding genes between CC subgroups in comparison to healthy control samples.
Heatmap rows and columns are split according to hierarchical clustering. (D, E) Enrichment maps from GSEA performed
including all DEGs (E) between auCC and itCC and (E) between itCC and aRCC, ranked based on adjusted P values. GSEA for
the comparison of active CC samples (untreated vs refractory) did not reveal any enriched pathway (not shown). n ¼ 9–13
samples per group.
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in chromatin remodeling and repair events (Figure 10A–C).
The amount of differentially expressed genes between CC
subgroups was similar as in bulk biopsies (374 vs 339
DEGs) (Figure 10D and E) and, surprisingly, the matched
samples taken before and after budesonide treatment of
responsive patients clustered together (Figure 10F).
To identify key cellular components, we computed GSVA
of 8 IEC populations adapted from the intestinal epithelial
atlas produced by Haber et al.17 The enrichment scores of
stem cells and Paneth-like cells in active CC forms suggested
an increased activity within colonic crypts during the dis-
ease (Figure 11A; Supplementary Table 5). However,
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staining with the proliferation marker Ki67 corroborates an
increased proliferation in active CC colonic crypts that is not
fully restored by budesonide (Figure 11B). Interestingly, the
enterocyte profile is decreased in CC, especially enterocytes
from the proximal intestine, but this result should be
interpreted carefully due to the extrapolation of these pro-
files from the small intestine mouse atlas (Figure 11A;
Supplementary Table 5).

Because some IECs can contribute to immune responses
(eg, Paneth-like and goblet cells),18 we explored the
expression of pattern recognition receptors and HLA genes
in IEC (Figure 11C). Changes in pattern recognition re-
ceptors, including NOD-like receptors, accounted for very
modest, nonsignificant alterations within all CC subgroups.
Moreover, HLA-related genes were prone to increase in
active CC samples, which was confirmed by increased HLA-
DMA protein levels in the apical side of IECs from active CC
samples (Figure 11C and D) Altogether, these data show that
CC mucosal transcriptome is altered and that epithelial cells
might contribute toward immune responses and disease
pathogenesis in CC.
aRCC Shares Similarities With UC
As mentioned previously, CC displays common features

with UC (Figure 3), but refractory CC has never been
compared with UC. Our GSEA between aRCC and UC
samples showed that only the different gene pathway was
that regulating vasoconstriction, with ADM and TRPM4 as
leading genes (data not shown). When major pathways
identified after auCC–UC comparison (from Figure 3) were
explored in detail (Figure 12), UC samples segregated from
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CC samples for genes related to extracellular matrix or-
ganization and angiogenesis (Figure 12A and B). Interest-
ingly, leukocyte cell adhesion and wound healing gene
pathways clustered UC together with aRCC samples
B
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wound healing processes might be useful for treating
aRCC.

