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Abstract

This paper presents a framework for organizing and accessing mechanistic data on chemical 

interactions. The framework is designed to support the assessment of risks from combined 

chemical exposures. The framework covers interactions between chemicals that occur over the 

entire source-to-outcome continuum including interactions that are studied in the fields of 

chemical transport, environmental fate, exposure assessment, dosimetry, and individual and 

population-based adverse outcomes. The framework proposes to organize data using a semantic 

triple of a chemical (subject), has impact (predicate), and a causal event on the source-to-outcome 

continuum of a second chemical (object). The location of the causal event on the source-to-

outcome continuum and the nature of the impact are used as the basis for a taxonomy of 

interactions. The approach also builds on concepts from the Aggregate Exposure Pathway (AEP) 

and Adverse Outcome Pathway (AOP). The framework proposes the linking of AEPs of multiple 

chemicals and the AOP networks relevant to those chemicals to form AEP-AOP networks that 

describe chemical interactions that cannot be characterized using AOP networks alone. Such AEP-

AOP networks will aid the construction of workflows for both experimental design and the 

systematic review or evaluation performed in risk assessments. Finally, the framework is used to 

link the constructs of existing component-based approaches for mixture toxicology to specific 

categories in the interaction taxonomy.
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1. Introduction

Toxicology, exposure science, and chemical risk assessment are in the midst of a 

transformation. Assessors are moving towards the use of in vitro assays and in silico 
predictions that provide insights on the mechanisms that cause adverse outcomes (AOs) 

(NRC, 2007). The methodologies driving this transformation have been referred to as New 

Approach Methodologies or NAMs (Pham et al., 2019; Wambaugh et al., 2019). In vivo 
toxicity data are limited to a relatively small number of substances. Because of the large, and 

increasing, number of chemicals in commerce it is envisioned that the majority of chemicals 

will be evaluated in the future using NAMs rather than data from in vivo models of toxicity 

(Kavlock et al., 2018). The benefits of NAMs are perhaps more critical to the study of the 

effects of chemical mixtures than the effects of single chemicals (Hernandez et al., 2019). 

There are more combinations of chemicals than individual chemicals and dose response for 

combined exposures are more complex than those for individual chemicals. Following 

Nelms et al. (2018) and Bopp et al. (2019), the term “chemical mixtures” is defined in this 

paper as an organism’s or population’s combined exposures to two or more chemicals, 

where the period of time between the exposures is sufficiently small as to allow the effects 

of one chemical to influence the response of the organism or population to one or more other 

chemicals. Chemical mixtures include intentional discrete mixtures (e.g., consumer 

products) and unintentional discrete mixtures (e.g., industrial effluents), and concurrent 

exposures to chemicals from multiple sources.

The hallmark of NAMs is to illuminate the mechanisms that determine the causal events in 

the source – exposure – dose – outcome continuum that describes the ability of a chemical to 

pose risks to humans and the environment (Cohen-Hubal et al., 2010; Hines et al., 2019). 

Data from in vivo and in vitro assays of toxicity and studies of metabolism and 

environmental fate are being collected, curated, and organized into databases (Thomas et al., 

2019). In silico models based on the data are being used to predict the relationship between 

chemical structure and: biological activity and the ability to cause AOs (Patlewicz and 

Fitzpatrick, 2016; Patlewicz et al., 2018); the absorption and distribution characteristics of 

chemicals in biological systems (ten Berge, 2009; O’Connor et al., 2013; Sun et al., 2018); 

the physical and chemical properties of chemicals (Mansouri, 2018); and the functional roles 

of chemicals in commercial products (Phillips et al., 2017). Exposure-relevant data are being 

collected on the release of chemicals to the environment (Cashman et al., 2016; Smith et al., 

2017); measurements of chemicals in environment, indoor dust, and biomonitoring samples 

(Sobus et al., 2018), and composition of consumer products (Dionisio et al., 2018). The 

prediction of internal doses and how they vary across individuals are being made for large 

numbers of chemicals using pharmacokinetic models (Ring et al. 2017; Pearce et al. 2017). 

Combined exposures to chemicals in consumer products are being modeled using databases 

of product-use patterns (Safford et al. 2017; Dudzina et al., 2015).

The large data sets generated by NAMs require frameworks to organize, hold, and facilitate 

their use in risk assessments. Two frameworks currently in use are the Adverse Outcome 

Pathway or AOP (Ankley et al. 2010; Ankley and Edwards, 2018) and the Aggregate 

Exposure Pathway or AEP (Teeguarden et al., 2016; Tan et al. 2018a; Tan et al., 2018b). 

