Skip to main content
Journal of Southern Medical University logoLink to Journal of Southern Medical University
. 2021 Jun 20;41(6):891–897. [Article in Chinese] doi: 10.12122/j.issn.1673-4254.2021.06.12

联合检测粪便中ITGA4和SFRP2基因甲基化在大肠肿瘤诊断和预后中的价值

Value of combined detection of ITGA4 and SFRP2 gene methylation in stool DNA in diagnosis and prognostic evaluation of colorectal tumors

Hong JIN 1, Liying PANG 2, Huayang LI 3, Mingxin XU 1, Hairun YAN 1, Ronghui LI 1,*
PMCID: PMC8267990  PMID: 34238742

Abstract

Objective

To investigate the value of quantitative detection of ITGA4 and SFRP2 gene methylation in stool DNA for the early diagnosis and prognostic evaluation of colorectal tumors.

Methods

Real-time PCR was used for quantitative assessment of ITGA4 and SFRP2 gene methylation levels in stool samples of 85 patients with colorectal cancer, 65 patients with colorectal adenoma and 40 healthy subjects.

Results

The 3 groups were comparable for age and gender composition. Methylated ITGA4 and SFRP2 promoters were detected in 48.2% and 62.4% of patients with colorectal cancer, respectively, with a combined positivity of 81.2%. ITGA4 and SFRP2 promoter methylation was detected in 23.1% and 43.1% of patients with colorectal adenoma, respectively, with a combined positivity of 69.2%. The positivity rates of ITGA4 and SFRP2 methylation were significantly higher in patients with colorectal cancer than in those with colorectal adenoma (P < 0.001; P= 0.001) and healthy subjects (P < 0.001; P < 0.001). In colorectal cancer group, ITGA4 and SFRP2 promoter methylation levels were correlated with postoperative tumor recurrence in colorectal cancer group, and the relapse-free survival rate was significantly lower in positive patients for ITGA4 and SFRP2 promoter methylation than in the negative patients (P=0.0002; P=0.007). Multivariate analysis with the COX proportional hazard regression model showed that methylation of ITGA4 and SFRP2 gene promoters (P=0.01) and the degree of tumor differentiation (P=0.03) were associated with the recurrence of colorectal cancer, and were independent risk factors for the recurrence of colorectal cancer.

Conclusions

Combined detection of ITGA4 and SFRP2 gene methylation levels in stool DNA can improve the early diagnosis rate of colorectal tumor. ITGA4 and SFRP2 promoter methylation and the degree of tumor differentiation are independent risk factors for colorectal cancer recurrence.

Keywords: colorectal tumor, methylation, stool DNA


我国结直肠癌的发病率和死亡率在全部恶性肿瘤中分别位居第3位和第5位,新发病例37.6万,死亡病例19.1万,多数确诊时已处于中晚期[1]。在我国,随着人民生活水平的提高和饮食结构的改变,结直肠癌的发病率呈逐年上各趋势[2-4]。一般认为结直肠癌发生发展是因为一系列遗传性改变累积造成的,其中包括癌基因、抑癌基因和DNA修复基因的改变[5-7]。近年来,研究者发现癌症早期出现特定基因的表观遗传突变。特定基因启动子区域中CpG岛的异常甲基化与肿瘤抑制基因的转录沉默有关,尤其在结直肠癌致癌的早期阶段[8-10],整联蛋白是跨膜糖蛋白的超家族,整联蛋白alpha4 (ITGA4)就是整联蛋白家族的一员,已被证明在许多不同的人类肿瘤和肿瘤细胞系中过表达,并被认为与肿瘤转移有关[11]。SFRP2基因属于一类新的肿瘤抑制基因SFRP家族,是一种糖蛋白,可作为致瘤性Wnt途径的抑制性调节剂。结直肠癌患者的血浆中检测出ITGA4和SFRP2基因异常甲基化,血浆中ITGA4和SFRP2基因异常甲基化被认为是一种敏感的实验室检测指标,可以检测出36.84%、54.39%的结直肠癌[12]。ITGA4和SFRP2基因表达失活是结直肠癌发生发展的关键因素,而ITGA4和SFRP2基因甲基化是导致失活的重要原因[13-14],因此研究ITGA4和SFRP2基因甲基化对于结直肠癌的诊断和预后判断有重要作用。

对于结直肠肿瘤,相较于血浆来讲,粪便中的DNA稳定性更好,而且直接来源于脱落的肿瘤细胞,阳性率会更高,易检测,粪便中ITGA4和SFRP2基因甲基化的检测在结直肠癌中的诊断价值国内外鲜有报道[15],尤其粪便中ITGA4和SFRP2基因甲基化联合检测在结直肠癌中的诊断价值及与结直肠癌预后判断的深入研究国内外尚未见报道。本研究旨在临床粪便标本中检测ITGA4和SFRP2基因甲基化表达情况并分析联合检测的价值,及其与结直肠癌分期、分型和临床预后的相关性,上述研究可以为结直肠癌的诊断和预测预后提供具有应用价值的甲基化的新分子标志物,为结直肠癌的生物治疗提供新策略。

