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Captivity reduces diversity and shifts
composition of the Brown Kiwi microbiome
Priscilla A. San Juan1,2*, Isabel Castro3 and Manpreet K. Dhami4*

Abstract

Background: Captive rearing is often critical for animals that are vulnerable to extinction in the wild. However, few
studies have investigated the extent to which captivity impacts hosts and their gut microbiota, despite mounting
evidence indicating that host health is affected by gut microbes. We assessed the influence of captivity on the gut
microbiome of the Brown Kiwi (Apteryx mantelli), a flightless bird endemic to New Zealand. We collected wild (n =
68) and captive (n = 38) kiwi feces at seven sites on the north island of New Zealand.

Results: Using bacterial 16 S rRNA and fungal ITS gene profiling, we found that captivity was a significant predictor
of the kiwi gut bacterial and fungal communities. Captive samples had lower microbial diversity and different
composition when compared to wild samples. History of coccidiosis, a gut parasite primarily affecting captive kiwi,
showed a marginally significant effect.

Conclusions: Our findings demonstrate captivity’s potential to shape the Brown Kiwi gut microbiome, that warrant
further investigation to elucidate the effects of these differences on health.

Background
Diet, behavior, habitat type, and environmental species
pools can all influence the composition and diversity of
gut microbiomes [1–4]. However, few studies have in-
vestigated the impact of captivity, a severe lifestyle shift,
on avian gut microbiota. Reports on nine species of par-
rots, red-crowned crane (Grus japonensis), and vultures
(Gyps fulvus and Neophron percnopterus) demonstrate
that captivity can impact gut microbiomes [5–7]. Fewer
studies have compared wild and captive gut bacteria and
fungi across spatially distinct sites that vary by climate
and vegetation [8], which are expected to differ in mi-
crobial species pools, a potential source for gut
microbes.
Captive rearing is often necessary to conserve popula-

tions of threatened wildlife. In the case of the Brown
Kiwi (Apteryx mantelli), predation from introduced

mammals has made it imperative for some chicks to be
raised in captivity until individuals are large enough to
defend themselves [9]. Although successful in increasing
population size, consequences to kiwi health via modifi-
cation of the gut microbiome remain largely unknown.
Factors pervasive in captivity such as artificial diets, ster-
ilized built environments, human interaction, and med-
ical intervention [10–12] may cause changes to the
microbiome, but such changes remain undescribed.
Altering microbial communities may have costs to

host health as microbes continue to be recognized for
their roles in immune function, pathogen defense, and
digestion [13]. Coccidiosis, a gut parasite caused by
protozoan Eimeria spp., is a common disease in captive
kiwi [14]. However, the relationship between captivity,
coccidia, and gut microbial communities has garnered
little attention. We sought to compare gut bacteria and
fungi between captive and wild kiwi. We tested the hy-
pothesis that captivity status and history of coccidiosis
would decrease diversity and modify composition of the
gut microbiome.
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Results
Fresh fecal samples were collected from seven sites on
the north island of New Zealand (Fig. 1a, Supplementary
Table 1) during January – April 2019.Bacterial 16 S
rRNA (V4 region) [15] and fungal ITS genes [16] were
amplified using DNA extracted from captive (n = 38)
and wild kiwi fecal samples (n = 68). To ensure our find-
ings were not an artefact of spatial autocorrelation, we
conducted a Mantel test and found a weak association
between the sites and the kiwi gut microbiome, however,
it was not statistically significant (Mantel correlation,

r = 0.138, p =0.308). PERMANOVA results (Supplemen-
tary Table 2) found a significant association of site in
bacteria (r2 = 0.13, p = 0.001) and fungi (r2 = 0.183, p =
0.001), which shows a relationship due to site but not
necessarily due to spatial proximity. Kiwi eggs prior to
captive rearing were lifted from five locations (Fig. 1a)
that span the range of natural sites, indicating that cap-
tive lifestyle is more influential than geographic origin.
To determine whether captivity influences kiwi gut

microbiota, we used PERMANOVA, linear models, and
NMDS analyses. Bacterial communities clustered by cap-
tivity across spatially independent sites with little overlap
between the 95 % confidence interval ellipses (Fig. 1b,
PERMANOVA, r2 = 0.07, p = 0.001). We fitted separate
linear models for bacteria and fungi, using log trans-
formed principal coordinates axis 1 that explained
12.7 % of bacterial variation and 12.8 % of fungal vari-
ation, as a proxy for community composition, as our re-
sponse variables. We found that captivity was a
significant predictor of bacterial composition (r2 = 0.30,
p < 0.001) but not fungal composition (r2 = 0.003, p =
0.301). Although bacterial phyla composition was vari-
able within and across captivity status, Firmicutes was
more prevalent in wild kiwi, while Proteobacteria domi-
nated captive kiwi (Fig. 2b). Three fungal phyla, Asco-
mycota, Basidiomycota, and Mucoromycota, which
contained nine classes were predominant in kiwi feces,
and varied within and across captivity status (Supple-
mentary Fig. 3).
Bacterial (Fig. 2a, ANOVA, p < 0.005) and fungal (Sup-

