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Two major forces have contributed to the fast growth of human genetic data. One from medical research
supported by governments and academic institutes; the other from direct-to-consumer (DTC) sequencing
companies. While the former benefits frommeticulously designed sequencing standards and quality con-
trol procedures, the latter comes in various formats and sequencing methods which are subject to
changes over time and the particular needs of different companies. Thanks to the general public who
shared their DNA data without constraint, here we provide a review for over 7000 genomes made public
between 2011 and 2020, and produced by over six DTC sequencing companies. An open source tool-kit to
systematically parse, quality check and filter genome files and statistically problematic alleles is provided
to prepare consumer DNA datasets for research. The GenomePrep output is available in two common DNA
datafile formats to enable further analysis with other tools. We also provide for download the combined
output for all OpenSNP array genomes processed in this paper in a single data freeze file.
� 2021 MRC Laboratory of Molecular Biology. Published by Elsevier B.V. on behalf of Research Network of
Computational and Structural Biotechnology. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Customers of the direct-to-consumer (DTC) genotyping compa-
nies represent the majority of the population who have had their
genome read. This group is under-exploited by the academic
genetics community for research. At the time of writing in Jan
2021, the two largest sequencing companies AncestryDNA and
23andMe officially report 30 million customers in total [1,2], and
1.4 million and 1 million in research cohort size respectively for
the Global Alliance for Genomics & Health (GA4GH), the interna-
tional consortium for sharing genomic data [3]. These are people
who have paid for sequencing, have ownership of their personal
raw DNA data and the freedom to choose how they wish to use
it [4]. Many of these consumers have shown interest in under-
standing their genomes better by taking the initiative in paying
for third-party services like Xcode Life, CodeGen etc. These people
represent a huge potential group of participants for genetic
research that is seeking to validate findings by a random or untar-
geted cohort, or trying to study the genetics for a particular pheno-
type under limited budget.

One of the main hurdles in utilizing consumer DNA data for
research is that these data vary greatly in sequencing methods
and, most importantly, the data quality. For the majority of con-
sumers who have had their DNA genotyped, the versions of geno-
typing microarray differ for different companies at different time
periods. The sequencing methods are often selected and designed
based on the individual marketing needs of the companies and
the DNA data are processed by a different bioinformatics team in
each company. Researchers will not have access to the internal
quality control data on the samples/arrays from the various com-
panies; they most often have to deal with whatever raw download
format the DNA data are provided to the customer in, which may
have undergone varying amounts or types of quality control.

These limitations mean that mass genetic data are most useful
to the DTC company responsible for the genotyping, or partners
who have commissioned a large project. Here, we will firstly pro-
vide a review of the commercial providers, their offering of
sequencing methods and genotyping arrays. Secondly, over 7000
genomes were downloaded from open genetic data sharing plat-
forms, the majority coming from the OpenSNP project [5]. The gen-
y.
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Table 1
List of genotyping arrays commonly used by DTC companies.

Chip ID Size Rationale & reference DTC companies*

Illumina HumanHap550 ~560,000 Derived from the International HapMap project, mostly targets 4 populations in
the project: Caucasian, Han Chinese/Japanese and Yoruba [13]

23andMe v1, v2
deCODEme

Illumina OmniExpress ~730,000 +/�
selected

Derived from the 1000 Genomes project, designed to target a specific MAF
range. OmniExpress cover common variants down to 5% MAF [14]

23andMe v3
AncestryDNA
FamilyTree DNA
MyHeritage

Illumina HTS iSelect (HD) Custom select More cost effective than OmniExpress with a smaller set of SNPs [15] 23andMe v4
Illumina GSA ~650,000 Designed to have better imputation accuracy, to cover variants from ClinVar

and special markers, and to achieve high-value for cost [16]
23andMe v5
Living DNA
FamilyTree DNA (2019)