1. 资料和方法

1.1. 材料

收集2017年1月~2018年10月在牡丹江医学院附属红旗医院进行内镜检查的85例结直肠癌患者。其中男50例,女35例,年龄49.47±15.26(32~75)岁。以病理诊断作为金标准,入选患者均记录性别、年龄、肿瘤大小、分化程度、结直肠癌TNM分期和病理类型等。以65例结直肠腺瘤患者和40例健康志愿者作为对照组。结直肠癌的病理组织类型:(1)腺癌;(2)腺鳞癌;(3)未分化癌;(4)鳞状细胞癌;(5)小细胞癌。结直肠癌的TNM分期按美国癌症联合委员会结直肠癌TNM分期进行判断。所有实验通过伦理委员会审查。

1.1. 结直肠癌及结直肠腺瘤纳入标准和排除标准

纳入标准(1)内镜检查并经病理学明确诊断的;(2)采集标本前所有患者未经过新辅助放化疗和其它免疫治疗;(3)所有患者均知情同意并签署知情同意书。

结直肠癌排除标准:(1)因心脑、肝肾功能异常或其他原因未接受手术治疗的患者;(2)术前合并全身感染、术后病理未证实为结直肠癌的患者;(3)围手术期死于并发症的患者。

1.3. 标本采集

所有标本均于确诊后术前采集,健康对照组随机采集。样本为粪便,取样量在1.5~10 g。将含有样本保存液的粪便样本振荡混匀,并冷冻储存在-80 ℃的环境中备用,测定时室温下解冻,避免标本反复冻融。

1.4. 粪便基因组DNA提取、鉴定及修饰纯化

分别采用QIA amp DNA stool Mini Kit提取粪便样本中全基因组DNA,按说明书进行,分光光度计检测DNA浓度,要求吸光度比值A260/280在1.8~1.9,DNA量不少于250~300 mg,以符合甲基化修饰要求。采用EpiTect Bisulfite试剂盒对各样本基因组DNA进行亚硫酸氢盐修饰及纯化,按说明书进行操作。

1.5. 实时荧光定量PCR法检测粪便中ITGA4和SFRP2基因甲基化水平

所有引物由上海生工公司合成。根据文献[12, 24] 设计出针对亚硫酸盐修饰后的ITGA4和SFRP2基因甲基化和非甲基化引物序列,具体引物序列如下:ITGA4甲基化引物:上游引物:5'GCGGTCCCAAAAGGGTCAGTTATTACGTTCGGGATTTTATTTAGC 3',下游引物:5'GCGGTCCCAAAAGGGTCAGTGAAATACGACGATTAACCAACG 3';扩增片段长度为300 bp,SFRP2甲基化引物:上游引物:5' GGGTCGGAGTTTTTCGGAGTTGCGC 3',下游引物:5' CCGCTCTCTTCGCTAAATACGACTCG 3';扩增片段长度为138 bp。

ITGA4非甲基化引物:上游引物:5'GCGGTCCCAAAAGGGTCAGTATTATGTTTGGGATTTTATTTAGTG 3,下游引物:5'GCGGTCCCAAAAGGGTCAGTCAAAATACAACAATTAACCAACAAA;扩增片段长度为300 bp。

SFRP2非甲基化:上游引物:5'TTTTGGGTTGGAGTTTTTTGGAGTTGTGT 3,AACCCACTCTCTTCACTAAATACAACTCA;扩增片段长度为145 bp。PCR反应如下:预变性95 ℃ 5 min,循环(40个)变性95 ℃ 30 s,退火(ITGA4甲基化和非甲基化61 ℃ 72 s,SFRP2甲基化61 ℃,SFRP2非甲基化50 ℃,延伸72 ℃,60 s,延伸72 ℃10 min。采用SYBR GreenⅠ荧光进行标记,采用实时荧光定量PCR仪进行检测,同时进行凝胶电泳定性检测。

凝胶电泳结果判定标准:(1)甲基化阳性结果:甲基化特异性引物扩增出相应长度的片段,非甲基化特异性引物未扩增出相应长度的片段;(2)甲基化阴性结果:非甲基化特异性引物扩增出相应长度的片段,甲基化特异性引物未扩增出相应长度的片段;

1.6. 统计学分析

使用SPSS16.0统计学分析软件进行统计分析,计量资料用均值±标准差来表示,两组间的差异用t检验进行比较,多组间比较采用单因素方差分析。计数资料以个数和率表示,用χ2或Fisher检验来比较两组间的统计差异。用Kaplan-Meier法绘制无复发生存时间曲线,采用Log-rank检验比较无复发生存率。采用COX比例风险回归模型对影响复发的临床病理基本特征等因素进行单因素和多因素分析。P < 0.05表示差异具有统计学意义。

2. 结果

2.1. 各组临床特征比较

3个组年龄性别无明显差别(表 1)

1.