Both frameworks organize mechanism-relevant data in terms of a series of casual events 
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using techniques from acyclic graph theory. The AOP addresses the pharmacodynamic 

changes caused by chemicals in biological systems and is required by the move from 

empirical findings of in vivo models to approaches that are based on findings of specific 

mechanisms generated by in vitro and in silico techniques. The AEP can be viewed as the 

extension of Conceptual Site Model (CSM), that is used to organize events that occur during 

manufacture, release, fate, and transport portions of the continuum (Suter, 1999). The AEP 

includes the exposure to, and the intake of, a chemical and the absorption, distribution, 

metabolism and excretion (ADME) of the chemical in the individual. Together the AEP and 

AOP frameworks cover mechanistic data for events that occur over the entire source-to-

outcome continuum. The combination of the AOP and AEP have been shown to provide a 

basis for organizing mechanistic data to support tasks such as the systematic review of data 

and a workflow for hazard and risk assessments (Jarabek and Hines, 2019).

This paper proposes a new framework for collecting, organizing, and using the mechanistic 

data generated by NAMs to better understand the effects that can be expected to occur from 

exposures to chemical mixtures. This new framework seeks to address chemical interactions 

that occurs over the entire source-to-outcome continuum by using concepts from the AEP 

and AOP. The paper begins by briefly reviewing existing systems for categorizing chemical 

interactions. This is followed by a presentation of the two elements that make up the new 

framework. The use of the new framework for organization and storage including the 

creation of a semantic triple for chemical interactions is then discussed. An example 

application of the new framework to a specific type of chemical interaction is provided. 

Finally, the new framework is used to provide mechanism-based perspectives on the 

constructs of historical component-based approaches to mixture toxicity.

2. Existing approaches for categorizing chemical interactions

The following is a description of the terms and concepts that appear most frequently in 

publications on mixture toxicology (Bliss, 1939; Finney, 1942; Plackett and Hewlett, 1963; 

Kodell and Pounds, 1991; Könemann and Pieters, 1996; Hernández et al., 2013; Hernández 

et al., 2017; Heys et al., 2016). Historically, efforts for classifying joint chemical toxicity 

have focused on coexposures to chemicals that have a common AO, with less attention given 

to coexposures where only one (or neither) chemical separately causes an AO of interest.

At different times, and operating from different perspectives, multiple sets of categories and 

terms have been proposed for interactions of chemicals with common AOs (Kodell and 

Pounds, 1991; Könemann and Pieters, 1996). Categorization of joint chemical toxicity has 

typically been based on a comparison of the results of in vivo models of the effects of 

chemicals measured independently and in combination. The system of categories envisions 

that two chemicals X and Y are given to an in vivo model separately. Doses of X and Y are 

determined which cause a response of r, where r is sufficiently small that the dose response 

curve can be assumed to be linear. These doses are given concurrently to the same model 

and the result is used to define the category of the response (Fig. 1).

Responses between a range of r and 2r are taken as evidence that the chemicals may not be 

modifying each other’s mechanism of action (noninteracting) but simply adding to one 
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another’s effects and are said to be within the envelope of additivity (Kodell and Pounds, 

1991). Responses that occur outside of this range are taken as evidence of an interaction 

between the two chemicals. Responses below r are termed antagonistic interactions and 

responses above 2r are termed synergistic interactions. For responses within the range of r to 

2r, the responses may be dose additive or response additive. In the case of response 

additivity, coadministration of chemicals X and Y at the highest doses that separately cause 

a response of zero will not cause a response. In contrast, chemical pairs that follow dose 

additivity models are expected to cause a response because the combined doses would be 

sufficient to cause an effect. Finally, instances where chemical X, or chemicals X and Y, do 

not cause a specific AO when administered separately but do in combination are considered 

to have demonstrated an interaction.

The existing system has a number of limitations. First, the categories are not defined in 

terms of any specific mechanism but rather on empirical results. Thus, mechanistic data 

generated by NAMs do not necessarily indicate the assignment of a chemical interaction into 

any of the existing categories. Second, empirical findings are specific to the doses tested, the 

laboratory animal used, and the experimental conditions. Such findings require some sort of 

model to establish the findings’ relevance for coexposures that occur at lower dose levels, at 

different ratios, over different durations, or in different species. Such models are difficult to 

create using only first principles and empirical findings of joint effects. Third, assignment of 

the interaction between two chemicals to one of the categories can be challenging in 

practice. Performing in vivo studies with limited numbers of animals result in dose response 

data that lack the statistical power to discriminate between additivity and synergy or 

additivity and antagonism, especially when the chemicals in a mixture have non-linear dose 

responses (Kodell and Pounds, 1991; Könemann and Pieters 1996; Hertzberg and 

MacDonell, 2002). In addition, empirical measurement of response in animal studies may 

reflect multiple types of interactions operating by different mechanisms at different doses of 

a mixture (Cassee et al., 1996).