Discussion
Because the etiology and pathobiology of CC remains

poorly understood, here we describe a transcriptional
alteration of genes related to antigen presentation, lipo-
polysaccharide response, and IFN signaling routes, which
might point to a role for Gram-negative bacteria and vi-
ruses in CC pathogenesis. Dense genotyping of immune-
related loci in CC identified HLA-DQ2 as a genetically
predisposing factor in CC,1,7 which supports our findings. It
has also been suggested that an abnormal translocation of
bacteria could trigger the inflammation in CC, and thus
attract immune cells into the mucosa.1,19 Microbiota
studies so far have identified a decreased concentration of
the epithelial-protective Akkermansia muciniphila bacteria
(Gram-negative) and the Clostridia-related, butyrate-pro-
ducing Ruminococcaceae bacteria family (Gram-posi-
tive).20,21 Especially a decreased abundance of
Ruminococcaceae is, in general, associated with loose
stools and is restored after treatment with budesonide,
hence the bacterial microbiota might be affected by the
lumen content flow.20,22 This profile is shared with other
IBD forms,20,22 but whether dysbiosis is causative or
consequential to the inflammation remains unknown.
Interestingly, the translocation of chemically killed Escher-
ichia coli K12 (Gram-negative) is increased in Ussing
chamber mucosal barrier assays using CC biopsy sam-
ples,19 and fecal stream diversion has been effective
treating nonresponsive CC patients.23,24 On the other side,
Epstein-Barr virus has been detected in CC mucosa with
even higher DNA detection than the levels reported in
UC.25 Because this and other herpes viruses have also been
found to be associated with IBD clinical morbidity,26 it
would be worth to explore their presence in CC in depth. In
addition, we did not find evidence of autoimmune mecha-
nisms, and findings of some autoantibodies have only been
reported in small studies and do not correlate with clinical
symptoms.27–29 Altogether, owing to the similarities with
classical IBD forms,30 CC can thus be described as an IBD
in which mucosal cells overreact against microbiota of
diverse nature. Still, we have proposed 161 DEGs that
could specifically contribute to CC pathomechanisms,
including genes related to fatty acid and prostaglandin
Figure 6. (See previous page). Immune and stroma cell types
and stroma cell types from RNA-seq data displaying enrichm
subjects (Hc) are shown in green, auCC samples in orange, ina
CC (aRCC) samples in purple. (B) Representative immunohistoc
sections from Hc, auCC, itCC, and aRCC colonic samples. Note
subjects due to an increased cellular infiltration in the stroma. F
chemokine-producing cells (IL6 CXCL1), CD34-derived cells, IN
cells (SCx); enteric neurons are subdivided into putative excitat
(PIMN), putative interneurons (PIN), putative sensory neurons (P
n ¼ 9–13 samples per group. Statistically significant difference
comparison is indicated. activated CD8, activated CD8þ T cells
NK, natural killer; regulatory T, regulatory T cells; Tcm cells, ce
cells, follicular T helper cells; gdT cells, TCRgdþ T cells.
metabolism, and peroxisome proliferator-activated receptor
signaling. To note, these will require further validation in
additional cohorts with larger inflammatory control subsets
because the number of UC samples included in this study
was limited.

Dendritic cells are professional antigen-presenting cells
capable to determine the fate of antigen-specific immune
outcomes. In the healthy gut, dendritic cells promote im-
mune tolerance toward nutrients and commensals through
regulatory T cell and IgA-producing B cell responses.31

Among the infiltrating cells in CC mucosa, we identified an
increase in genes associated with active dendritic cells and
an increased infiltration of CD1aþ cells. Similarly, IBD
inflamed mucosa displays increased numbers of these cells
that overexpress pattern recognition receptors, hence pro-
moting a proinflammatory Th1/Th17 response.31 Usually,
dendritic cells rapidly respond to microenvironment
changes, such as signals from IECs, and promote a tolero-
genic immune response.32,33 However, debilitated IEC tight-
junctions, as reported in IBDs, facilitate the passage of
invading microorganisms that induce a proinflammatory
response.34–36 In particular, HLA expression in IECs is
responsible for Crohn’s disease and UC IEC ability to induce
CD4þ T cell proliferation and IFNg secretion.37 Therefore,
CC IECs might exert similar effects through HLA-DMA. In
addition, we and others reported an increased IEC prolif-
eration in CC colonic crypts, an increased lysozyme
expression, and a possible increase in antigen presentation
that, in turn, could disrupt IEC homeostasis and their
communication with the underlying stroma cells.34,38,39

Indeed, we also report here an increased expression of
metalloprotease inhibitors TIMP1 and TIMP3, which would
prevent collagen degradation. Madisch et al40 also associ-
ated CC with a genetic variation in the MMP-9 gene and, in
our results, we can observe a tendency for MMP-9
messenger RNA upregulation in active CC that is corrected
in budesonide-responding CC patients (Figure 5). In addi-
tion, we report a potential dysregulation of a subset of
CD34þ GDF10þ stroma cells identified in a single-cell RNA-
seq mouse atlas that would worth validation. Whether these
cells could also be responsible for decreased COL17A1
expression remains unknown and would require a
comprehensive analysis of fibroblast—IEC interactions.