3组临床特征比较

Comparison of the clinical characteristics among the 3 groups

n=195 Cancer Adenoma Normal P
Male No. (%) 50/85 (58.8) 29/65 (44.6) 18/40 (45) 0.06
Age, year (Mean±SD) 57.2±8.6 55.6±7.4 50.3±6.9 0.28

2.2. 3组患者粪便ITGA4和SFRP2基因甲基化电泳结果

将3组基因组DNA进行亚硫酸氢盐修饰及纯化后,进行凝胶电泳,ITGA4基因甲基化和非甲基化电泳结果(图 1),SFRP2基因甲基化和非甲基化电泳结果(图 2)。

1.

1

ITGA4基因甲基化和非甲基化电泳结果图

Electrophoresis of ITGA4 gene methylation and nonmethylation. Lanes 1, 2: Healthy control group; Lanes 3, 4: Colorectal adenoma group; Lanes 5, 6: Colorectal cancer group; Lanes 1, 3 and 5: Methylation results of ITGA4 gene; Lanes 2, 4 and 6: Non-methylation results of ITGA4 gene.

2.

2

SFRP2基因甲基化和非甲基化电泳结果图

Electrophoresis of SFRP2 gene methylation and nonmethylation. Lanes 1, 2: Healthy control group; Lanes 3, 4: Colorectal adenoma group; Lanes 5, 6: Colorectal cancer group; Lanes 1, 3 and 5: Methylation results of SFRP2 gene; Lanes 2, 4 and 6: Non-methylation results of SFRP2 gene.

2.3. 3组患者粪便ITGA4和SFRP2基因单独和联合检测的阳性检出率比较

粪便ITGA4和SFRP2基因启动子甲基化在结直肠癌中的阳性检出率分别为48.2%和62.4%,联合检测的阳性检出率81.2%;在结直肠腺瘤中的阳性检出率分别为23.1%和43.1%,联合检测的阳性检出率69.2%。结直肠癌组ITGA4和SFRP2基因启动子甲基化阳性检出率明显高于结直肠腺瘤组(P < 0.001,P=0.001)和健康对照组(P < 0.001,P < 0.001),差异有统计学意义(表 2)。

2.

3组患者粪便ITGA4和SFRP2基因阳性检出率比较

Comparison of positive rates of ITGA4 and SFRP2 gene methylation in stool samples of the 3 groups (n, %)

Variable Cancer Adenoma Normal Adenoma vs cancer Normal vs cancer
P P
ITGA4 41/85 (48.2) 15/65 (23.1) 0/40 < 0.001 < 0.001
SFRP2 53/85 (62.4) 28/65 (43.1) 0/40 0.001 < 0.001
Combination 69/85 (81.2) 45/45 (69.2) 0/40 < 0.001 < 0.001

2.4. 结直肠癌组ITGA4和SFRP2基因甲基化与临床病理特征关系比较

收集的85例结直肠癌患者的临床病理资料如下表,85例全部是腺癌,低分化腺癌23例,中分化腺癌28例,高分化腺癌34例。统计了ITGA4和SFRP2基因甲基化与结直肠癌患者临床病理特征的关系,ITGA4和SFRP2基因甲基化均与肿瘤复发和病理分化程度有关,差异具有统计学意义(P均 < 0.05,表 3)。

3.

入选结直肠癌患者基本特征和基线资料比较

Comparison of baseline data of patients with colorectal cancer (n)

Characteristics ITGA4 methylation SFRP2 methylation
Positive Negative χ2 P Positive Negative χ2 P
Age (year) 0.962 0.33 1.584 0.21
  ≥60 23 20 28 15
     < 60 18 24 25 17
Gender 1.730 0.19 0.119 0.73
  Male 24 19 26 14
  Female 17 25 27 18
The degree of differentiation 12.843 0.002 10.792 0.005
  Poor 17 6 20 3
  Moderate 15 13 18 10
  Highly 9 25 15 19
TNM stage 0.125 0.72 0.960 0.33
  Ⅰ+Ⅱ 18 21 24 14
  Ⅲ+Ⅳ 23 23 29 18
Recurrence 8.210 0.004 11.209 0.001
  Yes 32 20 40 12
  No 9 23 13 20

2.5. 各组粪便中ITGA4和SFRP2基因甲基化水平比较

阈值循环(Ct),为荧光信号强度超过设置的阈值时所经历的循环数。Ct值< 40的基因甲基化样品进行凝胶电泳都会出现相应阳性条带,而Ct值>40的基因甲基化样品进行凝胶电泳未出现相应阳性条带,于是我们将Ct值40作为实时荧光定量PCR的阈值,进行以Ct值水平的量化值(图 3)。并且对ITGA4和SFRP2基因甲基化Ct值分别为26和27的样品进行了稀释实验,发现稀释后的样品相应循环数增加,并做了重复结果验证实验。

3.

3

ITGA4(A)和SFRP2(B)基因甲基化稀释实验扩增曲线图

Amplification curve of methylation dilution experiment of ITGA4 (A) and SFRP2 (B) genes. 1: Amplification curve of the sample with Ct value of 26; 2, 3 and 4: Amplification curves of 10, 50 and 100 times dilution, respectively.

结直肠癌患者粪便中ITGA4和SFRP2基因甲基化水平(以Ct值进行量化)要明显高于良性结直肠肿瘤患者(P=0.003,P=0.005),良性结直肠肿瘤患者粪便中ITGA4和SFRP2基因甲基化水平要高于健康人(P=0.02,P=0.03,表 4)。

4.

