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Abstract 

Background:  Both N6-methyladenosine (m6A) modification and lncRNAs play an important role in the carcinogen-
esis and cancer inhibition of ovarian cancer (OC). However, lncRNAs involved in m6A regulation (LI-m6As) have never 
been reported in OC. Herein, we aimed to identify and validate a signature based on LI-m6A for OC.

Methods:  RNA sequencing profiles with corresponding clinical information associated with OC and 23 m6A regu-
lators were extracted from TCGA. The Pearson correlation coefficient (PCC) between lncRNAs and 23 m6A regula-
tors (|PCC|> 0.4 and p < 0.01) was calculated to identify LI-m6As. The LI-m6As with significant prognostic value were 
screened based on univariate Cox regression analysis to construct a risk model by LASSO Cox regression. Gene Set 
Enrichment Analysis (GSEA) was implemented to survey the biological functions of the risk groups. Several clinico-
pathological characteristics were utilized to evaluate their ability to predict prognosis, and a nomogram was con-
structed to evaluate the accuracy of survival prediction. Besides, immune microenvironment, checkpoint, and drug 
sensitivity in the two risk groups were compared using comprehensive algorithms. Finally, real-time qPCR analysis and 
cell counting kit-8 assays were performed on an alternative lncRNA, CACNA1G-AS1.

Results:  The training cohort involving 258 OC patients and the validation cohort involving 111 OC patients were 
downloaded from TCGA. According to the PCC between the m6A regulators and lncRNAs, 129 LI-m6As were obtained 
to perform univariate Cox regression analysis and then 10 significant prognostic LI-m6As were identified. A prog-
nostic signature containing four LI-m6As (AC010894.3, ACAP2-IT1, CACNA1G-AS1, and UBA6-AS1) was constructed 
according to the LASSO Cox regression analysis of the 10 LI-m6As. The prognostic signature was validated to show 
completely opposite prognostic value in the two risk groups and adverse overall survival (OS) in several clinicopatho-
logical characteristics. GSEA indicated that differentially expressed genes in disparate risk groups were enriched in 
several tumor-related pathways. At the same time, we found significant differences in some immune cells and chemo-
therapeutic agents between the two groups. An alternative lncRNA, CACNA1G-AS1, was proven to be upregulated 
in 30 OC specimens and 3 OC cell lines relative to control. Furthermore, knockdown of CACNA1G‐AS1 was proven to 
restrain the multiplication capacity of OC cells.

Conclusions:  Based on the four LI-m6As (AC010894.3, ACAP2-IT1, CACNA1G-AS1, and UBA6-AS1), the risk model we 
identified can independently predict the OS and therapeutic value of OC. CACNA1G‐AS1 was preliminarily proved to 
be a malignant lncRNA.
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Background
Ovarian cancer (OC) is the main cause of gynecologi-
cal cancer-related death worldwide [1]. Because of the 
lack of clinical manifestations in the early stage, 70% of 
patients are diagnosed in the middle or late stages [1]. 
It is also difficult to perform radical surgery, leading to 
a high OC mortality rate of OC [1]. OC is characterized 
by obvious tissue heterogeneity with genomic charac-
teristics, which shows that it easily develops resistance 
to chemotherapy and leads to a high tumor recurrence 
rate [1]. Therefore, improving the prognosis of OC 
patients by exploring novel diagnoses and therapies is 
an urgent problem to address.

Studies have shown that genome-level epigenetic 
modifications, such as DNA methylation, histone mod-
ification and RNA editing, are crucial to tumorigen-
esis. N6-methyladenosine (m6A) modification was first 
detected in the poly (A) RNA component in 1974 and 
is considered to be the most abundant posttranscrip-
tional modification of mRNA [2]. m6A modification 
is mainly associated with three types of proteases that 
serve as regulators, namely, methyltransferases (writ-
ers), demethylases (erasers), and signal transducers 
(readers) [2]. Numerous studies have shown that dif-
ferent levels of m6A regulators are associated with the 
self-renewal of tumor stem cells, the proliferation of 
cancer cells, and the sensitivity to chemotherapy [2]. 
A previous study showed that high-frequency genetic 
alterations of m6A RNA methylation regulators are 
crucial for the progression [3] and that m6A modifica-
tion contributes to PARPi resistance in OC [4]. In OC, 
YTHDF1 (reader) facilitates the expression of EIF3C [5] 
and the stem cell-like phenotype of cisplatin resistance 
[6] in a m6A-dependent manner, thereby strengthening 
tumorigenesis and metastasis. ALKBH5 (eraser) [7] and 
YTHDF2 (reader) [8, 9] were shown to regulate the car-
cinogenesis of OC by modulating m6A levels. IGF2BP1 
(reader) was demonstrated to augment the translation 
of serum response factor through m6A modification 
[10]. METTL3 (writer) can regulate m6A methyla-
tion and thus regulate the malignancy of OC [11–14]. 
It has been proven that FTO (eraser) regulates PDE4B 
and PDE1C by m6A and thus plays a tumor suppres-
sor function in OC [15]. Hence, OC is to a large extent 
mediated by m6A modification; nevertheless, studies 
reporting the mechanism of m6A modification and its 
role in OC pathology remain unclear, which motivates 
us to explore m6A modification for the pathogenesis 
and therapeutic direction of OC.