Despite identification of active antigen-presenting cells
in CC mucosa and increased expression of chemoattractant
in CC mucosa. (A) GSVA computed for all different immune
ent scores (median with interquartile range). Healthy control
ctive/treated CC (itCC) samples in blue, and active/refractory
hemistry (IHC) images of CD1a staining in paraffin-embedded
the brown staining in active CC forms is stronger than in Hc

ibroblastic stroma cells are subdivided into inflammatory and
MTþ cells, proliferative stroma cells (pSC), and other stroma
ory motor neurons (PEMN), putative inhibitory motor neurons
SN), and putative secretomotor/vasodilator neurons (PSVN).
s relative to Hc samples are shown as *P < .05, unless other
; aDC, activated dendritic cells; iDC, immature dendritic cells;
ntral memory T cells; Tem cells, effector memory T cells; Tfh
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genes for leukocyte populations (eg, CXCL9), we and others
have not found evidence of increase of T cells (ie, CD4þ T
helper, CD8þ cytotoxic T cells, or T regulatory cells).41,42

However, our results are limited to the use of gene
expression data and the power of GSVA algorithm to esti-
mate cellular population frequencies and due to the
extrapolation of mouse gene identifiers to human tissue.
Conversely, Kumawat et al38,43 found evidence of increased
T cell numbers in CC mucosa, identifying the disease as a
mixed Th17/Tc17 and Th1/Tc1 IBD using flow cytometry,
which is a more reliable approach. Still, Kumawat et al’s
results could not be replicated in the cohort analyzed by
Carrasco et al,41 where they only found an increase in
CD3þCD4–CD8– double negative (DN) T cells. Despite DN T
cell abundance in CC and autoimmune disorders, the func-
tion of these cells is not well understood.44 They could be
responsible of the increased expression of the pro-
inflammatory cytokines found in CC mucosa, but DN T
cells have also been attributed with anti-inflammatory
properties.41,45,46 Whether the inflammation is effectively
restrained by suppressor mechanisms in CC is not clear but
will match with the lack of macroscopic mucosal damage1;
hence, the exploration of the dendritic cell–IEC and the
IEC–T cell interfaces might further clarify CC pathogenesis.

Budesonide is the only established therapy for CC but is
an unspecific anti-inflammatory drug with ambiguous ef-
fects.1 Besides its anti-inflammatory properties, we
observed a generalized decline in the expression of genes
related to DNA regulation, protein synthesis and trafficking,
and cell cycle regulation when CC patients responded to
budesonide, which might be a secondary effect of the tissue
restoration to normalcy as budesonide resolves the
inflammation. Nonetheless, this inflammation is not
completely abrogated because genes involved in innate
immunity and cell recruitment remain increased after
treatment (eg, DUOX2, PLA2G2A, and CXCL9). Thus, targeting
of residual dysregulated genes could support low-dose
budesonide therapy to ensure long-term clinical remission
of CC patients. Despite our efforts to identify markers in
budesonide-responding patients (itCC samples) that could
indicate an upcoming disease relapse, we found that RNA-
seq DEGs were false positive results after RT-qPCR



Table 3.Clinical and Demographic Characteristics of CC Patient Validation Cohorts and Control Subjects Included in
RT-qPCR

Variable

RT-qPCR With All Groups
RT-qPCR of itCC Samples:
Relapse vs No Relapse

Hc auCC itCCa aRCC

No Relapse
(Biopsies
and Blood)

Relapse
(Biopsies)

Relapse
(Blood)

Total number of subjects 14 20 14 13 6 8 10

Number of subjects
included in RNA-seq

8 3 6 7 4 2 5

On budesonide treatment No No Yes No Yes Yes Yes

Steroid responders — Yes Yes No Yes Yes Yes

Female, % 42.86 75 78.57 92.31 83.33 75 70

Age, y 62 (60–71) 63 (28–86) 66 (35–86) 54 (25–75) 73 (49–86) 61 (35–76) 51 (27–73)