各组粪便中ITGA4和SFRP2基因甲基化表达水平比较

Comparison of the methylation levels of ITGA4 and SFRP2 genes in stool samples of each group (Mean±SD)

Variable Cancer Adenoma Normal Cancer vs adenoma Adenoma vs normal
P P
ITGA4 methylation (40-Ct) 17.32±1.21 7.58±0.35 1.03±0.13 0.003 0.02
SFRP2 methylation (40-Ct) 16.35±1.98 9.16±0.61 1.02±0.12 0.005 0.03

2.6. ITGA4和SFRP2基因甲基化水平与结直肠癌患者无复发生存期的关系

自2017年1月开始随访结直肠癌患者术后的复发情况,最长随访时间为观察到2020年12月1日结束。经临床、影像学经检查和/或病理分析等明确诊断结直肠癌患者复发,复发情况观察终点为发现局部原位复发伴随局部淋巴结转移或远端转移的时间点。未复发组的最终观察时间点为2020年12月1日。85例结直肠癌患者中,共52例复发,32例未复发,1例由于更换联络方式和未到本医院复查而失访。复发的中位时间为7.7月,最长的复发时间是22月,最短的复发时间是1月。

采用Kaplan-Meier法分别绘制两组患者的无复发生存曲线,采用Log-rank检验进行组间生存率的比较。ITGA4甲基化阳性患者无复发生存率明显低于ITGA4甲基化阴性患者,差异有统计学意义(χ2=11.523,P=0.002);SFRP2甲基化阳性患者无复发生存率明显低于SFRP2甲基化阴性患者,差异有统计学意义(χ2=6.894,P=0.007,图 4)。

4.

4

结直肠癌无复发生存曲线图

Recurrence-free survival curves of patients with colorectal cancer. A: Recurrence-free survival curves for patients positive and negative for ITGA4 methylation; B: Recurrence-free survival curves for patients positive and negative for SFRP2 methylation.

2.7. 结直肠癌术后复发的单因素和多因素分析

COX比例风险回归模型单因素分析结果显示,分化程度(P=0.002)、TNM分期(P=0.02)、ITGA4甲基化(P < 0.001)和SFRP2甲基化(P=0.03)与结直肠癌术后复发有关。

采用COX比例风险回归模型多因素分析影响结直肠癌术后复发的因素,ITGA4甲基化阳性引起结直肠癌复发风险是阴性的3.586倍,SFRP2甲基化阳性引起结直肠癌复发风险是阴性的2.978倍。粪便ITGA4甲基化(风险率(HR)=3.586,P=0.01)、SFRP2甲基化(HR=2.978,P=0.03)和肿瘤分化程度(HR=2.151,P=0.02)是结直肠癌术后复发的独立危险因素(表 5)。

5.

结直肠癌术后的复发影响因素的单因素和多因素回归分析

Univariate and multivariate regression analysis of the factors affecting postoperative recurrence of colorectal cancer

Variable Univariate analysis Multivariate analysis
Risk ratio 95% confidence interval P Risk ratio 95% confidence interval P
Age 1.120 0.345-1.521 0.30 2.001 1.013-3.345 0.23
Gender 1.439 0.367-1.987 0.67 2.132 1.321-3.213 0.23
Differentiation 1.398 0.245-1.121 0.002 2.151 1.017-4.345 0.02
TNM stage 1.231 0.739-2.425 0.02 1.532 0.425-3.951 0.63
ITGA4 7.245 3.282-19.312 < 0.001 3.586 1.179-10.725 0.01
SFRP2 2.123 1.258-4.142 0.03 2.978 1.478-4.068 0.03

3. 讨论

近几年我国结直肠肿瘤新增病例逐渐增加[16],尤其男性多见,已经成为威胁人类健康的主要杀手。结直肠肿瘤一般采用粪便隐血实验和结肠镜进行筛查[17-18],粪便隐血实验敏感性低,结肠镜因为前期准备繁琐,患者耐受性较差,所以应用受限,因此寻找结直肠肿瘤患者的非侵入性的分子诊断标志物用于筛查和诊断尤为重要。