lncRNAs are more than 200 nucleotides in length, 
do not have a protein-coding function and participate 
in carcinogenesis or cancer inhibition at both the tran-
scriptional and posttranscriptional level in various can-
cers, including OC [16]. Recent reports have indicated 
that m6A is involved in the regulation of the physiologi-
cal functions of known lncRNAs. M6A can regulate the 
structure for lncRNA via binding sites for m6A read-
ers, which might allow specific RNA-binding proteins 
access to m6A residues [17, 18]. For instance, m6A acts 
as a structural switch of lncRNA MALAT1 by modulat-
ing its structure, which is associated with cancer malig-
nancy [17, 19, 20]. In addition, METTL16 (writer) was 
confirmed as a triple-stranded RNA-binding protein of 
lncRNA MALAT1 [20, 21]. M6A can also affect the func-
tion of lncRNAs through the ceRNA network. For exam-
ple, lncRNA FAM225A stabilized by m6A was identified 
to serve as a sponge for miR-590-3p and miR-1275 in 
nasopharyngeal carcinoma [22]. Similarly, LINC00958 
was stabilized by METTL3 (writer), and upregulated 
LINC00958 was involved in the malignancy of hepatocel-
lular carcinoma progression by sponging miR-3619-5p 
[23]. Hence, lncRNAs can be modified by m6A and m6A 
can regulate their function. It is very likely that lncRNAs 
involved in m6A regulation (LI-m6As) will provide new 
ideas in the search for cancer therapeutic targets. None-
theless, research on LI-m6As in OC remains lacking.

In our study, we identified LI-m6As based on the Pear-
son correlation coefficient (PCC) between lncRNAs and 
23 m6A regulators (|PCC|> 0.4), and we found ten LI-
m6As with significant prognostic value from the TCGA 
dataset. An LI-m6A prognostic signature was developed 
based on four LI-m6As (ACAP2-IT1, CACNA1G-AS1, 
AC010894.3, and UBA6-AS1) which demonstrated an 
ability to stratify OC patients into low-risk and high-risk 
groups with adverse OS and it was verified both in the 
training cohort and validation cohort. We further con-
ducted comprehensive analyses of this risk model. An 
alternative lncRNA, CACNA1G‐AS1, was preliminarily 
proven to be an oncogene of OC in vitro.

Methods
Datasets and preprocessing
The RNA sequencing profiles with clinical information 
were downloaded from TCGA (https://​toil.​xenah​ubs.​
net). The total OC samples were randomly divided into 
the training or validation cohort at a ratio of 3:7. Twenty-
three m6A regulators were extracted from the TCGA 
database based on previous studies [24]. The lncRNAs 
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were identified based on their annotation informa-
tion in Genome Reference Consortium Human Build 
38 (GRCh38) of the GENCODE database (https://​www.​
genco​degen​es.​org/) [25]. The Pearson correlation coeffi-
cient (PCC) is important for exploring the relationships 
between variables. Therefore, PCC between lncRNAs 
and 23 m6A regulators (|PCC|> 0.4 and p < 0.01) was cal-
culated to identify lncRNAs involved in m6A regulation 
(LI-m6As) [26].

Bioinformatic analysis
The potential cis interaction between LI-m6As and 
mRNAs transcribed at the same chromosome within 
200 kb was searched from UCSC dataset [27]. Networks 
based on overlapped TFs was further constructed to 
detect the trans regulating function of LI-m6As and m6A 
genes [28]. The miRNAs targeted by the corresponding 
LI-m6As were speculated by starBase and NPInter [29]. 
The target mRNAs by the corresponding miRNAs were 
speculated using miRTarBase and NPInter [29]. Subse-
quently, the ceRNA network based on the same miRNAs 
was constructed [29].