Stools/day — 6.90 (3–12) 1.43 (1–2) 8.92 (4–15) 1.33 (1–2) 1.50 (1–2) 1.20 (1–2)

Watery stools/day — 6.70 (2–12) 0 (N/A) 8.38 (4–15) 0 (N/A) 0 (N/A) 0 (N/A)

Collagenous band, mm — 32.15 (12–52) 29.57 (2–72) 33.38 (10–68) 30.50 (5–72) 28.88 (2–50) 22.00 (2–45)

NOTE. Values are n or mean (range), unless otherwise indicated.
auCC, active/untreated collagenous colitis; aRCC, active/steroid-refractory collagenous colitis; CC, collagenous colitis; Hc,
healthy control subjects; itCC, inactive/treated collagenous colitis; N/A, not applicable; RNA-seq, RNA sequencing; RT-qPCR,
reverse-transcription quantitative polymerase chain reaction.
aMatched samples from itCC patients were collected before and during treatment with budesonide. Note that samples before
treatment (active disease) were included in the group of auCC samples, whereas samples during treatment were included as
itCC samples.
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corroboration, which supports that data validation with
different techniques is mandatory when exploiting results
for clinical application.

Steroid-refractory patients account for 10%–20% of CC
individuals included in clinical trials and represent a clinical
challenge.47–50 In fact, no previous pathological character-
ization of aRCC has been reported to date. Despite the
resemblance of aRCC transcriptome with auCC samples, we
observed that leukocyte cell adhesion and wound healing
processes are similarly altered in aRCC and UC but differ
from auCC samples. This suggest that refractory CC could be
a distinct disease entity with potentially unique patho-
mechanisms. In our previous work, we explored the resto-
ration of water malabsorption in CC colon after budesonide
treatment, and also found disparities between water chan-
nel aquaporin (AQP) 8 protein levels auCC and aRCC pa-
tients.12 Thus, supporting the hypothesis that despite
similar to treatment-naïve CC, refractory CC behave differ-
ently and that these patients could benefit from alternative
treatments, such as the ones available for UC patients.
Indeed, immunomodulators and anti-tumor necrosis factor
a therapies seem to have positive effects on aRCC pa-
tients.1,51,52 In addition, our results suggest that other bio-
logical treatments could be worth testing in aRCC. For
instance, promising leukocyte/lymphocyte trafficking
blocking therapies for UC patients under clinical trial testing
include antibodies targeting a4 or b7 integrin subunits on
leukocytes, or the mucosal addressin cell adhesion molecule
MAdCAM-1 on endothelia, and modulators of the
lymphocyte trafficking receptor sphingosine-1-phosphate
(S1P).53 Actually, the already approved a4b7 blocking
antibody vedolizumab induced clinical remission in almost
half of the patients assessed by Rivière et al.54 Thus, novel
IBD therapies would be worth to assess in large randomized
clinical trials with refractory CC patients.

CC is emerging as a common disorder but, to date, no
reliable disease-specific, noninvasive biomarker is available.
However, we could propose gene targets that could be
addressed for the development of novel therapies (eg,
DUOX2, PLA2G2A, CXCL9, CTR9, JOSD1, URI1, and SLC9A3).
Particularly, loss of function and excessive activity of en-
zymes producing reactive oxygen species DUOX2 and NOX1
have been suggested to contribute to gastrointestinal dis-
ease progression.55 Thus, NOX/DUOX inhibitors or reactive
oxygen species inducers could be of use to develop novel
therapies to treat CC. Similarly, other works found increased
levels of proinflammatory cytokines and chemokines in
CC56,57; hence, targeting the expression of genes related to
inflammatory processes (eg, PLA2G2A and CXCL9) could
prompt alternative treatment options.