最新研究发现使用分子生物学检测技术检测血液DNA中遗传和表观遗传异常已被认为是进行结直肠癌和结直肠腺瘤筛查的有效的非侵入性方法[19]。血浆中DNA甲基化检测有助于肿瘤的诊断,评估肿瘤的转移和预后,并指导临床治疗[20]。Liu等[21]研究发现,SFRP2基因在肿瘤组织中常被高度甲基化,进行COX单因素和多因素回归分析显示,SFRP2基因高度甲基化是结直肠癌患者术后生存的独立预后因子;Zhang等[12]研究发现,在结直肠癌患者中,血浆中检出高甲基化的GATA4和SFRP2,与腺瘤组比较差异具有统计学意义,血浆中GATA4和SFRP2甲基化与肿瘤分化状态、TNM分期和淋巴结转移有关,血浆中GATA4和SFRP2甲基化是有价值的预测因子。通过我们对粪便DNA甲基化的研究发现:粪便中ITGA4基因甲基化在结直肠腺瘤和结直肠癌中的检出率分别为23.1%和48.2%,健康对照组检出率为0;粪便中SFRP2基因甲基化在结直肠腺瘤和结直肠癌中的检出率分别为43.1%和62.4%,健康对照组检出率为0。我们对两个基因进行联合检测发现,在结直肠腺瘤联合检测的检出率69.2%,在结直肠癌中联合检测的检出率81.2%,比单独检测要敏感,大大提高了检出的阳性率,ITGA4和SFRP2甲基化联合检测具有更高的敏感性,可见,联合检测可能是结直肠癌诊断的较好的实验室指标。同时我们研究了ITGA4和SFRP2基因甲基化与结直肠癌临床特征的关系,研究发现ITGA4和SFRP2基因甲基化均与肿瘤复发和病理分化程度有关。

我们同时利用Ct值对甲基化结果进行定量检测,发现Ct值越小的甲基化含量越高,ITGA4和SFRP2基因甲基化水平结直肠癌组高于腺瘤组和对照组。同时我们研究了ITGA4和SFRP2基因甲基化水平与结直肠癌患者临床特征的关系,我们的研究发现,ITGA4和SFRP2基因甲基化阳性多为腺癌低分化,发生复发的比例高;我们还首次研究了手术前粪便中ITGA4和SFRP2基因甲基化与术后复发转移的关系,ITGA4甲基化阳性患者无复发生存率明显低于ITGA4甲基化阴性患者,SFRP2甲基化阳性患者无复发生存率明显低于ITGA4甲基化阴性患者,利用COX比例风险回归模型多因素分析影响结直肠癌复发的因素,ITGA4甲基化阳性引起结直肠癌复发风险是阴性的3.586倍,SFRP2甲基化阳性引起结直肠癌复发风险是阴性的2.978倍,ITGA4和SFRP2基因甲基化均与肿瘤复发有关,ITGA4和SFRP2基因甲基化阳性的无复发生存率低,预后差,阴性的不易复发。ITGA4和SFRP2基因甲基化可以作为结直肠癌复发的独立预后因子。为结直肠癌术后预后的关键指标,可通过检测患者术前粪便ITGA4和SFRP2基因甲基化对患者预后进行评估,对患者进行分级管理,加强术后监测及时发现术后复发,选择适当的治疗,改善患者预后。

近几年,粪便DNA甲基化在结直肠肿瘤中的价值逐渐被发现[22-25],由于DNA的甲基化变化无处不在,被认为是结直肠瘤形成的重要致癌机制,因此粪便中甲基化DNA的分析为结直肠癌筛查提供了一个新的策略[12, 26-27],特定基因的CpG岛的甲基化发生在结直肠癌的癌变过程中的腺瘤-癌序列的局灶性病变中[28-30]。在粪便DNA中使用高甲基化筛查大肠癌和腺瘤是一种早期检测大肠肿瘤的新方法,与目前的筛查方法相比,具有低成本和接受性更高的潜力[31]。DNA甲基化检测只需一次粪便标本,相较于粪便隐血检测更方便,同时DNA甲基化在粪便中的稳定性较好,易检测,因此粪便中ITGA4和SFRP2基因甲基化联合检测是一个新的对结直肠肿瘤的非侵入性筛选的潜在诊断性生物标志物,同时ITGA4和SFRP2基因甲基化可以作为结直肠癌复发的独立预后因子,用于评估结直肠癌术后预后情况。但是我们实验数据仍然较少,希望在后期研究中增大临床样本量,对患者的随访时间有限,虽然目前随访时间内数据具有统计学意义,但是如果增加随访时间意义会更大。

Biography

金红,博士,副主任,检验医师,硕士生导师,E-mail: jinhong198122@163.com

Contributor Information

金 红 (Hong JIN), Email: jinhong198122@163.com.

李 荣辉 (Ronghui LI), Email: lironghui1975@163.com.