Univariate Cox regression analysis was performed 
on the candidate LI-m6As based on the survival pack-
age of R (http://​bioco​nduct​or.​org/​packa​ges/​survi​valr/) 
to filtrate LI-m6As with significant prognostic value 
(P < 0.05). Then, the LASSO Cox regression was per-
formed by employing the glmnet R package to construct 
a risk model. The degree of Lasso regression complexity 
was controlled by the appropriate parameter λ, and λ was 
selected to build the model for accuracy in our study [30]. 
Ultimately, a prognostic signature was developed based 
on the following formula: 

In the formula, Coefi represents the coefficients, and 
Genei is the FPKM value of each LI-m6A. OC patients in 
our study were divided into low-risk or high-risk groups 
according to the median of risk scores (RSs). Kaplan–
Meier (K-M) survival analysis was performed by the log-
rank test to draw a survival curve.

Several clinicopathological characteristics were utilized 
to evaluate their ability to predict prognosis. A nomo-
gram based on multivariate Cox regression was con-
structed for visualization of the clinicopathology and RSs, 
which verified their accuracy by calibration plots [31].

For the biological functions of the risk groups, differ-
entially expressed genes (DEGs) between the two risk 
groups were filtered on the basis of the limma R pack-
age to perform gene ontology (GO) function and KEGG 

Risk score =

n
∑

i=1

(

Coefi × Genei
)

pathway enrichment analysis using clusterProfiler R 
package [32]. Gene set enrichment analysis (GSEA) was 
implemented to survey the biological function of the 
risk groups using GSEA (version 4.0.3) software. The 
protein–protein interaction (PPI) network for identi-
fying key modules was established using the MCODE 
plug-in of Cytoscape.

Moreover, we estimated the differences in the 
immune microenvironment and immune checkpoint 
genes between the risk groups by employing five algo-
rithms (Estimate, ssGSEA, Cibersort, MCPcounter 
and xCell) [33, 34]. Using Tumor Immune Dysfunction 
and Exclusion (TIDE) dataset, the response to immune 
checkpoint blockade was also predicted [35] and the 
TIDE scores were compared between risk groups. The 
chemotherapy drugs were extracted from Genomics of 
Drug Sensitivity in Cancer (GDSC) database [36] and 
the half maximal inhibitory concentration (IC50) was 
computed by pRRophetic R package [37].

In vitro assays
The specimens were collected from OC patients who 
had received no chemotherapy or radiotherapy prior 
to surgery after approval from the Ethics Committee of 
Hangzhou First People’s Hospital. The OC tissues fol-
lowing resection were confirmed by at least two expe-
rienced pathologists based on the FIGO staging system.

The cell lines SKOV-3, HO-8910, A2780, and IOSE-
80 were purchased from iCell Bioscience Inc (Shanghai, 
China) and incubated in an incubator with 5% CO2 at 
37  °C. The composition of the media was 89% RPMI 
1640 media with 10% fetal bovine serum and 1% peni-
cillin–streptomycin. The siRNAs used for transfection 
were established by GenePharma (Shanghai, China), 
and OC cells were transfected with siRNAs using jet-
PRIME® transfection reagent (Polyplus Transfection, 
China). The sequences of the siRNAs we used are 
shown in Table 1.

After RNA extraction and reverse transcription, real-
time qPCR analysis was performed using an ABI 7500 
instrument to evaluate the expression level of lncRNA 
CACNA1G-AS1 in cells and tissue based on the kit 
from TAKARA (Japan). The primer sequences are 
listed in Table 1.

Transfected SKOV-3 and A2780 cells were made 
into cell suspensions and then transferred to a 96-well 
plate. The old culture media was removed, and 10  µl 
cell counting kit‐8 solution (MedChemExpress, China) 
with 90  µl media was added to each well for an addi-
tional two hours on days one–four. At a wavelength of 
450  nm, the OD value of each well was detected by a 
spectrophotometer (Thermo Scientific).

https://www.gencodegenes.org/
https://www.gencodegenes.org/
http://bioconductor.org/packages/survivalr/
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Statistical analysis
We performed and visualized statistical analysis by using 
R packages (v4.0.2), TBtools and GraphPad Prism (v8.0). 
Kaplan–Meier (K-M) survival analysis of risk groups 
and clinicopathology subgroups were performed by the 
log-rank test to draw a survival curve. Wilcoxon test 
was utilized to compare difference between two groups. 
The experiments were conducted in triplicate, and each 
experiment was repeated three times. The experimental 
data were analyzed by Student’s t-test or one-way analysis 
of variance (ANOVA). P < 0.05 was considered statisti-
cally significant.