In summary, this study provides a comprehensive land-
scape of CC pathology. Our results confirm that CC is an
immune-mediated IBD in which luminal antigen presenta-
tion might occur via dendritic cells. Clinical remission can be
achieved after budesonide treatment, but some genes
remain dysregulated and may open the door for new
treatments (eg, DUOX2, PLA2G2A, CXCL9). Still, budesonide-
refractory CC could comprise a transcriptionally distinct
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disease entity, and owing to its similarities with UC, aRCC
patients could benefit from treatments that are under
investigation to treat UC.
Materials and Methods
Study Population

Biopsy samples from the descending colon were
collected during scheduled colonoscopy in adult patients
with CC patients at the Division of Gastroenterology at
Linköping University Hospital, Sweden. CC was diagnosed
according to the current guidelines,2 primarily clinical his-
tory and histopathological features, including a subepithelial
collagen band of >10-mm thickness. Active CC was defined
as more than 3 bowel movements per day or at least 1
watery bowel movement per day during a 1-week regis-
tration period. Clinical remission was defined as less than 3
bowel movements per day and no watery bowel movement
within a 1-week period.58 A diagnosis of steroid-refractory
CC was reached if patients did not achieve clinical remis-
sion after treatment for 12 weeks with 6- to 9-mg/d bude-
sonide.2 Healthy volunteers were recruited from the local
colon cancer screening program at Linköping University
Hospital (Sweden) or St. Olav’s University Hospital
(Norway); these individuals showed normal macro- and
microscopic findings upon histopathological assessment,
had normal bowel movements, and did not take any medi-
cation at the time of colonoscopy. We enrolled treatment-
responsive patients with active CC, and some of them
agreed to have additional biopsies and blood samples
(collected in EDTA tubes; BD Biosciences, San Jose, CA)
taken after reaching remission during budesonide treatment
(after 6 weeks of treatment on average). We also obtained
samples from steroid-refractory CC patients and healthy
control subjects following the same bowel preparation
procedure and biopsy taking from the descending colon as
mentioned above. Active UC samples from patients without
medication intake (n ¼ 4) were used for comparison and
collected at St. Olav’s University Hospital. These were
diagnosed and assessed following the guidelines stated in
the Mayo score system.59 Detailed patient characteristics
can be found in Tables 1 (exploratory cohort) and 3 (vali-
dation cohort). Adjacent biopsy samples from the same
mucosal area were stored in AllProtect (Qiagen, Hilden,
Germany) or RNAlater (Thermo Fisher Scientific, Waltham,
MA) for subsequent RNA extraction, or in phosphate-
buffered saline (PBS) for fixation in paraformaldehyde,
embedding in paraffin, and analyses using microscopy.



Figure 10. CC intestinal epithelial cell gene expression compared with Hc subjects. (A) Volcano plot showing differentially
expressed protein-coding genes in auCC (upregulated genes in blue) compared with Hc subjects (upregulated genes in red).
(B) GSEA performed including DEGs between auCC and Hc samples, ranked based on adjusted P values. (C) Heatmap
showing normalized log2-transformed fold changes (using the regularized log function in R) of RNA-seq transcript counts (log
TC) from leading genes contributing to the enriched gene pathways shown in B. (D) Diagram displaying the numbers of DEGs
coding for proteins between CC patient subgroups. The expression of 39 genes changed between auCC and itCC samples
(green), while 29 did between auCC and aRCC samples (yellow), and 38 did between itCC and aRCC samples (pink). A total of
339 genes changed between different CC subgroups. (E) Volcano plots showing differentially regulated protein-coding genes
in auCC compared with itCC samples (left) or to aRCC samples (center), and between itCC compared with aRCC samples
(right). Red and blue colors indicate the group were genes are upregulated. (F) Heatmap showing normalized log2-transformed
fold changes (regularized log function in R) of RNA-seq transcript counts (log TC) from all the differentially expressed protein-
coding genes between CC subgroups in comparison with Hc samples. Heatmap rows and columns are split according to
hierarchical clustering. Hc subjects are shown in green, auCC samples in orange, itCC samples in blue, and aRCC samples in
purple.
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Informed written consent was obtained from all subjects,
and their data were handled according to current regula-
tions (EU2016/679, corrigendum May 23, 2018). Ethical
approval was issued by Linköping’s regional ethical com-
mittee to conduct studies in microscopic colitis, including CC
(Dnr 2015/31-31), and by St. Olav’s University Hospital
with approval from the Central Norway Regional Committee
for Medical and Health Research Ethics no 2013/212/
REKmidt.
Genome-Wide Messenger RNA-Seq
Biopsies preserved in AllProtect or RNAlater (n ¼ 13