Illumina CoreExome ~570,000 + selected Customisable chip offering economical way to perform large genetic studies.
Developed in collaboration with research institutions [17]

Genes for good (academic
study, non-commercial) [18]

Illumina ASA ~650,000 The GSA Asia chip included Asian-specific markers WeGene (China)
Diagnomics (South Korea)

Affymetrix (Thermo Fisher)
UKBiobank Axiom Array

~820,000 Imputation-aware SNP selection, optimized for GWAS, low-frequency SNPs of
European and British ancestry [10,19]

Living DNA (2019)

* The list is not exhaustive.
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omes were parsed, processed and analysed for comparison and to
create a pipeline for specific quality control of consumer genomes,
thus enabling general genetics research on these data. We have
made open source code, a web interface available for user to
upload and run the pipeline, and a data-freeze of over 5000
OpenSNP genomes post-process.
2. Review of genotyping arrays commercial providers

Genotyping refers to the usage of single nucleotide polymor-
phism (SNP) arrays to genotype human DNA at ten-thousands to
a million SNPs across the genome simultaneously [6,7]. Because
it can effectively gather information on SNPs of known importance
at a relatively low cost, genotyping remains the most common
choice for consumer genetic data sequencing.

Late 2000 to early 2010 marked significant technological devel-
opment of genotyping arrays, during which time 2 methods from
Affymetrix and Illumina, namely the Affymetrix GeneChip
(SNP5.0, SNP6.0) and Illumina BeadChip (HumanHap550 and Omni
family), stood out. These have been extensively reviewed on their
technology and historical development [6,7], genotype calling soft-
ware [8], and genome coverage evaluation for GWAS studies [9].
Both the Affymetrix and the Illumina methods for SNP genotyping
have been widely used, and reported to achieve above 99.5% accu-
racy in genotype calling [7,8]. With accuracy levels competitive to
each other, the two companies designed their services to cater for
different sequencing and cost-effectiveness needs of customers.

Illumina has occupied most of the consumer genomics market.
Almost all of the top DTC companies are using the Illumina geno-
typing arrays (Table 1). The consumer sequencing giant 23andMe
have changed its choice of genotyping array 5 times since the com-
pany founded in 2006, but remained closely tied with Illumina.
Three companies that have focused on ancestry detection, namely
AncestryDNA, FamilyTree DNA and My Heritage, have mostly
retained their choice with the Illumina OmniExpress chip, although
each have different custom selected or excluded SNPs of their own
specific design. To design the current Global Screening Array chip,
Illumina started a consortium and collaborated with research insti-
tutions as well as DTC companies.

Affymetrix (Thermo Fisher) has mostly worked with population
genomics studies from research institutions. For instance, its cus-
tom UK-Biobank chip that genotyped 500,000 people [10].

The most appealing advantage of genotyping arrays over next
generation sequencing (NGS) is the cost. Therefore, when design-
ing a SNP array chip, it is always necessary to consider targets:
whether to cover as many common SNPs as possible for an interna-
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tional audience, or to target a specific population with more
population-specific SNPs included, or to target a particular disease
or phenotype by including relevant rare SNPs. Also because of the
need for cost-effectiveness, the chip size is essentially capped at 1
million, with most products having 600 K to 800 K SNPs, which
would represent less than 1% of the over 100 million validated
human polymorphisms in dbSNP database [11].

The size limit of genotyping arrays has also meant they would
be likely to have only a small overlap with each other. For example,
two of Illumina’s most popular products, OmniExpress and GSA,
have only 20% overlap by SNP positions, as shown by a LivingDNA
blog post [12] and revealed by data analysis in this paper (Sec-
tion 3.2). This represents a potential problem in cross comparison
of genetic data produced by different types of genotyping arrays.