Recently similar approaches have been applied to in vitro models of biological activity 

(Blackwell et al., 2018; Orbach et al., 2018). Studies of interactions that use in vitro models 

of biological activity may include more dose groups and replications and thus have a greater 

statistical power than in vivo studies; however, such assays only measure a single KE or at 

most a portion of the tested chemicals’ AOPs.

Perhaps most importantly the current system is limited to interactions that occur in the 

portions of the source-to-outcome continuum that can be studied using in vivo and in vitro 
models. These portions begin with the dose given to the test system and end with the AO of 

the test system. It excludes interactions between chemicals that occur at points between the 

source of exposure and the external exposure as well as the interactions that occur on the 

population or ecosystem levels. Interactions between chemicals are known to occur in the 

transport and transformation processes of chemicals (Spurgeon et al., 2010). For example, 

chemical X could compete with chemical Y for the transformation processes in media such 

as air, water, or soil. This competition would increase the amount of chemical Y available to 

reach a receptor and ultimately cause an effect (Hines et al., 2019). These interactions are 

characterized in the AEPs of the chemicals (Price and Leonard, 2019).
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3. A mechanism-based framework for organizing data on chemical 

interactions

The proposed framework is created by two actions. The first action is to redefine the 

traditional concepts of chemical interaction and noninteraction in mixture toxicology. The 

second action is to use the combination of the AEP and AOP frameworks as a basis for a 

taxonomy of the mechanisms that determine joint toxicity (Price and Leonard, 2019).

3.1. Redefining the terms “interaction” and “noninteraction” in mixture toxicology

As discussed in the prior section, most toxicologists have defined chemical “interactions” as 

observations of joint effects that cannot be explained by an assumption of dose or response 

additivity. In the proposed framework, interaction is more broadly defined as “the ability of 
one chemical (X) to cause a change in the source-to-outcome continuum of a second 
chemical (Y) for a defined AO.” This definition of interaction is not novel. It has been used 

by some researchers (Binderup et al. 2003; Bopp et al., 2019). This definition parallels the 

basic concept of toxicity presented in the National Academies of Science report Toxicity in 
the 21st Century (NRC, 2007) and the AOP framework (Ankley et al. 2010; Villeneuve et 

al., 2018). In these documents, toxicity is defined as a perturbation of an existing biological 

system beyond its normal range by a chemical. In the chemical-interaction framework, a 

chemical interaction is defined as a perturbation of the existing source-to-outcome 

continuum of chemical Y by chemical X.

As discussed in the prior section, many toxicologists have defined “noninteraction” as 

chemical mixtures that follow either a dose or response addition model (Kodell and Pounds 

1991; Hernández et al., 2013). In the proposed framework, “noninteraction” between 

chemicals X and Y is defined as “the lack of the ability of X to change the source-to-
outcome of Y at any dose of X.” Under this definition chemical X cannot cause the AO of Y 

nor can it change the relationship between a release of Y, or a dose of Y, and an AO. Strictly 

speaking no two chemicals are noninteracting at all doses (any chemical X when given at 

sufficiently toxic doses, will change the response of chemical Y by killing the model 

organisms prior to the display of the AO); however, if the maximum tolerated dose of 

chemical X does not change the ability of Y to cause the AO, then chemical X can be said to 

be noninteracting with respect to Y. This definition is similar to the concept of “no apparent 

influence” as proposed by EPA (USEPA, 2000).

In the proposed chemical-interaction framework, if chemicals X and Y cause a common AO 

and follow dose addition or response addition models they are considered to be interacting. 

As discussed below, the possible mechanisms that could be associated with either dose or 

response addition can be defined using the topology of AOP networks (Villeneuve et al., 

2018; Nelms et al., 2018) and can be assigned to specific categories of interactions (Price 

and Leonard, 2019).

A major implication in the new definition of interaction between two chemicals is that each 

chemical plays a different role in the interaction. Historically, the focus of in vivo studies 
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was to determine the nature of the joint action and not necessarily the specific roles for each 

chemical.

Dose of X OutcomeX
Dose of Y OutcomeY
Dose of X and Y OutcomeX+Y

In the proposed framework, data on an interaction is stored in terms of chemical X 

interacting with chemical Y’s source-to-outcome continuum and changes in the response of 

the AO to a given release, or dose, of Y. Such a definition is directional with chemical X 

changing the AEP or AOP of Y.

Release of Y
X

OutcomeY

This approach can be used for pairs where both chemicals separately cause an AO of 

interest, where only one of the two chemicals separately causes the AO, and when neither 

causes the AO separately. When two chemicals both cause an AO, however, it is often useful 

to capture differences in the roles that each chemical plays in any interaction. To capture 

such interactions a database would store information on the interaction as two entries, first 

as the effect of X on the ability of Y to cause an AO and second as the effect of Y on the 

ability of X to cause an AO.