healthy control subjects, n ¼ 9 per CC group, and n ¼ 4 UC)
were homogenized in RLT buffer from RNeasy Mini Kit
(Qiagen) supplemented with 1% 2-mercaptoethanol using a
T10 Ultra Turrax homogenizer (IKA; Thermo Fisher Scien-
tific). Total RNA from homogenized biopsy samples was
isolated using RNeasy Mini Kit following the manufacturer’s
instructions. RNA from laser capture microdissection ma-
terial (n ¼ 8–9 per group) was isolated with RNeasy FFPE
kit (Qiagen, see the following sections). RNA integrity was
assessed using an Agilent RNA 6000 Pico kit on a 2100
Bioanalyzer (Agilent Technologies, Santa Clara, CA). The
DV200 value, representing the percentage of RNA fragments
more than 200 nucleotides long, was used as a measure of
RNA quality. The range of DV200 values was 30%–70%.12

RNA sequencing libraries were constructed with SENSE
totalRNA with Ribo cop rRNA depletion (Lexogene, Vienna,
Austria), and single-read sequenced for 75 cycles to a depth
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of 25 million base reads on a HiSeq4000 instrument (Illu-
mina, San Diego, CA), according to the manufacturer’s rec-
ommendations. FASTQ files were generated using bcl2fastq
software v2.18 (Illumina). Data was analyzed using the R
Bioconductor software v3.5.1 (R Foundation for Statistical
Computing, Vienna, Austria), including SARTools v1.6.6 and
DESeq2 v1.22.1 packages.60–62 Reads were aligned to the
Ensembl GRCh38 genome version, release 92. RNA-seq data
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are available at Gene Expression Omnibus under the
accession number GSE159010 (https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc¼GSE159010).
RNA-Seq Data Analysis
Differential gene expression from RNA-seq data was

determined with linear models using DESeq2 v1.22.1 and
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Figure 11. (See previous page). CC IECs’ transcriptional profile suggest cell proliferation and recognition of antigens
better than IEC from control subjects. (A) GSVA computed for different epithelial cell types from RNA-seq data displaying
enrichment scores (ES) (median with interquartile range). Hc subjects are shown in green, auCC samples in orange, itCC
samples in blue, and aRCC samples in purple. (B) Representative IHC images of longitudinally sectioned epithelial glands
stained for Ki67 proliferation marker (brown) in paraffin-embedded sections of Hc and CC colonic mucosa (left). Analysis of
Ki67 relative staining to total crypt length is shown on the right (median with interquartile range, median of 9 crypts/patient). (C)
Pattern recognition receptor and HLA gene expression in intestinal epithelial cells from CC mucosa as normalized log2-
transformed fold changes (using the regularized log function in R) of RNA-seq transcript counts (median with interquartile
range) of pattern recognition receptors including members from the NOD-like, RIG-I-like, and Toll-like families, and HLA genes
(divided into genes coding for major histocompatibility complex [MHC] type I and II proteins). Group colors are the same as in
A. (D) Representative IHC images of HLA-DMA staining of paraffin-embedded sections from Hc, auCC, itCC, and aRCC
colonic samples. Note the brown staining in the apical side of IEC sin crypts from active samples (black arrows). n ¼ 7–13
samples per group. Statistically significant differences relative to Hc samples are shown as *P < .05, **P< .01, and ***P < .001;
statistically significant differences relative to itCC samples are shown as #P < .05 and ##P < .01. EEC cells, enteroendocrine
cells; EC, enterocytes; M cells, microfold cells.