2.1. On direct-to-consumer Next-Generation sequencing (NGS)

Next-generation sequencing includes whole genome sequenc-
ing (WGS) and whole exome sequencing (WES). Instead of using
chip arrays, which use short nucleotides to exact-match stretches
of DNA with a predefined SNP, NGS sequencing will read longer
overlapping stretches of DNA de novo and align them to the refer-
ence genome to see the differences [20]. With sufficient depth of
overlap between reads, NGS will potentially find all variants in
the genome, common or rare. A depth of e.g. 30x means that posi-
tions on the genome have been sequenced 30 times across individ-
ual overlapping reads.

Since the first human genome sequenced in 2013, the cost of
whole genome sequencing has gone down significantly, reported
to require minimum $1906 for whole genome sequencing (WGS)
and $555 for whole exome sequencing (WES) at year 2018 [21],
and is advertised at $800 for 30x WES in 2021 [22]. However, this
is still over 10-fold the cost of genotyping, a price point that means
NGS is still not the primary choice for the majority of consumers.
There are not yet enough direct-to-consumer NGS data for the
work in this paper, but it is the natural extension in the future
when NGS inevitably replaces genotyping.

2.2. On imputation from SNP arrays

‘Imputation’ is commonly applied to genome arrays to give
pseudo-coverage of the genome for positions that are not directly
measured by the array [23]. These are statistically derived esti-
mates using the principles of genomic inheritance. It should be
noted that while reproducibility of current genotyping arrays is
estimated at above 99.9% [14,16], the accuracy of imputation
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depends on the type of SNP positions in the array, with even the
Illumina GSA (among the best for imputation) lower than 91% for
the easiest target of MAF > 5% [16]. Therefore, the most informative
and trust-worthy data to use for research are those measured on
the genotyping array, and secondly imputations with different
levels of success rate for different version of arrays, then finally
there are dark positions in areas of the genome that imputation
doesn’t cover.
3. Analysis and comparison of genotyping arrays from
consumer data

The above review of genotyping arrays (in Table 1) that are
broadly provided by the sequencing companies relies on publica-
tions and media reports. As there is no universal access to the com-
panies’ internal array data and pipelines, this is only of limited use
in understanding the nature of the information contained in the
raw DNA files they provide for download to their customers. Thus,
we provide here an analysis of the arrays from a large sample of
consumer data covering multiple companies. Thanks to the thou-
sands of participants of the open genome projects who have
donated their genetic data to the public good, the majority from
the OpenSNP platform [24], we were able to identify various types
of arrays used in consumer genotyping over the past decade by at
least 6 different companies.

3.1. Public genomic data

In 2005, George Church talked about recruiting cohort partici-
pants who are consented based on expectation of full public data
release [25], and initiated the Harvard Personal Genome Project
(PGP) [26]. Independently in 2011, Bastian Greshake et al. set up
the OpenSNP platform as a crowd-sourcing and crow-funded plat-
form, for consumers of DTC companies to publicly share data and
communicate with each other [5].

For this work we used 4401 genomes from OpenSNP for SNP
array comparison (Section 3.2) and 7076 from OpenSNP and PGP
for quality control analysis (Section 4). A total of 5790 genomes
were initially downloaded from the OpenSNP webserver in Oct
2020 [5]. We observed from the dates that a continuous supply
of data must have accumulated over a period of 9 years (Fig. 1).
At the time of writing, a few users have removed their data from
the public domain, therefore we have restricted our analysis to
the remaining 5784 genomes from 5258 users. By July 2020, the
Harvard PGP server [27] hosted 3609 open genetic data files for
1375 participants. One third of the genetic data comes from Veritas
Genetics, which is 1061 files for just 127 participants that con-
tained large sequence alignment data (e.g. BAM) not yet processed
with variant calling. These are excluded. Another one third of the
data from PGP are duplicate files, secondary reports from a third
party, and microbial genomes; these were all also excluded. In
the end, manual data cleaning yielded 1292 plausible genetic data
files for 1012 participants.