plementary Fig. 1, ANOVA, p = 0.012) alpha diversity
were significantly lower in captive kiwi by 33 and 74 %
respectively. Using Shannon diversity (alpha diversity) as
a response variable, we fitted a linear model to deter-
mine the relationship with captivity status and found
captivity to be a significant predictor of bacterial (r2 =
0.288, p < 0.001) and fungal (r2 = 0.135, p = 0.012) alpha
diversity. To assess the spread of variation among kiwi
microbiomes in captive and wild conditions, we calcu-
lated distance to centroid, a metric for beta diversity. No
discernible pattern was observed for bacteria (Supple-
mentary Fig. 2a, ANOVA, p = 0.948), but a marginally
significant pattern was detected in fungal communities
where the mean value was higher in captive kiwi (Sup-
plementary Fig. 2b, ANOVA, p = 0.051).
We also tested if site (a factor nested within captivity

status) and history of coccidiosis (positive or negative)
had an influence on variation in microbial communities
using PERMANOVA (Supplementary Table 2). Site
showed a significant effect on bacteria (r2 = 0.129, p =
0.001) and fungi (r2 = 0.183, p = 0.001). We ran a linear
model using log transformed principal coordinates axis 1
as a proxy for community composition to test the influ-
ence of coccidiosis history, data only available for captive

Fig. 1 Captivity but not geography shifts the Brown Kiwi gut
bacterial composition. A Map of collection sites and captive kiwi
origin sites where shapes indicate type of site. Collection sites are
locations where kiwi feces were sampled and origin sites are where
kiwi eggs were lifted. Colors correspond to key in panel b. Teal
colors correspond to captive sites, while brown colors correspond to
wild sites. B NMDS plot using Bray-Curtis distance metric shows
samples clustering by captivity status with little overlap between the
groups (PERMANOVA, r2 = 0.07, p = 0.001). Ellipses denote 95 %
confidence level
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samples, on gut microbiota. We found a significant trend
with bacteria (Supplementary Fig. 4, linear model, r2 =
0.118, p = 0.041) but not fungi (r2 = 0.043, p = 0.204).
This contested our PERMANOVA findings which found
a weak relationship that was not significant in bacteria
(r2 = 0.048, p = 0.095) and fungi (r2 = 0.074, p = 0.087).
Using a multinomial species classification method

(clamtest) [17], we categorized OTUs into four classes:
rare, generalist, wild specialist, and captive specialist. For
bacterial OTUs, 10 % were classed as generalist, 53 % as
rare, 20 % as wild specialist, and 17 % as captive special-
ist (Fig. 3a, Supplementary Table 3). For fungal OTUs,
0 % were classed as generalist, 47 % as rare, 27 % as wild
specialist, and 27 % as captive specialist (Fig. 3b, Supple-
mentary Table 3). We conducted a simper analysis [17,
18] to determine the most influential OTUs that differ-
entiate captive and wild kiwi samples for both bacteria
and fungi. Thirteen bacterial OTUs and two fungal
OTUs accounted for about 70 % of the differences be-
tween wild and captive samples (Supplementary Tables 4

and 5). Nine bacterial OTUs were more abundant in
wild samples and five OTUs in captive kiwi (Fig. 3c).
Two fungal OTUs were abundant only in wild kiwi
(Fig. 3d).

Discussion
Our results indicate that captivity explains bacterial and
fungal community differences in the Brown Kiwi gut.
Bacterial composition clustered by captivity (Fig. 1b),
suggesting that kiwi from the wild are more similar to
each other than their captive counterparts, even across
geographically distinct sites. Bacterial and fungal alpha
diversity were significantly lower in captive kiwi (Fig. 2a,
Supplementary Fig. 1). The consequences of reduced mi-
crobial diversity between wild and captive kiwi remain
unclear, but several studies have linked dysbiosis to
higher disease prevalence in a variety of animals, includ-
ing ostriches and chickens [19, 20]. Coccidiosis history,
data only available for captive samples, showed a mar-
ginally significant effect (Supplementary Fig. 4).