Results
To facilitate the understanding of our entire study, we 
created a flowchart, which is shown in Fig. 1.

Identification of significant prognostic LI‑m6As
A lncRNA that significantly correlated with one or more 
of the 23 m6A regulators was identified as LI-m6As 
(|PCC|> 0.4 and p < 0.01), and 10 significant prognostic 
LI-m6As were identified after univariate Cox regression 
analysis on the 129 acquired LI-m6As. As shown in the 
heatmap (Fig. 2a), seven significant prognostic LI-m6As 
(AC010745.4, AC026904.1, CACNA1G-AS1, DNM3OS, 
ERVH48-1, HOXA-AS3, and PTENP1-AS) were mark-
edly correlated with IGF2BP1 (reader). In addition, 
AC010894.3, ACAP2-IT1, and UBA6-AS1 were cor-
related with METTL5 (writer), RBM15 (writer), and 
YTHDC1 (reader), respectively.

A total of 58 LI-m6As-nearby-targeted mRNAs pairs, 
including nine of the ten LI-m6As, were detected. 
There were no nearby targeted mRNAs of AC010745.4 
(Fig.  2b). As for trans interactions, we searched for 
the TFs overlapping with LI-m6As and m6A regula-
tors and a total of 108 lncRNA-TF-mRNA relationship 
pairs were found (Fig.  3a, Additional file  1: Table  S1). 
Interestingly, p53 may regulate m6A factors and LI-
m6As through trans interactions (p53-IGF2BP1-
AC010745.4/CACNA1G-AS1/ERVH48-1/HOXA-AS3/
PTENP1-AS). On the basis of ten lncRNA-m6A pairs, 

we further found four of them included in the lncRNA-
miRNA-mRNA relationship pairs and the top one 
lncRNA-m6A pair with most miRNAs was UBA6-AS1-
YTHDC1(Fig. 3b). These findings may provide insights 
into the regulatory mechanisms of lncRNAs correlated 
with m6A-regulatory genes.

Construction and validation the prognostic signature
A LI-m6A prognostic signature was constructed accord-
ing to the LASSO Cox analysis of 10 significant prognos-
tic LI-m6As. The λ selection diagram is shown in Fig. 4a, 
b. λ between λmin and λ1se were considered appropriate. 
The model constructed by λ1se was the simplest, that was, 
it used a small number of genes, while λmin had a higher 
accuracy rate and used a larger number of genes. The 
λmin was selected to build the model for accuracy in our 
study. Patients in the training and validation cohorts were 
divided into low- or high-risk subgroups based on the 
median of RSs. The K–M survival curves of risk groups 
revealed that OS in the high-risk group was markedly 
lower than that in the low-risk group in both cohorts 
(Fig. 5a, b). The ROC curves proved that the risk model 
signature based on four m6A-RLs was accurate in pre-
dicting the OS of OC patients (Fig. 5c, d).

Four LI-m6As with corresponding coefficients and 
HR values (Table  2), namely, AC010894.3, ACAP2-IT1, 
CACNA1G-AS1, and UBA6-AS1, were generated to cal-
culate RSs.. A heatmap of the associations between the 
expression levels of the four LI-m6As and RSs showed 
that the expression of ACAP2-IT1 and CACNA1G-AS1 
increased with increasing RS, whereas the expression of 
AC010894.3 and UBA6-AS1 decreased with increasing 
RS in both the training and validation cohorts (Fig. 6a, b). 
The K–M survival curves confirmed that lower expres-
sion of ACAP2-IT1 and CACNA1G-AS1 and higher 
expression of AC010894.3 and UBA6-AS1 were associ-
ated with better OS of OC patients (Fig.  6c-f ). Hence, 
ACAP2-IT1 and CACNA1G-AS1 were risk factors, while 
AC010894.3 and UBA6-AS1 were protective factors.