3.2. SNP array comparison

SNP arrays were analysed from 4401 OpenSNP open genomes
downloaded at the time of analysis. This includes genetic data from
23andMe (~78%), AncestryDNA (~14%), Family tree DNA, My Her-
itage (8%) and small numbers from deCODEme, Genes-for-good
(non-commercial), IYG, etc. Using OpenSNP data (method in Sec-
tion 4.1), 5 major clusters of SNP arrays were identified (Fig. 2,
Table 2).

The files investigated contain from 500 thousand to 1 million
SNPs. The difference between two files is represented by DN,
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namely the number of SNPs not in common between the two files.
It is observed that DN can be as large as 1.4 million, which means
two data of size 500 thousand and 1 million only have 100 thou-
sand SNPs in common with each other.

Using DN as the distance measure of SNP array difference
between genotyping data, 5 major clusters of SNP arrays can be
found after clustering (Fig. 2). The genotyping data in each cluster
are more than 90% similarity with each other in the SNP array,
although some files still contain positions that are not seen in
99% of other files (Fig. 2B).

The companies and possible chip array version for each cluster
are deduced from both the clusters, and using header information
in the data (Table 2). 23andMe data predominantly come from 3
types of arrays, which are deduced to be the Illumina HTS iSelect
HD (c1), OmniExpress plus (c4) and GSA (v5). The c4 is the largest
genotyping array of ~1 million positions, covering roughly 90% of
the c1 and c3. The c3 is made of ancestry-targeted companies,
including the Ancestry V1, FamilyTree DNA and My heritage. It is
a reduced Illumina OmniExpress array that contains most of the
SNPs useful for ancestry-detection. The second version of Ancestry
chip array is also observed in the data as the cluster c5. Deduction
of the above chip arrays were made with information taken from
the International Society of Genetic Genealogy (ISOGG) wiki [28].
4. Genome processing and quality control pipeline

To demonstrate and facilitate the use of consumer data, we
developed a quality control pipeline to systematically process them
(Fig. 3). We make this pipeline available as ‘GenomePrep’ via a web
service (http://supfam.mrc-lmb.cam.ac.uk/GenomePrep/) and as an
open source package on GitHub. Briefly, the pipeline includes pars-
ing files of various formats from different companies, sanity check-
ing the files and excluding ones that may have problematic data,
then sanity checking the SNPs to exclude those with a statistical
profile that is not credible. This section describes the details of
the quality control procedure and results of processing over 7000
open genetic data files using the pipeline.

4.1. Input file format

Unlike research projects where data collection is organized and
obtained from sequencing at source, consumer data collection is
almost impossible to do consistently or reliably. There are Micro-
soft Word documents, files that have been edited, or files that
are somehow rendered unusable by the consumer in the process
of handling it.

In this procedure, PDF and word documents are excluded
whereas text files are sent to the parser. Compressed files such
as zipped, gzip, or bzip2 files are decompressed and included if
found to contain one single genome flat file, but still excluded if
the program can’t identify the genome file. For the genotyping files,
the parser recognizes data files from companies that are included
in the open genome dataset, e.g. 23andMe, AncestryDNA, Family
Tree DNA, My Heritage, deCODEme etc. Due to some file formats
being common or compatible between companies, the parser will
likely work for some companies not explicitly listed. VCF-format
files are also recognized and parsed.

4.2. File sanity check

While it is straightforward to identify and exclude unreadable
files, it is more difficult to identify those that have undergone some
level of corruption or edits, whether they intentional or uninten-
tional alterations. The part of the procedure described below iden-
tifies important information about the genome, e.g. assembly, and

http://supfam.mrc-lmb.cam.ac.uk/GenomePrep/


Fig. 1. Overview of open genomes. (A) 7076 genetic data files were obtained from OpenSNP and the Harvard PGP cohort. (B) Accumulation of genomes on OpenSNP over the
past 9 years. Since 2014, a steady rate of about 60 DNA data uploads per month is observed (red line). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Fig. 2. Clustering of genotype genetic data by similarity in the SNP coverage. (A) Heat-map of distance matrix. Distance is defined as the SNP positions not in common
between a pair of files. The cutoff for clustering is set at 200 K. (B) Distribution of SNP by genotyping call coverage is plotted for each cluster. The bars on the left of each
subplots show the number of SNPs that are common to 100% of files within the cluster. Bars on the right show the number of SNPs that are only seen in a small number of files
within the cluster. (C) Table lists the exact number of SNPs in each cluster.