References

  • 1.中华人民共和国国家卫生和计划生育委员会医政医管局, 中华医学 会肿瘤学分会. 中国结直肠癌诊疗规范(2017年版. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGWK201810001.htm. 中国实用外科杂志. 2018;38(10):1089–103. [中华人民共和国国家卫生和计划生育委员会医政医管局, 中华医学会肿瘤学分会. 中国结直肠癌诊疗规范(2017年版[) J]. 中国实用外科杂志, 2018, 38(10): 1089-103.] [Google Scholar]
  • 2.Wu MH, Tzeng HE, Wu CN, et al. Association of matrix metalloproteinase-9 rs3918242 promoter genotypes with colorectal cancer risk. Anticancer Res. 2019;39(12):6523–9. doi: 10.21873/anticanres.13867. [Wu MH, Tzeng HE, Wu CN, et al. Association of matrix metalloproteinase-9 rs3918242 promoter genotypes with colorectal cancer risk[J]. Anticancer Res, 2019, 39(12): 6523-9.] [DOI] [PubMed] [Google Scholar]
  • 3.Zhu GW, Zhao M, Han QH, et al. Combination of trabectedin with irinotecan, leucovorin and 5-fluorouracil arrests primary colorectal cancer in an imageable patient-derived orthotopic xenograft mouse model. Anticancer Res. 2019;39(12):6463–70. doi: 10.21873/anticanres.13860. [Zhu GW, Zhao M, Han QH, et al. Combination of trabectedin with irinotecan, leucovorin and 5-fluorouracil arrests primary colorectal cancer in an imageable patient-derived orthotopic xenograft mouse model[J]. Anticancer Res, 2019, 39(12): 6463-70.] [DOI] [PubMed] [Google Scholar]
  • 4.Zou HZ, Harrington JJ, Klatt KK, et al. A sensitive method to quantify human long DNA in stool: relevance to colorectal cancer screening. Cancer Epidemiol Biomarkers Prev. 2006;15(6):1115–9. doi: 10.1158/1055-9965.EPI-05-0992. [Zou HZ, Harrington JJ, Klatt KK, et al. A sensitive method to quantify human long DNA in stool: relevance to colorectal cancer screening [J]. Cancer Epidemiol Biomarkers Prev, 2006, 15(6): 1115-9.] [DOI] [PubMed] [Google Scholar]
  • 5.Galamb O, Kalmár A, Barták BK, et al. Aging related methylation influences the gene expression of key control genes in colorectal cancer and adenoma. World J Gastroenterol. 2016;22(47):10325–40. doi: 10.3748/wjg.v22.i47.10325. [Galamb O, Kalmár A, Barták BK, et al. Aging related methylation influences the gene expression of key control genes in colorectal cancer and adenoma[J]. World J Gastroenterol, 2016, 22(47): 10325-40.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.O'Connell JB, Maggard MA, Ko CY. Colon cancer survival rates with the new american joint committee on cancer sixth edition staging. J Natl Cancer Inst. 2004;96(19):1420–5. doi: 10.1093/jnci/djh275. [O'Connell JB, Maggard MA, Ko CY. Colon cancer survival rates with the new american joint committee on cancer sixth edition staging[J]. J Natl Cancer Inst, 2004, 96(19): 1420-5.] [DOI] [PubMed] [Google Scholar]
  • 7.Tang D, Liu J, Wang DR, et al. Diagnostic and prognostic value of the methylation status of secreted frizzled-related protein 2 in colorectal cancer. http://europepmc.org/abstract/MED/21463549. Clin Invest Med. 2011;34(2):E88–E95. doi: 10.25011/cim.v34i1.15105. [Tang D, Liu J, Wang DR, et al. Diagnostic and prognostic value of the methylation status of secreted frizzled-related protein 2 in colorectal cancer[J]. Clin Invest Med, 2011, 34(2): E88-E95.] [DOI] [PubMed] [Google Scholar]
  • 8.Gao X, Sedgwick T, Shi YB, et al. Distinct functions are implicated for the GATA-4, -5, and -6 transcription factors in the regulation of intestine epithelial cell differentiation. Mol Cell Biol. 1998;18(5):2901–11. doi: 10.1128/MCB.18.5.2901. [Gao X, Sedgwick T, Shi YB, et al. Distinct functions are implicated for the GATA-4, -5, and -6 transcription factors in the regulation of intestine epithelial cell differentiation[J]. Mol Cell Biol, 1998, 18(5): 2901-11.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Tejpar S, Stintzing S, Ciardiello F, et al. Prognostic and predictive relevance of primary tumor location in patients with RAS wild-type metastatic colorectal cancer: retrospective analyses of the CRYSTAL and FIRE-3 trials. JAMAOncol. 2017;3(2):194–201. doi: 10.1001/jamaoncol.2016.3797. [Tejpar S, Stintzing S, Ciardiello F, et al. Prognostic and predictive relevance of primary tumor location in patients with RAS wild-type metastatic colorectal cancer: retrospective analyses of the CRYSTAL and FIRE-3 trials[J]. JAMAOncol, 2017, 3(2): 194-201.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Zhang W, Bauer M, Croner RS, et al. DNA stool test for colorectal cancer: hypermethylation of the secreted frizzled-related protein-1 gene. Dis Colon Rectum. 2007;50(10):1618–26. doi: 10.1007/s10350-007-0286-6. [Zhang W, Bauer M, Croner RS, et al. DNA stool test for colorectal cancer: hypermethylation of the secreted frizzled-related protein-1 gene[J]. Dis Colon Rectum, 2007, 50(10): 1618-26.] [DOI] [PubMed] [Google Scholar]