Table 1  siRNA and primer sequences

siRNA Sense (5’-3’) Antisense (5’-3’)

siRNA-1 GCA​GAC​AAA​UGG​ACA​ACA​UTT​ AUG​UUG​UCC​AUU​UGU​CUG​CTT​

siRNA-2 GCC​UUC​GCA​ACU​CAU​UCA​UTT​ AUG​AAU​GAG​UUG​CGA​AGG​CTT​

siRNA-3 CAG​GAG​CAU​UUC​CCA​ACA​UTT​ AUG​UUG​GGA​AAU​GCU​CCU​GTT​

siNC UUC​UCC​GAA​CGU​GUC​ACG​UTT​ ACG​UGA​CAC​GUU​CGG​AGA​ATT​

Primer F primer (5’-3’) R primer (5’-3’)

CACNA1G-AS1 TTG​TTG​GCC​GGA​GCA​CTA​AT AGT​GAA​GCA​GGA​AGG​AAC​CG

GAPDH GTC​AAC​GGA​TTT​GGT​CTG​TATT​ AGT​CTT​CTG​GGT​GGC​AGT​GAT​
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Nomogram model construction and visualization
Univariate and multivariate Cox regression analyses of 
clinicopathology and the LI-m6A risk model showed 
that the signature was an independent risk factor for OC 
patients in the training and validation cohorts (Table 3). 
A nomogram was further constructed based on risk 
score, age, grade, and Figo state to predict the prognosis 
of OC (Fig.  7a, b). A calibration diagram was also used 
to verify the prediction ability of risk score for 1-, 3- and 
5-year of survival (Fig. 7c–h). In the calibration plots, the 
blue solid line was the prediction for survival, and the 
diagonal dotted line was the actual survival. The closer 

the solid line was to the dotted line, the better the predic-
tion ability was.

Clinicopathology analysis
We carried out clinicopathological analysis to evaluate 
the prognostic capacity of the LI-m6As prognostic signa-
ture. Several clinicopathological characteristics, such as 
WHO grade I, grade IV and FIGO stage I, were excluded 
due to the small sample size (< 10 patients). The results 
showed that the OS of the clinicopathology subgroups, 
such as Grade II, Grade III, age <  = 55 or > 55 years old, 
Stage III, Stage IV, platinum sensitivity and platinum 

Fig. 1  Flow diagram of our study



Page 6 of 18Zheng et al. Cancer Cell Int          (2021) 21:363 

Fig. 2  Identification of significant prognostic LI-m6As. a Correlations between 23 regulators and 10 significant prognostic LI-m6As. *p < 0.05 and 
**p < 0.01. b lncRNA-nearby mRNA interaction networks. Red rhombus: LI-m6As; blue ellipses: nearby mRNAs
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resistance, were significantly different in the low- or high-
risk group (Fig. 8a-h). Potentially, the p value of the Stage 
II subgroup was indistinctive because of insufficient sam-
ple size (Additional file 2: Fig. S1).

Biofunctional analysis of the risk groups
A total of 1581 DEGs between the risk subgroups were 
identified. The GO biological process analysis found 
that DEGs were mainly enriched in migration and pro-
liferation, such as epithelial cell migration and vascu-
lar smooth muscle cell proliferation (Fig. 9a). Moreover, 
the performed KEGG pathway analysis revealed that the 
DEGs were mainly enriched in microRNAs in cancer 
and taste transduction (Fig. 9b). GSEA of GO indicated 
that gene sets enriched in ‘negative regulation of gene 
expression’, ‘negative regulation of metabolic process’, 
and ‘posttranscriptional regulation of gene expression’ 
were highly expressed in the high-risk group (Fig.  9c). 
GSEA of KEGG showed that genes enriched in ‘Micro-
RNAs in cancer’ were highly expressed the in high-risk 
group, while genes enriched in ‘Metabolic pathways’ were 
expressed at low levels in the high-risk group (Fig.  9d). 
The enriched GO terms and KEGG pathways were fur-
ther annotated from “Metascape” website (Fig.  9e). The 
key module of the PPI network discerned by MCODE 
were shown in Fig. 9f. Seven hub genes were included in 
the interaction network.