Fig. 2 The Brown Kiwi bacterial community differs both in diversity and composition due to captivity status. A Alpha diversity of captive kiwi is
significantly reduced compared to wild individuals (linear model, r2 = 0.288, p < 0.001). B Relative abundances of bacterial phyla present at > 3 %
between captive and wild kiwi. Vertical bars show the bacterial taxa and horizontal bars denote the collection site
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However, these results may be affected by small sample
size. Our results suggest a potential link between differ-
ences in the microbiome to disease states that requires
further exploration. Overall, our results suggest captivity
simplifies the kiwi gut microbiome.
The shift in dominant bacterial phyla, Firmicutes to

Proteobacteria, from wild to captive samples may be
caused by microbially depauperate captive facilities, anti-
biotic treatment and post hoc probiotic supplementa-
tion. Frequent surface disinfection [11] and probiotic
treatment [21] have been shown to increase Proteobac-
teria in human subjects. Lactobacillus (OTU 49), a com-
mon genus in probiotics, was grouped as a captive
specialist and is overrepresented in captive kiwi (Fig. 3c).
Other captive-associated taxa include Corynebacterium
(OTU 62), which has been found in the cloaca of pen-
guins and the preen gland of turkeys [22], and

Bacteroides (OTU 544), normally found in animal hosts
but can include potential pathogens [23]. Wild taxa such
as, Ruminococcaceae (OTU 556) and Lachnospiraceae
(OTU 570) (Fig. 3c), were overrepresented in wild kiwi.
These two bacterial families were found in broiler chick-
ens challenged with Clostridium perfringens [24], also a
predominant wild taxa (OTU 13), suggesting a relation-
ship between these taxa. Blautia (OTU 290), also com-
mon in wild kiwi, is a genus found in the human gut
and associated with visceral fat accumulation [25]. Fae-
calitalea cylindroides (OTU 687), a butryrate producing
microbe, has been detected in chicken [26]. These taxa
may be indicative of nutrient acquisition in the wild,
where food may be less available.
No fungal OTUs were categorized as generalists sug-

gesting fungi in kiwi reflect their local environment.
Some captive specialists include Cladosporium (OTU

Fig. 3 Distinct microbial taxa are classed by their representation in captive and wild kiwi. A multinomial species classification method (clamtest)
categorized bacterial and fungal OTUs into one of four classes: rare, generalist, wild specialist, and captive specialist. A For bacterial OTUs, 9.9 %
were classed as generalist, 53 % as rare, 19.7 % as wild specialist, and 17.4 % as captive specialist. B For fungal OTUs, 0 % were classed as
generalist, 46.7 % as rare, 26.7 % as wild specialist, and 26.7 % as captive specialist. Simper analysis detected several OTUs that explained 70 %
difference between captive and wild kiwi. OTUs that were classed as either wild specialist or captive specialist in the clamtest were also
represented in the same condition with simper. C Nine bacterial OTUs were significantly represented in wild kiwi and four bacterial OTUs in
captive kiwi (FDR adjusted p < 0.05). D Two fungal OTUs were significantly represented in wild kiwi (FDR adjusted p < 0.05)
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151) and Aureobasidium (OTU 2), both associated with
indoor environments and plant material [27, 28], impli-
cating the contribution of soil and ferns added to enclo-
sures. Trichosporon (OTU 171), another captive
specialist, is a common human skin taxa [29], suggesting
close human interaction may shape kiwi fungi. One wild
specialist that is abundant in wild samples (Fig. 3d), Rhi-
zopogon luteolus (OTU 159), has been identified as a
dietary component of small mammals, suggesting kiwi
may be consuming and dispersing these fungi [30]. Pre-
ussia (OTU 181) and Saitozyma podzolica (OTU 37),
both associated with soil and litter, were grouped as wild
specialists [31, 32].

Conclusions
In captivity, artificial diet, sterilized built environments,
and human interaction are key factors that can shape
gut microbial communities [10, 11]. Further detailed in-
vestigation of how gut microbes establish in developing
kiwi chicks can elucidate how these factors inherent to
captivity contribute to the kiwi gut microbiome. Overall,
our data suggest that captivity explains differences in the
gut microbiome of the Brown Kiwi with potential for
health and disease assessment for captive-reared
individuals.

Methods
Study system
Captive
Samples were collected (n = 38) from two captive sites
(Fig. 1a). The National Kiwi Hatchery is located at the
Rainbow Springs Nature Park in Rotorua, New Zealand.
It is the leading facility in kiwi husbandry, egg incuba-
tion, and kiwi rearing. The facility has hatched and
reared nearly 2000 kiwi eggs. Otorohanga Kiwi House is
located in Otorohanga, New Zealand. Both facilities are
a part of the Operation Nest Egg (ONE), a program in
which kiwi eggs laid in the wild are transported to a
hatchery and reared in a captive environment. Coccidi-
osis information was only available for the captive sam-
ples, where diagnosis is determined using a fecal
flotation assay [33]. Kiwi were housed in brooder boxes
– wooden boxes with soil, food, and water. Captive kiwi
eat a diet mainly consisting of ox heart, cat biscuits, and
rolled oats [34]. If positive for parasites or infections, in-
dividuals are administered antiprotozoal or antibiotic
treatment. After antibiotics, kiwi are given probiotics
that include a combination of Lactobacillus spp. and
Bifidobacterium lactis.