  • 11.Yan JW, Yang XJ, Jiao XF, et al. Integrative transcriptomic and proteomic analysis reveals CD9/ITGA4/PI3K-Akt axis mediates trabecular meshwork cell apoptosis in human Glaucoma. J Cell Mol Med. 2020;24(1):814–29. doi: 10.1111/jcmm.14792. [Yan JW, Yang XJ, Jiao XF, et al. Integrative transcriptomic and proteomic analysis reveals CD9/ITGA4/PI3K-Akt axis mediates trabecular meshwork cell apoptosis in human Glaucoma[J]. J Cell Mol Med, 2020, 24(1): 814-29.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Zhang X, Song YF, Lu HN, et al. Combined detection of plasma GATA5 and SFRP2 methylation is a valid noninvasive biomarker for colorectal cancer and adenomas. World J Gastroenterol. 2015;21(9):2629–37. doi: 10.3748/wjg.v21.i9.2629. [Zhang X, Song YF, Lu HN, et al. Combined detection of plasma GATA5 and SFRP2 methylation is a valid noninvasive biomarker for colorectal cancer and adenomas[J]. World J Gastroenterol, 2015, 21(9): 2629-37.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Lam K, Pan K, Linnekamp JF, et al. DNA methylation based biomarkers in colorectal cancer: A systematic review. http://europepmc.org/abstract/MED/27385266. Biochim BiophysActa. 2016;1866(1):106–20. doi: 10.1016/j.bbcan.2016.07.001. [Lam K, Pan K, Linnekamp JF, et al. DNA methylation based biomarkers in colorectal cancer: A systematic review[J]. Biochim BiophysActa, 2016, 1866(1): 106-20.] [DOI] [PubMed] [Google Scholar]
  • 14.Suzu ki H, Watkin s DN, Jait KW, et al. Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Nat Genet. 2004;36:417–22. doi: 10.1038/ng1330. [Suzu ki H, Watkin s DN, Jait KW, et al. Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer [J]. Nat Genet, 2004, 36: 417-22.] [DOI] [PubMed] [Google Scholar]
  • 15.Hu ang ZH, Li LH, Wang J, et al. Hypermethylation of SFRP2 as a potential marker for stool-based detection of color-ectal cancer and precancerous lesions. Dig Dis Sci. 2007;52:2287–91. doi: 10.1007/s10620-007-9755-y. [Hu ang ZH, Li LH, Wang J, et al. Hypermethylation of SFRP2 as a potential marker for stool-based detection of color-ectal cancer and precancerous lesions[J]. Dig Dis Sci, 2007, 52 : 2287-91.] [DOI] [PubMed] [Google Scholar]
  • 16.Imperiale TF, Ransohoff DF, Itzkowitz SH. Multitarget stool DNA testing for colorectal-cancer screening. http://www.ncbi.nlm.nih.gov/pubmed/25006740. N Engl J Med. 2014;371(2):187–8. doi: 10.1056/NEJMc1405215. [Imperiale TF, Ransohoff DF, Itzkowitz SH. Multitarget stool DNA testing for colorectal-cancer screening[J]. N Engl J Med, 2014, 371 (2): 187-8.] [DOI] [PubMed] [Google Scholar]
  • 17.Loktionov A, O'Neill IK, Silvester KR, et al. Quantitation of DNA from exfoliated colonocytes isolated from human stool surface as a novel noninvasive screening test for colorectal cancer. http://jnci.oxfordjournals.org/cgi/ijlink?linkType=ABST&amp;journalCode=clincanres&amp;resid=4/2/337. Clin Cancer Res. 1998;4(2):337–42. [Loktionov A, O'Neill IK, Silvester KR, et al. Quantitation of DNA from exfoliated colonocytes isolated from human stool surface as a novel noninvasive screening test for colorectal cancer[J]. Clin Cancer Res, 1998, 4(2): 337-42.] [PubMed] [Google Scholar]
  • 18.Lenhard K, Bommer GT, Asutay S, et al. Analysis of promoter methylation in stool: a novel method for the detection of colorectal cancer. Clin Gastroenterol Hepatol. 2005;3(2):142–9. doi: 10.1016/S1542-3565(04)00624-X. [Lenhard K, Bommer GT, Asutay S, et al. Analysis of promoter methylation in stool: a novel method for the detection of colorectal cancer[J]. Clin Gastroenterol Hepatol, 2005, 3(2): 142-9.] [DOI] [PubMed] [Google Scholar]
  • 19.Cho YA, Lee J, Oh JH, et al. Genetic risk score, combined lifestyle factors and risk of colorectal cancer. Cancer Res Treat. 2019;51(3):1033–40. doi: 10.4143/crt.2018.447. [Cho YA, Lee J, Oh JH, et al. Genetic risk score, combined lifestyle factors and risk of colorectal cancer[J]. Cancer Res Treat, 2019, 51 (3): 1033-40.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Turati F, Galeone C, Augustin LSA, et al. Glycemic index, glycemic load and cancer risk: an updated meta-analysis. Nutrients. 2019;11(10):2342. doi: 10.3390/nu11102342. [Turati F, Galeone C, Augustin LSA, et al. Glycemic index, glycemic load and cancer risk: an updated meta-analysis[J]. Nutrients, 2019, 11(10): 2342.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Liu XY, Fu JM, Bi HR, et al. DNA methylation of SFRP1, SFRP2, and WIF1 and prognosis of postoperative colorectal cancer patients. BMC Cancer. 