Immune microenvironment and checkpoint
According to five algorithms (Estimate, ssGSEA, Ciber-
sort, MCPcounter and xCell), Stromal Score, Immune 

Fig. 3  Network based on trans interactions and ceRNA. a Trans interaction for lncRNA-TF-mRNA relationship pairs. b ceRNA for 
lncRNA-miRNA-mRNA relationship pairs. Blue arrowheads: TFs; red rhombus: LI-m6As; yellow ellipses: m6A regulators; blue rectangles: miRNAs

Fig. 4  a LASSO Cox analysis of 10 significant prognostic LI-m6As. b 
λ selection diagram. The two dotted lines indicated two particular 
values of λ. The left side was λmin and the right side was λ1se. The λmin 
was selected to build the model for accuracy in our study
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Score, ESTIMATE Score, and relative infiltration abun-
dance of immune cells and stromal cells of each sample 
were estimated respectively. The results revealed that a 
total of 59 microenvironment cells and Stromal score had 
significant differences between the two groups (Fig. 10a, 
Additional file  3: Table. S2). Among them, Neutrophils 
cells, Fibroblasts cells, and Endothelial cells were the top 
3 immune cells significantly enriched in the high-risk 
group. Given the importance of immune checkpoints 
in cancer treatment, the expressions of seven check-
point genes were compared. We found that HAVCR2 
and SIRPA had higher expressions in the low-risk group 

(Fig.  10b). In Fig.  10c, OC patients in low-risk group 
exhibited higher TIDE scores than those in high-risk 
group, indicating that OC patients with lower RSs were 
more sensitive to ICB therapy.

Sensitivity of chemotherapy drug
The IC50 levels of 135 drugs in OC patients were quan-
tified and significant differences in 87 chemotherapy 
drugs were found between the risk groups (Additional 
file  4: Table. S3). Figure 11 exhibited the results of nine 
commonly used chemotherapeutic agents for OC. Our 
data showed that the IC50 levels of Cisplatin (Fig.  11a) 

Fig. 5  Construction and validation of the prognostic signature. a, b The K-M survival curves of two risk groups based on the risk model in the 
training cohort (a) and validation cohort (d). c, d The ROC curves for predicting 1-, 3-, and 5-year survival in in the training cohort (c) and validation 
cohort (d) 

Table 2  The coefficient and HR value of the four m6A-related lncRNAs

lncRNA Coefficient HR HR 95%CI (lower) HR 95%CI (upper)

AC010894.3 − 0.0710905 0.93137761 0.851050332 1.01928667

ACAP2-IT1 0.37794931 1.45928897 0.802982948 2.652016842

CACNA1G-AS1 1.26113752 3.52943399 1.681058447 7.410155391

UBA6-AS1 − 0.163757 0.84894828 0.65798919 1.095326775
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were significantly higher in high-risk group than that in 
low-risk group. Inversely, the IC50 levels of Bleomycin 
(Fig.  11b), Docetaxel (Fig.  11c), Gemcitabine (Fig.  11d), 
Vinblastine (Fig.  11e) and Vinorelbine (Fig.  11f ) were 

significantly lower in high-risk group than that in low-
risk group, indicating that the OC patients in the high-
risk group were more sensitive to these drugs. However, 
the sensitivity of the two risk groups to Paclitaxel 

Fig. 6  Prognostic analysis of the four LI-m6As. a, b Heatmap of the expression levels of the four m6A-RLs with RSs in the training (a) and validation 
cohort (b). c-f The K-M survival curves of LI-m6A AC010894.3 (c), ACAP2-IT1 (d), CACNA1G-AS1 (e), and UBA6-AS1 (f) 

Table 3  Univaraite and multivariate Cox analysis of risk score and clinicopathology

Variables Univariate Multivariate

Coefficient Hazard ratio P Coefficient Hazard ratio P

Training cohort

 Risk score 1 2.718 (1.741–4.244)  < 0.001 1.071 2.917 (1.549–5.492) 0.001

 Age 0.02 1.020 (1.004–1.037) 0.015 0.018 1.018 (1.001–1.035) 0.037

 Grade 0.066 1.068 (0.787–1.448) 0.673 − 0.109 0.896 (0.637–1.263) 0.532

 Figo_stage 0.359 1.432 (0.981–2.089) 0.062 0.398 1.489 (0.980–2.262) 0.062

Validation cohort

 Risk score 0.949 2.583 (1.335–4.994) 0.005 0.853 2.347 (1.189–4.633) 0.014

 Age 0.023 1.023 (0.997–1.05) 0.087 0.023 1.023 (0.996–1.051) 0.096

 Grade 0.242 1.274 (0.752–2.159) 0.368 0.146 1.157 (0.646–2.073) 0.624

 Figo_stage 0.051 1.052 (0.679–1.630) 0.819 0.211 1.235 (0.750–2.033) 0.407
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(Fig.  11g), Rucaparib (Fig.  11h) and Veliparib (Fig.  11i) 
did not show a significant difference.