Figure 12. Active refractory CC mucosa shares similarities with ulcerative colitis. (A–E) Heatmaps showing regularized
log2-transformed fold changes of RNA-seq transcript counts from leading genes contributing to the enriched gene pathways in
UC, auCC and aRCC colonic mucosa related to ECM organization and (A) collagen, (B) angiogenesis, (C) leukocyte cell
adhesion, (D) wound healing, and (E) and humoral immune response. auCC samples are shown in orange, aRCC samples in
purple, and UC samples in black. Heatmap rows and columns are split according to hierarchical clustering. n ¼ 4–9 samples
per group.
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significance decided by Benjamini-Hochberg false discovery
rate (FDR)–adjusted P values <.05. Principal component
analysis was computed after making the data homoscedastic
using R. GSEA of CC-specific genes was performed using
EnrichR and taking into account the outcome from Gene
Ontology, Kyoto Encyclopedia of Genes and Genomes, and
WikiPathway databases. GSEA for comparisons of 2 sample
groups was performed in GSEA63,64 v4.0.3 (Broad Institute,
Cambridge, MA) using updated guidelines.65 DEGs were
filtered for genes with <10 counts and ranked according to
their differential gene expression log10-adjusted P value and
sign of log fold change. Human gene set annotations from
Gene Ontology, Reactome, and other databases were
downloaded from Bader’s Lab website excluding those
inferred from electronic annotations (https://download.
baderlab.org/EM_Genesets/, release January 2020). Terms
annotating more than 200 or <10 genes were discarded to
improve biological interpretation. GSEA results were visu-
alized using EnrichmentMap66 v3.2.0 and a FDR P value of
<.05, a Jaccard Overlap Combined index of 0.375, and k
constant of 0.5, and annotated using AutoAnnotate v1.3
applications for Cytoscape v3.7.2, and improved in Inkscape
v0.92.4. Gene expression was normalized using the regu-
larized logarithmic function in R for subsequent analyses
and representation. Markers for stromal (fibroblasts and
enteric neurons), immune and epithelial cell subtypes
retrieved from publications (Supplementary
Table 5)16,17,67,68 were used to compute GSVA using the
GSVA69 package in R v3.6.3. Human orthologue annotations
of epithelial and fibroblastic cell markers were procured
from the Mouse Genome Database, Mouse Genome Infor-
matics (http://www.informatics.jax.org; The Jackson Labo-
ratory, Bar Harbor, ME), April 2020. Paneth-like cells were
identified with a combination of Paneth-1 and Paneth-2
biomarkers17 and the inclusion of human Paneth
cell–derived defensin genes.70 GSVA was analyzed using
linear models using DESeq2 v1.22.1 and significance
decided by Benjamin-Hochberg FDR adjusted P values <.05
using R software.

Laser Capture Microdissection
Colonic biopsy samples collected in PBS were fixed in

paraformaldehyde and embedded in paraffin (FFPE sam-
ples). Matched samples from 8 steroid-responsive CC
patients before and during budesonide treatment, 9 steroid-
refractory CC patients, and 9 healthy control subjects were
used for microdissection. Laser capture microdissection was
performed as previously described.12 Briefly, samples were
cut into 10-mm sections and mounted on RNase-free MMI
Membrane Slides (Molecular Machines and Industry; MMI
AG, Eching, Germany); afterward, samples were stained with
hematoxylin following standard protocols. The sections
were dehydrated with 100% ethanol and xylene, followed
by air-drying in a desiccator for at least 30 min. Intestinal
epithelial cells (area of 106 mm2, corresponding to approx-
imately 104 cells) were isolated from all samples with a UV-
LCM MMI Cellcut device connected to an Olympus IX71
microscope (Olympus, Tokyo, Japan), and collected in MMI
isolation caps with diffuser (all from MMI AG), following the
manufacturer’s recommendations. Isolated cells were kept
in PKD lysis buffer from the RNeasy FFPE kit at –80ºC until
RNA was isolated.
Immunohistochemistry
Paraffin-embedded sections (4 mm) were cut in a