2019;19(1):1212. doi: 10.1186/s12885-019-6436-0. [Liu XY, Fu JM, Bi HR, et al. DNA methylation of SFRP1, SFRP2, and WIF1 and prognosis of postoperative colorectal cancer patients [J]. BMC Cancer, 2019, 19(1): 1212.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Wang DR, Tang D. Hypermethylated SFRP2 gene in fecal DNA is a high potential biomarker for colorectal cancer noninvasive screening. World J Gastroenterol. 2008;14(4):524–31. doi: 10.3748/wjg.14.524. [Wang DR, Tang D. Hypermethylated SFRP2 gene in fecal DNA is a high potential biomarker for colorectal cancer noninvasive screening [J]. World J Gastroenterol, 2008, 14(4): 524-31.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Miao CG, Chang J, Dou JF, et al. DNA hypermethylation of SFRP2 influences the pathology of rheumatoid arthritis through the canonical Wnt signaling in model rats. http://www.tandfonline.com/doi/abs/10.1080/08916934.2018.1516760. Autoimmunity. 2018:1–14. doi: 10.1080/08916934.2018.1516760. [Miao CG, Chang J, Dou JF, et al. DNA hypermethylation of SFRP2 influences the pathology of rheumatoid arthritis through the canonical Wnt signaling in model rats[J]. Autoimmunity, 2018: 1-14.] [DOI] [PubMed] [Google Scholar]
  • 24.Attia HR, Ibrahim MH, El-Aziz SHA, et al. ITGA4 gene methylation status in chronic lymphocytic leukemia. Future Sci OA. 2020;6(7):FSO583. doi: 10.2144/fsoa-2020-0034. [Attia HR, Ibrahim MH, El-Aziz SHA, et al. ITGA4 gene methylation status in chronic lymphocytic leukemia[J]. Future Sci OA, 2020, 6 (7): FSO583.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Majchrzak-Celińska A, Dybska E, Barciszewska AM. DNA methylation analysis with methylation-sensitive high-resolution melting (MS-HRM) reveals gene panel for glioma characteristics. CNS Neurosci Ther. 2020;26(12):1303–14. doi: 10.1111/cns.13443. [Majchrzak-Celińska A, Dybska E, Barciszewska AM. DNA methylation analysis with methylation-sensitive high-resolution melting (MS-HRM) reveals gene panel for glioma characteristics[J]. CNS Neurosci Ther, 2020, 26(12): 1303-14.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Kim TO, Han YK, Yi JM. Hypermethylated promoters of tumor suppressor genes were identified in Crohn's disease patients. Intest Res. 2020;18(3):297–305. doi: 10.5217/ir.2019.00105. [Kim TO, Han YK, Yi JM. Hypermethylated promoters of tumor suppressor genes were identified in Crohn's disease patients[J]. Intest Res, 2020, 18(3): 297-305.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Liu XL, Wen JL, Li CJ, et al. High-yield methylation markers for stool-based detection of colorectal cancer. Dig Dis Sci. 2020;65(6):1710–9. doi: 10.1007/s10620-019-05908-9. [Liu XL, Wen JL, Li CJ, et al. High-yield methylation markers for stool-based detection of colorectal cancer[J]. Dig Dis Sci, 2020, 65 (6): 1710-9.] [DOI] [PubMed] [Google Scholar]
  • 28.Eckmann JD, Ebner DW, Bering J, et al. Multitarget stool DNA screening in clinical practice: high positive predictive value for colorectal neoplasia regardless of exposure to previous colonoscopy. Am J Gastroenterol. 2020;115(4):608–15. doi: 10.14309/ajg.0000000000000546. [Eckmann JD, Ebner DW, Bering J, et al. Multitarget stool DNA screening in clinical practice: high positive predictive value for colorectal neoplasia regardless of exposure to previous colonoscopy [J]. Am J Gastroenterol, 2020, 115(4): 608-15.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Li YL, Xing CZ, Wei MJ, et al. Combining red blood cell distribution width (RDW-CV) and CEA predict poor prognosis for survival outcomes in colorectal cancer. J Cancer. 2019;10(5):1162–70. doi: 10.7150/jca.29018. [Li YL, Xing CZ, Wei MJ, et al. Combining red blood cell distribution width (RDW-CV) and CEA predict poor prognosis for survival outcomes in colorectal cancer[J]. J Cancer, 2019, 10(5): 1162-70.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Jass JR, Young J, Leggett BA. Evolution of colorectal cancer: change of pace and change of direction. J Gastroenterol Hepatol. 2002;17(1):17–26. doi: 10.1046/j.1440-1746.2002.02635.x. [Jass JR, Young J, Leggett BA. Evolution of colorectal cancer: change of pace and change of direction[J]. J Gastroenterol Hepatol, 2002, 17 (1): 17-26.] [DOI] [PubMed] [Google Scholar]
  • 31.Wong JJ, Hawkins NJ, Ward RL. Colorectal cancer: a model for epigenetic tumorigenesis. Gut. 2007;56(1):140–8. doi: 10.1136/gut.2005.088799. [Wong JJ, Hawkins NJ, Ward RL. Colorectal cancer: a model for epigenetic tumorigenesis[J]. Gut, 2007, 56(1): 140-8.] [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Southern Medical University are provided here courtesy of Editorial Department of Journal of Southern Medical University

RESOURCES