In vitro assays
lncRNA CACNA1G-AS1 was filtered as the candi-
date molecule to perform cell function assays. Real-
time qPCR analysis indicated that CACNA1G-AS1 was 

significantly upregulated in 30 OC tissues and three OC 
cell lines (Fig.  12a, b). The transfection efficiencies of 
three siRNAs targeting CACNA1G-AS1 were detected, 
which revealed that siRNA-2 presented the highest trans-
fection efficiency in SKOV-3 cells (Fig.  12c) and that 
siRNA-3 presented the highest transfection efficiency in 
A2780 cells (Fig. 12e). The CCK-8 assay showed that the 

Fig. 7  Nomogram model construction and visualization. a, b The Nomogram model based on risk score and clinical features for the training (a) 
and validation (b) cohort. c-h The calibration plots of the nomogram for predicting the probability of OS at 1 (c, f), 3 (d, g), and 5 (e, h) years in the 
training cohort (c–e) and validation cohort (f–h) 
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viability of SKOV-3 (Fig. 12d) and A2780 cells (Fig. 12f ) 
was suppressed after transfection of the corresponding 
siRNAs.

Discussion
As the most common internal modification of mRNAs 
in all higher eukaryotes, m6A has been proven to 
be abnormally expressed in a variety of tumors, and 

Fig. 8  The K-M survival curves of several clinicopathological characteristics based on the risk model. a Grade II. b Grade III. c Age <  = 55. d Age > 55. 
e Stage III. f Stage IV. g Platinum sensitivity. h Platinum resistance
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plays an important role in the regulation of a series of 
malignant biological behaviors such as cell prolifera-
tion, invasion and metastasis [2]. Previous studies have 
reported that several lncRNAs regulate the occur-
rence and development of cancer via m6A modifica-
tion. For example, lncRNA RP11-138 J23.1 regulated 
by m6A positively induced the epithelial mesenchymal 
transition (EMT) of colorectal cancer cells [38]. Onco-
genic lncRNA XIST is inhibited by METTL14 (writer) 

in colorectal cancer [39]. The lncRNA DANCR and 
IGF2BP2 (reader) have been proven to synergistically 
promote the pathogenesis of pancreatic cancer [40]. It 
has been unveiled that LINC00942 serves as an onco-
gene by promoting METTL14-mediated m6A meth-
ylation in breast cancer [41]. lncRNA GAS5 negatively 
regulated by YTHDF3 (reader) was demonstrated to 
be a tumor-suppressor in colorectal cancer [42]. LIN-
RIS was proven to promote carcinogenesis of colorectal 

Fig. 9  Functional analysis. a, b Significantly enriched GO terms (a) and KEGG pathways (b) of differentially expressed genes (DEGs). The color 
scale represented p value and the circle size indicated count. c, d Gene set enrichment analysis (GSEA) of GO (c) and KEGG (d). The crest on the 
left represents the high expression of the enriched genes in the high-risk group, while the crest on the right is the opposite. e Cluster ID. Nodes 
with the same cluster ID are typically close to each other and the same color indicates the same cluster ID. f The key module of PPI network. Seven 
hub genes were included in the interaction network. Circles indicate the genes in the PPI network, and the connection indicates the potential 
interaction between different mRNAs
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Fig. 10  Immune microenvironment and checkpoint. a Heatmap of immune microenvironment revealed that a total of 59 immune cells and 
stromal score had significant differences between the two risk groups. b Expression of seven immune checkpoint genes between high and low-risk 
group. HAVCR2 and SIRPA had higher expressions in the low-risk group. c TIDE scores in the low-risk group were higher than those in the high-risk 
group. Data are shown as means ± S.D. ns not significant, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001



Page 14 of 18Zheng et al. Cancer Cell Int          (2021) 21:363 

cancer by serving as a stabilizer of IGF2BP2 (reader) 
[43]. LNCAROD is aberrantly expressed and has been 
identified as an oncogenic lncRNA due to dysregula-
tion of m6A modification [44]. The abovementioned 
evidence shows that m6A is modified in the process of 

lncRNA biological function. In addition, lncRNA can 
also regulate m6A modification. These are all part of the 
complex regulatory network of tumors. As a new dis-
covery in scientific research, we believe that in-depth 
study of the biological mechanism of mutual regulation 

Fig. 11  Sensitivity of chemotherapy drug. a-i Difference in the estimated IC50 levels of Cisplatin (a), Bleomycin (b), Docetaxel (c), Gemcitabine (d), 
Vinblastine (e), Vinorelbine (f), Paclitaxel (g), Rucaparib (h) and Veliparib (i). Data are shown as means ± S.D. ns not significant, *p < 0.05, **p < 0.01, 
***p < 0.001, ****p < 0.0001
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between lncRNAs and m6A will become a hot spot for 
discovering prognostic markers or therapeutic targets 
for malignant tumors. Nonetheless, lncRNAs involved 
in m6A regulation in OC are still unknown.