Table 2
List of major clusters identified in Fig. 2.

Cluster
ID

Company composition Average
SNPs

Chip base
(deduced)

common in
c1

common in
c3

common in
c4

common in
c5

common in
v5

c1 23andMe-v4 ~600 K HTS iSelect HD – 43% 54% 47% 17%
c3 AncestryDNA-v1, Familytree DNA, My

Heritage
~700 K OmniExpress 50% – 69% 64% 25%

c4 23andMe-v3 ~960 K OmniExpress plus 87% 94% – 68% 28%
c5 AncestryDNA-v2 ~670 K OmniExpress plus 52% 60% 47% – 23%
v5 23andMe-v5, Living DNA ~650 K Illumina GSAs 18% 23% 19% 23% –
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sanity checks the data for: completeness; reasonable variations
from reference genome; and to confirm the SNP’s calling strand
is processed correctly. Suspicious data is excluded with a reason
provided in the output.
4.2.1. Identify the assembly version and compare to the reference
genome

In the first step, the assembly is determined from the genetic
file through header lines and a few known signature SNPs, default-
ing to GRCh37 if the above information is not found. Then using
this version of the assembly, the genetic files are compared to
3750
the respective reference genome to check whether the data pre-
sents a reasonable human genome with a plausible number of vari-
ants. Option is provided to convert genetic data to different
versions of genome assemblies through CrossMap [29].
4.2.2. Check the reverse strand SNP calling
It is a known problem in the field that SNPs are not always

reported consistently on the same strand for all companies. This
information is usually missing from the final data. In addition,
there is no access to the companies’ internal quality check proce-
dure on the samples, only the final results. Therefore we attempt



Fig. 3. Summary flowchart of consumer genome processing pipeline. Three major steps of quality control are shown above and the respective results from processing 7076
open genomes are shown below, with corresponding colours. Red numbers indicate files that are excluded in various stages of the pipeline. In the end, less than 5% were
excluded, and nearly 91% of the open genomes were found to be genotype data with a cluster assigned. These are subsequently subjected to SNP quality control, as per
Section 4.3 and Fig. 4. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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to detect this and, if found, try to fix it by flipping SNPs on genes
known to be coded in the reverse strand. After fixing, it is checked
again to make sure the issue is no longer detected, otherwise the
file is rejected. This check is important as unfiltered data of this
kind would create a serious anomaly in the allele distribution
and influence results of some analyses.

4.2.3. Check sequencing method for VCF format files
The variant-call-format (VCF) format was designed for NGS

data, as it presents whole genome data with good storage effi-
ciency by only listing SNPs for which genotypes are non-identical
to the reference genome. In the consumer dataset however, we
observed that many VCF format files contain over 50% of their
entries reported as identical to the reference genome. The reason
for this turned out to be that they are the result of genotype array
data being converted to an NGS VCF format. Another feature of
these genotype-converted VCF files is that many entries lack infor-
mation about the alternative allele. This is because it is not pro-
vided in the genotype data it was converted from. The program
will automatically deduce and separate out genuine NGS files,
and label those from the genotype-derived VCF files as genotyping
results.

4.3. SNP sanity check

4.3.1. Basic SNP check
Surprising entries can be seen when processing genotype data

that is not directly obtained from a primary source. Entries that
contain unexpected characters are excluded. SNPs are checked
for valid chromosome IDs, and positions should be included in
the reference genome. Genotype calls should be 1 or 2 digits, and
correspond to valid amino acid or in/del characters. Positions with
no calls, e.g. ‘-’, ‘_’, ‘00 are also noted and excluded.