3.2. Using the AEP-AOP as the basis for a taxonomy of interactions

The second component of the proposed framework is a previously published taxonomy of 

chemical interactions (Price and Leonard, 2019). The following is a brief summary of that 

taxonomy. The reader is encouraged to read the original publication for additional 

information.

The taxonomy addresses all chemical interactions that occur over the source-to-outcome 

continuum of a chemical risk assessment. This source-to-outcome continuum is defined 

using a combination of the AEP and AOP (Fig. 2).

The location of the interaction on the continuum is proposed as a criterion for organizing 

chemical interactions (Fig. 3). The continuum is divided into four contiguous and non-

overlapping regions that cover the entire continuum. The interactions that occur in a region 

are assigned to the top tier category of the taxonomy that corresponds to the region. The 

resulting system of four categories is exhaustive (all interactions will fall into one of the 

categories) and mutually exclusive (an interaction will fall into only one category). These 

four top categories are divided into subcategories defined using concepts derived from the 

AOP and AEP (Table 1). Table 1 also presents an example interaction for each category and 

subcategory.

The taxonomy as presented in the 2019 publication (Price and Leonard, 2019) is meant to be 

an initial attempt. Future versions of the taxonomy would be expected to add additional tiers 
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that categorize the specific mechanisms and biological processes involved in two chemicals’ 

interactions. It is also possible that the two proposed tiers may be revised to reflect future 

changes in the AEP and or the AOP. Finally, the taxonomy is based on the interactions 

between two chemicals. More complex interactions involving three or more chemicals are 

assumed to be captured by the interactions between the individual pairs of chemicals that 

make up the group. This assumption will be a topic for future research

4. Using the proposed framework to organize data on interactions

4.1. Directed interactions as the basis for a semantic triple

Multiple groups and organizations are working to manage mechanistic data on chemical 

toxicity. AOPs are being stored in an international AOP knowledgebase (Organisation for 

Economic Co-operation and Development, 2013; Society for the Advancement of Adverse 

Outcome Pathways, 2013). Ontologies have been proposed for AOPs (Ives et al., 2017; 

Burgoon, 2017) and are used to enhance the knowledgebase for various purposes. In 

addition, ontology practitioners are beginning to look at graph databases to achieve these 

aims.

The proposed framework may be useful in the design of a knowledgebase for data on 

chemical interactions. The creation of a knowledgebase requires actions such as 

standardizing vocabularies, creating taxonomies, and establishing data formats in order to 

enhance data utility. Such knowledgebases should be consistent with FAIR principles and 

meet the needs for reproducibility and rigor (Wilkinson et al., 2019; Waller and Miller, 

2016). When creating an ontology for an area of study it is essential to identify the structure 

of the essential concepts that define that area of study. We propose that the definition of 

directed interaction can serve as the essential concept for chemical interactions. In addition, 

the structure of the directed interaction can be expressed as a semantic triple that could 

support a semantic Resource Development Framework (RDF) for data on chemical mixtures 

(Fig. 4). RDFs are databases are designed facilitate the web-based searches for data. 

Semantic triples encode the relationships between concepts in an ontology, where a concept 

consists of a subject, a predicate and an object – similar to English grammar (Ives et al. 

2017).

The object of the triple is an event in the source-to-outcome continuum of Y. The event is 

defined as a KTR in the AEP, or as a KER in the AOP that is changed as a result of the 

effects of chemical X.

The predicate of the semantic triple serves as a “bridging” function that connects the subject 

to the object. In the proposed triple, we use the generic language “has impact” to mean that 

the subject has an “effect or consequence of an event or condition” on the object. This is 

consistent with the National Cancer Institute Thesaurus definition for “impact” (http://

ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#C122929, viewable at https://

bioportal.bioontology.org/ontologies/NCIT/?p=classes&conceptid=http%3A%2F

%2Fncicb.nci.nih.gov%2Fxml%2Fowl%2FEVS%2FThesaurus.owl%23C122929). As 

discussed in the paragraphs immediately following, the impacts are different for events that 

occur in different portions of the continuum. In the future we could see more exact language 
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being used in the predicate to capture these differences, or an even more specific predicate 

from another appropriate ontology, being used in lieu of the generic “has impact”.