Four LI-m6As, namely, AC010894.3, ACAP2-IT1, 
CACNA1G-AS1, and UBA6-AS1, were included in 
our identified prognostic signature. They were corre-
lated with METTL5 (writer), RBM15 (writer), IGF2BP1 
(reader), and YTHDC1 (reader), respectively. Among 

the four m6A regulators, METTL5 was confirmed to 
serve as the enzyme for the m6A modification of 18S 
rRNA, thereby promoting breast cancer cell growth 
[45]. RBM15 was identified as a regulator that binds to 
METTL3 and WTAP and directs these two proteins to 
specific RNA sites for m6A modification [2]. Studies have 
shown that lncRNAs participate in mediating the occur-
rence and progression of cancer by targeting IGFBP1, 
thus becoming a new therapeutic target for cancer [46]. 

Fig. 12  Cell function assays. a, b Real-time qPCR analysis detecting relative expression of lncRNA CACNA1G-AS1 in 30 OC tissues (a) and three 
OC cell lines (b). c The transfection efficacities of three siRNAs targeting CACNA1G-AS1 in SKOV-3 cells. d CCK-8 assays were performed after 
CACNA1G-AS1 was inhibited in SKOV-3. e The transfection efficacities of three siRNAs targeting CACNA1G-AS1 in A2780. f CCK-8 assays were 
performed after CACNA1G-AS1 was inhibited in A2780. Data are shown as means ± S.D. ns not significant, *p < 0.05, **p < 0.01, ***p < 0.001, 
****p < 0.0001
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The m6A level of lncRNA pncRNA-D was recognized by 
YTHDC1 [47]. For the LI-m6As we identified, a study 
has shown that UBA6-AS1 serves as a malignant gene 
in glioblastoma by competitively binding to miR-7648. 
Previous studies have demonstrated that lncRNA CAC-
NA1G-AS1 enhances the multiplication capacity via the 
miR-2392/C1orf61 pathway in hepatocellular cancer [49]. 
CACNA1G-AS1 promoted the proliferation and inva-
siveness of colorectal cancer by inhibiting the expression 
of p53 [50]. CACNA1G-AS1 exerts its malignant func-
tion by HNRNPA2B1 in non-small-cell lung cancer [51]. 
In our research, CACNA1G-AS1 showed high expression 
and may regulate proliferation, which would fill the gap 
in the OC literature. Our findings are probably worthy of 
further study by subsequent researchers who concentrate 
on the mechanism of m6A-related lncRNAs in OC.

We further explored the differences in immune micro-
environment, immune checkpoint, chemotherapy drug 
sensitivity between the two risk groups. Our data showed 
that OC patients in the low-risk group may be more 
sensitive to Cisplatin and ICB therapy compared to the 
high-risk group, while patients in the high-risk group 
were more sensitive to Bleomycin, Docetaxel, Gemcit-
abine, Vinblastine and Vinorelbine. Findings of our study 
uncovered potential biomarker and therapeutic target for 
the risk model based on the LI-m6As.

Our study still has some limitations. First, there were 
only 30 OC patients without OS in our cohort, hence, 
more time and more samples are needed for follow-up. 
Second, cell function assays of CACNA1G-AS1 were 
preliminary and need further investigation to provide a 
better understanding. Definitively, the number of OC 
samples in TCGA is very limited; hence, more inde-
pendent data sets are needed to validate our identified 
LI-m6As.

Conclusions
We found four lncRNAs (AC010894.3, ACAP2-IT1, 
CACNA1G-AS1, and UBA6-AS1) involved in m6A regu-
lation and that have significant prognostic value in OC. 
Furthermore, the predictive signature based on the four 
lncRNAs can independently predict the therapeutic 
value of OC patients by combining molecular signatures 
and clinical characteristics. Furthermore, CACNA1G-
AS1 was preliminarily identified as a malignant lncRNA 
through in vitro experiments.
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