4.3.2. Match the genotyping data to a cluster and flag those that match
no cluster

The genotyping data are matched to one of the array clusters
identified in Section 3.2. A cluster is assigned if it covers 80% of
the SNPs in the genome. This is important because genotyping data
are subjected to quality control of different lists of SNP positions
depending on their cluster (see below, 4.3.3). Genomes that do
not have similarity to any cluster are also labelled.
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4.3.3. Remove SNP positions in the array that are not statistically
plausible

This is one of the most important and challenging parts of qual-
ity control for genotyping data. We have generated lists of SNPs in
the public DTC datasets that do not seem credible when compared
to an independent source of allele frequencies. Common practice
for medical cohorts is to perform SNP quality control using PLINK
to exclude the problematic positions before using the data for
research [30], using statistics such as Hardy-Weinberg equilibrium
P-value. In the absence of consistently generated cohort data, we
make use of the cluster assigned in step 4.3.2 for quality control
of the SNPs. Our approach is to use allele distributions from the
2504 genomes in the 1000 genomes project (1000G) as a reference,
and for each cluster generate a list of SNPs that fail a Z-score based
comparison test. Since the ethnic distribution of open genomes has
an over-representation of individuals of European descent relative
to that of the 1000G, we require a Z-score failure on both the entire
1000G and separately on the European subset of 1000G. Based on
the assigned cluster from 4.3.2, the corresponding list of genotype
positions is excluded from an individual genome.
4.3.4. Check for genome identity and close familial relationship
As an additional check, the final step is to compare genetic sim-

ilarity between genome files to detect and report files which corre-
spond to the same individual (or identical twin), and files which
correspond to immediate relatives (siblings or parents/children).
For some research questions it may be desirable to filter out dupli-
cates or related genomes, so the similarity is calculated as a per-
centage overlap of positions reported in both files. Cutoffs for
duplicates and close relatives are derived from the distribution
observed in Fig. 5. This feature is included in the package, but
not available on the web service, which is for single genomes only.
4.4. Results of quality control on test genomes

After the pipeline, 6477 DNA data were identified as genotyping
results and a typical microarray type is identified for 99% of them
(Fig. 3). A single combined data-freeze for the 5393 OpenSNP geno-
typing data whose microarray type was identified by pipeline is
available for download from https://supfam.mrc-lmb.cam.ac.uk/
GenomePrep/.

https://supfam.mrc-lmb.cam.ac.uk/GenomePrep/
https://supfam.mrc-lmb.cam.ac.uk/GenomePrep/
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It is worth noting that the new chip Array cluster v5 (Illumina
GSA) is found to be on average the most similar to the reference
(Fig. 4B), and it also contains the most fraction of questionable
SNPs (Fig. 4C). We also observed that the GRCh36 genomes tend
to fall in clusters c3 and c4 (Fig. 4D), which correspond to v1 of
AncestryDNA and the v3 of 23andMe 1 million array respectively.
This observation corroborates our previous deduction of array
chips shown in Table 2, as the c1 (23andme v4), c5 (AncestryDNA
v2) and v5 (Illumina GSA) all appeared later in the time line. A
small number of GRCh38 genomes were seen in the v5 cluster,
which is currently the most popular chip array.

The results of pair-wise comparisons between all genomes
enable the identification of genomes from the same genetic origin,
and close relatives (Fig. 5). 500 people (or identical twins) were
found to have uploaded more than one open genome. An estimated
5781 different genetic origins were found within the entire cohort
of open genomes.