The impacts for the processes addressed by the AEP (Categories 1 and 2) can be grouped 

using the changes in the KTRs associated with the subcategories of Categories 1 and 2. The 

impacts that occur in the portion of the continuum covered by the AOP (Categories 3 and 4) 

involve a common AOP network that defines the interaction. AOP networks are chemically 

agnostic. As a result, the interactions are defined in terms of the MIEs that chemicals X and 

Y cause in the AOP network. This suggests that impacts of these interactions are defined by 

the following: (1) whether X and Y cause the same MIE or if they cause different MIEs, and 

(2) the topology of the downstream AOP network of the MIEs. Chemical pairs that have the 

same MIE fall into Subcategory 3A. These impacts are determined by the nature of the 

relationships between the Target Site Exposures (TSEs) of X and Y to the common MIE. 

Pairs of chemicals that cause different MIEs fall into Subcategories 3B and 3C. As defined 

by Villeneuve et al. (2018) both 3B and 3C interactions occur on apical convergent networks 

(separate MIEs leading to a common AO). The 3B interactions have AOs that are 

downstream of an Initial Common Key Event (ICKE) that in turn is downstream of the MIEs 

of X and Y. The KER that relates the effects of X to the ICKE defines the impact for a 3B 

interaction. The 3C interactions have the AOPs that are downstream of the MIEs and KEs of 

X and Y meeting at a common AO. The final KER of X’s AOP defines the impact of X.

The subject of the triple is chemical X. Chemical X acts to change the source-to-outcome of 

chemical Y. The subject can be linked to metadata that helps define the interaction. This 

metadata includes the properties of chemical X that are relevant to the interaction. These 

properties can be divided into three groups physical properties, chemical properties, and 

toxicological properties. The impacts of chemical X (but not necessarily chemical X itself), 

must be present at the location of the interaction (defined as the location of the relevant KES 

or KE) and a point in time that is concurrent with the presence of chemical Y (or its effects) 

at the location. As a result, the data on chemical X should include information on the 

chemical X’s AEP and AOP up to the point where chemical X’s effect on chemical Y 

occurs.

4.2. Using the framework to define a chemical interaction network

Fig. 5 presents an example of how the triple can be used to describe a common type of 

chemical interaction. In this interaction chemical X is the object. It reaches an organism 

(described in the AEP of chemical X) and causes a MIE that leads to a change in enzyme 

activity in the organism (described as a key event in the AOP of chemical X). An impact of 

X is the decreased enzyme activity in the organism. The object is a conversion KTR in the 

AEP of chemical Y that is determined by the affected enzyme. The decrease in the activity 

of the enzyme decreases the removal of Y (detoxification) and results in an increase in the 

TSE of Y. The increase in the TSE results in an increase in the response rate for the AO 

associated with the release of Y (synergy). An example of an interaction that follows this 

example would be the effect of grapefruit juice consumption on drug metabolism (Lilja et 

al., 2004).
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While AOP networks have been used to characterize the interactions of chemicals 

(Villeneuve et al., 2018; Knapen et al., 2015) the AOP networks only capture the chemical 

interactions that occur on one portion of the source-to-outcome continuum (toxicodynamic 

interactions). The AEP-AOP network links the AEP and AOP of chemical X to a process in 

the AEP of chemical Y. This linking of an AOP of chemical X to an AEP of Y is required to 

characterize many interactions in Category 2.

4.3. Using the framework to provide a mechanism-based perspective of existing 
constructs in component-based approaches in mixture toxicology

As discussed above, constructs in component-based mixture toxicology (categories and 

implications of those categories) have been based on empirical measurements of separate 

and joint toxicity (Boobis et al., 2011; Kodell and Pounds, 1991). In this section the 

framework is used to link specific mechanisms to the existing constructs of component-

based mixture toxicology. This is not to say that mechanistic concepts have not been 

discussed in the literature (Ariens et al., 1976; Kodell and Pounds, 1991; Spurgeon et al., 

2010; Bopp et al., 2019); however, such discussions have been limited by the absence of a 

coherent mechanism-based framework for interactions. Unlike the redefinition of the terms 

“interaction” and “noninteraction” proposed above, the goal in this section is not to change 

the definitions of the constructs, but to provide alternative mechanism-based definitions that 

may serve as bridges between the constructs and mechanistic findings.

4.3.1. Interaction thresholds—Interaction thresholds occur when chemical X has a 

specific type of interaction at one dose but not at a lower dose. Thresholds of interactions 

have been observed in empirical measurements of joint response (Hamm et al, 2005; Yeatts 

et al. 2010) and have been described using PBPK models (El-Masri et al. 2004). One of the 

mechanisms by which such interaction thresholds occur is when chemical X causes its 

impact by means of its toxicological effects. Several of the interaction categories are based 

on the impact of the toxicological properties of chemical X on the source-to-outcome of 

chemical Y. These including certain interactions in Subcategories 1A, 1B, 2A, and 2B and 

all interactions in Subcategories 3B, 3C, 4A and 4B. In these interactions, chemical X must 

reach an organism and cause a MIE leading to KEs and AOs in its own AOP. Thresholds 

would be expected for these interactions. For example, chemical X would only affect 

chemical Y in a 3B interaction when the TSE of X was sufficiently large to cause the KE 

immediately prior to the ICKE for Y. Such an exposure may be lower than the level 

necessary to cause the AO for X and will be the same or higher than the dose causing the 