microtome and deparaffinated with Histolab Clear (Histolab
Products, Västra Frölunda, Sweden). Antigen retrieval was
performed in 10 mM citric acid pH 6.0 containing 0.05%
Tween 20 (Sigma-Aldrich, St. Louis, MO) in a 2100 Retriever
(Aptum Biologics, Hampshire, United Kingdom). Samples
were incubated with peroxidase 1 and blocked in Back-
ground Sniper (both from Biocare Medical, Pacheco, CA).
Anti-Ki67 (GTX16667; GeneTex, Irvine, CA), anti-HLA-DMA
(HPA012750; Atlas Antibodies, Bromma, Sweden), anti-
CD1a (M3571; Dako-Agilent, Santa Clara, CA), rabbit or
mouse IgG isotype antibodies (Thermo Fisher Scientific),
secondary donkey anti-rabbit IgG biotin conjugated anti-
body (ab6801-500; Abcam, Cambridge, United Kingdom),
and secondary goat anti-mouse IgG biotin conjugated anti-
body (ab6788; Abcam) used to stain the samples in PBS
with 0.1% bovine serum albumin (Sigma-Aldrich). The
avidin/biotin-complex kit and DAB peroxidase substrate kit
were used to develop the staining (Vector Laboratories,
Burlingame, CA). Dehydration was carried out before
mounting the slides with EcoMount (Biocare Medical). Im-
ages were acquired on an Olympus BX51 microscope.
Reverse-Transcription qPCR
Biopsies preserved in AllProtect were homogenized in

RLT buffer from the RNeasy Mini Kit supplemented with 1%
2-mercaptoethanol in a TissueLyser II instrument (all from
Qiagen). Total RNA from homogenized biopsy samples was
isolated using the RNeasy Mini Kit following the manufac-
turer’s instructions. Total RNA from frozen blood samples
was isolated using TRIzol reagent (Thermo Fisher Scientific)
in a 10:1 dilution (TRIzol:blood) following the recom-
mended protocol for RNA isolation and subsequently
cleaned with RNAeasy Mini Kit. RNA was quantified using a
NanoDrop ND-2000 and reverse-transcribed with a High
Capacity cDNA Reverse Transcription Kit (all from Thermo
Fisher Scientific). Relative gene expression was quantified
by RT-PCR with iTaq Universal SYBR Green Supermix (Bio-
Rad, Hercules, CA) following the manufacturer’s instructions
and using the primer pairs in Supplementary Table 6.
Primers were designed to amplify all transcript coding
variants of the selected gene in the Reference Sequence
(RefSeq) collection of the National Center for Biotechnology
Information (Bethesda, MD), taking the longest transcript
sequence as a reference, with primers annealing in different
exons for all transcript variants using Primer3Plus v2.4.2
software.71 Quantitative analysis was carried out in a CFX96
Touch Real-Time PCR detection system (Bio-Rad) using the
relative quantification –DCt method. Hypoxanthine phos-
phoribosyltransferase (HPRT) 1 was used as a reference
gene, and each sample was analyzed in duplicate.

https://download.baderlab.org/EM_Genesets/
https://download.baderlab.org/EM_Genesets/
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Statistical Analyses
Ki67 median percentage of staining in crypts from hu-

man colonic samples were analyzed with the nonparametric
Kruskal-Wallis test when different groups were compared
among each other. The nonparametric Wilcoxon test was
used to compare paired samples from CC patients before
and during treatment. Quantitative PCR data (–DCt values)
were analyzed with the nonparametric Kruskal-Wallis test
and Mann-Whitney test when different groups were
compared and with the nonparametric Wilcoxon test when
paired samples from CC patients before and during treat-
ment were compared, and adjusted according to Benjamin-
Hochberg FDR. Statistical analyses were performed and
plotted in GraphPad Prism v8.0.1 (GraphPad, San Diego, CA,
USA) or R.

All authors had access to the study data and reviewed
and approved the final manuscript.
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