5. Discussion

Consumer genome sequencing products are developed not only
by technological advancement, but also under the economics of
market pressure to be financially beneficial to the company. We
have observed companies developing different genotyping arrays
for different purposes (Table 1), and the differences create a signif-
icant barrier to cross-provider analyses. In the future, even as we
ultimately see NGS sequencing take over for DTC customers as it
gets cheaper, we will likely see this issue persist as DTC genomes
emerge with various sequencing depth from different sequencing
technologies and bioinformatics pipelines. This presents a current
and future challenge for widespread use of DTC genomes for
research. As consumer genomes continue to grow and outstrip
medical cohorts in size, cross-provider tools such as GenomePrep
Fig. 4. Analysis split into the genotype data clusters identified in Fig. 2 and Table 2C. Dist
and (C) fraction of excluded SNPs for each cluster. (D) Distribution of number of genom
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made available through this work, will be required to capitalise
on the massive potential of this body of data as a research resource.

Most genetic analysis requires a cohort of data to establish vari-
ant statistics. So what one consumer can do with the raw genome
data is very limited. The power of consumer genomes comes when
there is a large amount of data, which is currently accessible as a
homogeneous dataset by only the companies that initially con-
ducted the sequencing. Increasingly however, as these companies
move to monetise their access to this resource, savvy consumers
who control their own data will look outside the original provider
for ways to share and use their genome. We will see power move
away from providers as large scale online match-making services
between consumers and e.g. drug companies emerge.

We were only able to develop this quality control pipeline,
thanks to the thousands of people who donated their data to open
research [31,32]. At minimum, hundreds of sequencing results are
needed to establish the statistical power necessary to determine
alleles that are likely errors in each cluster of genotypes. Genomics
and human genetics are scientifically fundamental and commer-
cially valuable [33]. It is our hope and expectation that, whatever
happens in the commercial marketplace, there will continue to
be an abundance of volunteers stepping forward to support aca-
demic medical (and other) research by contributing their genome.
At present it seems likely that individuals will ultimately have
major control over how, and by whom their own genome is used.

Consumer genetic data is going to keep growing. At the moment
consumer data used for research is via consumers opting into
research consent, e.g. 23andMe, AncestryDNA; sometimes this
data, or access to customers is sold as a package to commercial
and academic parties. Academically, genomic data is generated
by institutions who usually recruit participants with particular
phenotypes and where sequencing is supported by research grants.
At some point, as most people have control of some form of per-
ribution of (A) total number of filtered SNPs, (B) similarity to the reference genome,
es in each cluster by the genome reference assembly.



Fig. 5. Pairwise similarity comparison of 6477 genotype files. (A) Distribution of one-to-one similarities between genotype data. Insets: above, showing 1070 pairs with
greater than 97.5% identity but not a single pair between 90% and 97.5%, indicating a clear binary cutoff for genome files that originate from the same person (or identical
twin); below: showing cut-off area (80%) used for finding close family relatives. (B) Number of people who have more than one highly similar open genomes, they can be
identical twins, data from different sequencing sources, or uploaded more than once to different platforms.
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sonal sequence data, these two main sources of genome sequenc-
ing will cease to dominate. Already some academic studies allow
participants to download the DNA file, e.g. the genes-for-good pro-
ject [18]. The new generation of DTC sequencing companies are
offering more incentives to customers, such as profit-sharing the
monetisation of data with the customer, while others such as
LunaDNA, offer company shares in exchange for genetic and phe-
notypic data [34].

In short, the number of people with their genome sequenced
who are willing to participate in research will grow, and they are
likely to come from diverse sources and from various methods.
Open-source tools currently available to interpret these data are
mostly focused on parsing genomes from various sources and not
yet offering quality control, e.g. snps [35]. The GenomePrep quality
control pipeline, developed on the goodwill of open genome data,
addresses the problem in the context of the present: genotype
arrays. The tool is available as a web service at http://supfam.
mrc-lmb.cam.ac.uk/GenomePrep/ and as an open source Git repos-
itory at https://github.com/changlubio/GenomePrep/.
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