MIE. Below this dose X would not affect the dose response of Y. Chemical X would only 

affect chemical Y in 3C interactions when the TSE of X was sufficiently large to 

independently cause the AO. Thresholds could also occur for interactions where the 

chemical and physical properties of chemical X are the cause of the interaction. For 

example, pH-related interactions where chemical X was an acid or base and the KES 

contained buffers would display threshold-type behaviors.

4.3.2. Dose addition—The dose addition model assumes that two chemicals act as if 

they are simple dilutions of a single chemical (USEPA, 2003; IGHRC, 2009), causing a 

common AO, having the same sites of primary action, and the same mode of action at the 
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site (Kodell and Pounds, 1991). An important implication of dose additivity is that no 

interaction threshold exists for the chemicals that follow dose addition (Könemann and 

Pieters, 1996). Under a dose additivity model, contributions from large numbers of small 

doses of chemicals may pose a risk. As a result, a mixture with an ED10 could be created by 

taking half of the ED10 of two chemical or 1/100 of the ED10 of one hundred chemicals. The 

reason for this is that the interaction occurs at a single MIE and is determined by the 

combined TSEs of the chemicals.

Under the characteristics of dose addition provided above, interacting with a common site 

(e.g., within a tissue or cell) is a necessary, but not a sufficient, finding for dose additivity. 

Interactions that involve a common site may occur by different AOPs. For example, in a 

receptor-mediated effect where the receptor was located in a specific type of cell, chemical 

Y could bind to the receptor leading to the AO and chemical X could cause toxicity to the 

cell containing the receptor. Such an interaction has a common site but would not be dose 

additive at doses of X that were below the threshold of the MIE that led to chemical X’s 

cytotoxicity. The potential for dose additivity only occurs in the AOP framework when two 

chemicals affect a common MIE (Nelms et al., 2018). Such interactions would fall under 

Subcategory 3A.

Even with a common MIE, however, the joint response need not follow a dose additivity 

model. To return to the above example, in a receptor-mediated MIE, receptor binding for 

different chemicals can vary from weakly binding low activity compounds to chemicals that 

irreversibly block a receptor. The effects of combined exposure of such chemicals would not 

necessarily follow dose additivity at all doses. In this case a quantitative AOP (qAOP) that 

included modeling of receptor binding would be necessary to predict the combined effects.

Based upon these findings, the following mechanism-based definition of dose addition is 

proposed:

Dose addition occurs between two chemicals (X and Y) when a prior, or concurrent, 

exposure to chemical X causes an increase in the intensity or duration of the MIE in 

response to a given release of Y from a source (or a given dose of Y) by acting as if it was a 

concurrent toxicity-weighted TSE of Y.

4.3.3. Response addition—In response addition models a chemical component of a 

mixture will not contribute to a mixture’s toxicity unless it is present at a sufficient dose to 

cause a response independently (Kodell and Pounds, 1991). When expressed in terms of an 

AOP network, such interactions would occur when two chemicals have separate MIEs and 

KEs but converge to a common AO (Nelms et al., 2018). As a result, addition interactions 

would fall under Subcategory 3C of the taxonomy and have interaction thresholds.

Based upon these findings the following mechanism-based definition of response addition is 

proposed:

Response addition occurs between two chemicals (X and Y) when a prior, or concurrent, 

exposure to chemical X causes an AO in an exposed population and changes the response to 
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a given release of Y from a source (or a given dose of Y) by reducing the number of 

individuals where the AO has not occurred.

4.3.4. Combined toxicity models for Subcategory 3B interactions—While 3A 

and 3C interaction map to dose additivity and response additivity, Subcategory 3B 

interactions do not fit well into either type of additivity. As discussed above, interactions that 

fall under 3B (having a common KE in an AOP network) form convergent AOP networks. 

The nature of the joint toxicity for these interactions is determined by the KERs that directly 

link to the ICKE of the network and connect back to the MIEs of chemicals X and Y 

(Villeneuve et al., 2018; Conley et al., 2018).

• If the impact of the KER in chemical X’s AOP that links to the ICKE is the same 

as the KER in chemical Y’s AOP that links to the ICKE, the impacts would be 

response additive. For example, if the relevant KERs of both X and Y result in 

the death of a specific type of cell.

• If the impact of the KER in chemical X’s AOP that links to the ICKE is in the 

same direction as the KER in chemical Y’s AOP that links to the ICKE but 

differs in mechanism, the impacts could differ from additivity and could be 

supra-additive (synergistic) or sub-additive (partial additivity). For example, if 

the KER for Y was to cause toxicity in a specific cell and X inhibits the 

replacement of the cell, the combined effect would be positive (X would make Y 

more toxic) but the response need not follow dose additivity (e.g., a dose of X 

that prevents cell replacement might make a long-term dossing regime of Y that 

separately caused minimal cytotoxicity highly toxic to an organism).

• If the impact of the KER in chemical X’s AOP that links to the ICKE is in the 

opposite direction to the KER in chemical Y’s AOP that links to the ICKE, the 

impact would be antagonistic (e.g., Y suppresses an enzyme’s activity and X 

increases the activity). The form that the antagonism would take would depend 

on the quantitative relationships of the KERs for X and Y that link to the ICKE.

Because of the dependence on the KERs for chemicals of X and Y that link to the ICKE, it 

is not possible to predict the nature of the joint response without the construction of a qAOP 

network for the two chemicals. One characteristic of all 3B interactions, however, is that 

they will have interaction thresholds. The effects of X would add to the effects of Y only 

when the TSE of X was sufficiently large to cause the KE immediately prior the ICKE in 

chemical Y’s AOP.

Nelms et al. (2018) has proposed 3B interactions could be modeled using dose addition. 

Such an approach would be conservative since it would not consider the threshold in the 

impacts of X. However, it may not be conservative if the interaction was supra-additive. This 

area undoubtedly will be the subject of ongoing research.

4.3.5. Synergy and antagonism—The definitions of synergy and antagonism have a 

long and complex history. As discussed above, many researchers defined synergy and 

antagonism as deviations from the responses that would be expected to occur under either 

dose and response additivity (Kodell and Pounds 1991; Hernández et al., 2017; Boobis et al. 
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2011). Such a definition only requires empirical testing for a determination and not a 

specific mechanism. Researchers, however, have discussed the mechanistic bases for 

synergy and antagonism. Ariens et al. (1976) suggested that synergy could be divided into 

interactions in the kinetic and dynamic phases of toxicity. Heys et al. (2016) and Bopp et al. 

(2019), discuss the mechanisms involved with kinetic interaction including changes in 

metabolism that decrease or increase the internal dose of the chemical or its active 

metabolite resulting from a certain administered dose.

Within the proposed framework, synergy and antagonism are viewed as follows. In the 

portion of the source-to-outcome continuum covered by the AEP framework, a molecule of 

a chemical released from a source may or may not reach an organism. If it reaches an 

organism it may reach the target site of the MIE or it may be excreted or metabolized. If the 

chemical requires activation, the molecule may not be activated, or if activated, the active 

compound may not reach the target site. Kinetic synergy occurs when a prior, or concurrent, 

exposure of chemical X increases the portion of the release of chemical Y that reaches the 

target site in the form of Y or its active metabolite (Heys et al., 2016; Bopp et al., 2019). 

Kinetic antagonism occurs when a prior, or concurrent, exposure to X decreases the portion 

of the release of Y that reaches the target site in the form of Y or its active metabolite.

Dynamic interactions are investigated using AOP networks (Knapen et al., 2015; Burgoon et 

al., 2017; Nelms et al., 2018; Villeneuve et al., 2018; Perkins et al., 2019). An organism may 

have, or in response to a chemical’s perturbation may develop, excess capacity or 

redundancies in its systems that reduce the potential for the occurrence of the AO given a 

MIE of a specific intensity and duration. When chemical X suppresses one or more of these 

functions, it changes the quantitative relationship between the MIE and the AOP for Y and 

results in dynamic synergy. When a chemical X enhances one or more of these functions in 

the AOP of chemical Y it results in dynamic antagonism. The AEP-AOP framework and the 

taxonomy provides a basis for defining synergy and antagonism. Kinetic synergy could 

occur as a result of interactions in all the subcategories of Categories 1 and 2. Dynamic 

synergy can occur as a result of interactions in subcategories 3A, 3B, 4A and 4B.

Based upon the above, the definitions of synergy and antagonism can be stated as follows:

Synergy occurs between two chemicals, X and Y, when a prior, or concurrent, exposure to 

chemical X causes an increase in the response to a release of Y from a source by (1) 

increasing the ratio of the amount of Y released by a source and the TSE for Y, or its active 

metabolite (kinetic synergy) or (2) by increasing the probability that a MIE of a given 

intensity and duration will result in the AO (dynamic synergy).

Antagonism occurs between two chemicals, X and Y, when a prior or concurrent exposure to 

chemical X causes a decrease in the response to a release of Y from a source by (1) 

decreasing the ratio of the amount of Y released by a source and the TSE for Y, or its active 

metabolite (kinetic antagonism) or (2) by decreasing the probability that an MIE of a given 

intensity and duration will result in the AO (dynamic antagonism).

As discussed above, interactions are a function of the properties of chemical X (physical, 

chemical, or toxicological). The interaction can be expected to have thresholds when 
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synergy and antagonism occur as a result of the impact of the toxicological and certain 

physical and chemical effects of chemical X.

5. Discussion

This paper presents initial thoughts for the creation of a framework for organizing, storing, 

and using data on chemical interactions in the assessment of risks from combined exposures. 

The work is based on the AEP, the AOP, a redefinition of “interaction” that is directional and 

mechanistic, and the use of an existing taxonomy of chemical interactions. There are a 

number of benefits of the resulting chemical-interaction framework. The chemical-

interaction framework addresses chemical interactions that occur at any point in the source-

to-response continuum and can integrate both AOPs that occur at the individual and 

population levels. The categories and subcategories of the taxonomy are mutually exclusive 

and the hierarchical relationships between a category and its subcategories are objectively 

defined. The semantic triple that flows from the framework could provide a basis for 

systematically extracting, organizing, and storing information on chemical interactions.

Unlike the AOP, the proposed chemical interaction framework is not chemically agnostic. 

Interactions are a function of the specific chemicals and cannot be defined in isolation of the 

chemicals involved. The proposed framework uses the AEP to address interactions that 

occur in the release (emissions), transport, conversion, exposure and dosimetry, and TSE 

portions of the continuum and the AEP is not chemically agnostic. The approach can take 

advantage of the chemically agnostic AOP networks by specifying the MIEs that are affected 

by the interacting chemicals.

Organizing chemicals’ interactions based on the location of the interaction on the source-to-

outcome continuum will identify groups of chemicals involved with specific types of 

interactions. Nelms et al., (2018) proposed that the identification of chemicals that impact a 

common MIE (and thus fall into Subcategory 3A) could provide a basis for read-across 

models that predict untested chemicals’ potential to cause the MIE. Chemical predicted to 

cause a MIE would form a grouping of chemicals likely to cause 3A interactions with each 

other. Such groupings would also provide the ability to predict 3B interactions. Consider two 

groups affecting different MIEs on a convergent AOP network (leading to the same AO). 

Where a chemical from each of the two groups reaches an individual there would be a 

potential for a 3B interaction to occur. A finding of such a combined exposure could then 

trigger an investigation of whether the doses of the two chemicals are sufficiently large to 

cause an interaction.

The chemical-interaction framework is anticipatory. Current data on chemical interactions 

are limited to a small number of chemical combinations and many of the existing studies do 

not report all the data necessary to use the proposed framework. The value of the framework 

is both to begin the process of creating databases of interactions that can be used to organize 

data as it becomes available and to identify the data that should be captured in future studies 

of chemical interactions.
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Finally, the framework presented in this work, like the taxonomy presented in Price and 

Leonard (2019), is an initial step in organizing data on chemical interactions. The framework 

and taxonomy are likely to be expanded and modified in the future. One area of research will 

be to develop approaches where two or more chemicals have MIEs on more complex 

networks or where chemicals cause multiple MIEs at different TSEs. Such groups of 

chemicals may generate multiple types of interactions that fall into different subcategories. 

In the near term, AEP-AOP networks based on the framework can help guide the 

development of workflows for both the experimental designs and evaluations conducted in 

mixture risk assessments.
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Fig. 1. 
Possible outcomes of empirical testing of two chemicals that cause a common AO as 

described by Kodell and Pounds (1991). 1: Chemicals X and Y display antagonism, 2: 

Chemicals X and Y display a response consistent with response additivity where there is a 

positive correlation in tolerance (same animals sensitive to one chemical are sensitive to the 

second), 3: Chemicals X and Y display a response consistent with either dose additivity or 

response additivity when tolerances are negatively correlated (different test animals are 

affected by the different chemicals), and 4: Chemicals X and Y display synergy.
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Fig. 2. 
Using a combination of the AOP and AEP to characterize the causal events in the source-to-

outcome continuum (taken from Price and Leonard, 2019).
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Fig. 3. 
Regions of the source-to-outcome continuum that define the four top level categories of the 

proposed taxonomy (taken from Price and Leonard, 2019).
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Fig. 4. 
Directed interaction of two chemicals presented as a semantic triple.
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Fig. 5. 
An AEP-AOP network for two chemicals with an interaction falling into Subcategory 2B: 

chemical X modifies the metabolism of chemical Y decreasing the detoxification of 

chemical Y and resulting in a synergistic interaction.
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