Wild
Samples were collected (n = 68) from five natural sites
with established wild kiwi populations (Fig. 1a). Ponui
Island is located 30 km east of Auckland, New Zealand.

14 Brown Kiwi were introduced to the island by the
New Zealand Wildlife Service in 1964, where popula-
tions have been increasing, establishing one of the dens-
est populations of kiwi at an estimated 1500 individuals.
Motuarohia Island is located in the Bay of Islands, 4 km
northeast of Russell, New Zealand. Moturua Island is
east of Motuarohia in the Bay of Islands. Puketi Forest is
located in the Northland region of New Zealand. Rakau-
mangamanga is located near the Bay of Islands. These
sites differ in climate and vegetation [8] and home to a
number of Brown Kiwi individuals.

Sample collection
Fresh fecal samples (n = 108) were collected using sterile
spatulas. Supplementary Table 1 details the quantity of
samples collected per site. The interior of the fecal pellet
was collected to ensure minimal environmental expos-
ure. Due to the unique scent of kiwi excreta, we used
the sample’s scent to confirm the feces was of kiwi ori-
gin [35]. Fecal samples were stored in 5 mL Eppendorf
tubes suspended in molecular grade (100 %) ethanol and
stored in -20ºC. DNA was extracted using MN NucleoS-
pin Soil Kit (Macherey-Nagel, Duren, Germany) on
Janus extraction robot (PerkinElmer, Waltham, United
States), suspended in TE buffer, and stored in -20ºC
until PCR amplification.

Metabarcoding
We used a metabarcoding approach with a two-stage
amplification process. During the first stage, we ampli-
fied the V4 region of the bacterial 16 S rRNA gene using
515 F/806R primers [15] and the fungal ITS gene [16].
The following PCR parameters were applied: denatur-
ation at 95ºC for 2 min, followed by 35 cycles at 95ºC
for 20 s, 50ºC for 20 s, and at 72ºC for 30 s, and final ex-
tension at 72ºC for 1 min. We used the resulting PCR
products as template DNA in the second-stage PCR.
Barcoded Fusion primers were used with the following
PCR parameters: initial denaturation at 95ºC for 2 min,
followed by 8 cycles of 95ºC for 20 s, 50ºC for 20 s, and
72ºC for 50 s, and final extension at 72ºC for 10 min
[15]. We purified the second-stage PCR products using
SeraMag magnetic beads to remove primer dimers and
normalize concentration [36]. Qubit (dsDNA HS Assay
Kit, Invitrogen, Carlsbad, United States) was used to
quantify DNA concentration and libraries were diluted
to 4 nM prior to final pooling. We pooled the libraries
according to the concentration determined by Qubit,
equimolar based on number of samples per library, and
amplicon length. We used LabChip GX Touch Nucleic
Acid Analyzer (PerkinElmer, Waltham, United States) to
determine DNA concentration and assess quality of final
pooled library. Samples were sequenced using Illumina
MiSeq platform at Auckland Genomics Facility
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(University of Auckland), phiX spike 10 %, 250 × 2 cy-
cles. Bioinformatics pipeline Claident was used to
demultiplex raw sequences [37]. PEAR evaluated all pos-
sible paired-end read overlaps and merged sequences
[38]. VSEARCH filtered noisy reads, removed chimeras,
and clustered sequences into operational taxonomic
units (OTUs) [39]. Claident clustered sequences into
OTUs at 97 % similarity and assigned taxonomy with
RDP classifier using the following databases, 16 S rRNA
training set 16 (bacteria) and UNITE fungal ITS train set
07-04-2014 (fungi). Bioinformatic analysis were per-
formed on the NeSI HPC environment.

Statistical analysis
We calculated Shannon diversity index (R package phy-
loseq version 2.5-7) [40] to test for a relationship be-
tween microbial alpha diversity and captivity. We
calculated beta diversity using a multivariate version of
Levene’s test for homogeneity of variances (betadisper in
R package vegan version 2.5-7) [17]. We reported the
distance to centroid value. To test for spatial autocorrel-
ation among sites, we conducted a Mantel test (R pack-
age ade4 version 1.7–16) using microbiome data, and
site location data (latitude and longitude) [41].
We used non-metric multidimensional scaling

(NMDS) with Bray-Curtis dissimilarity matrices to re-
duce multivariate data and spatially visualize microbial
communities. NMDS was used to visualize clustering
trends across captivity status. We used permutational
analysis of the variance (PERMANOVA) also with Bray-
Curtis distance matrices to determine whether different
factors, such as captivity status (wild/captive), site (geo-
graphic area), microsite (i.e. in brooder box, soil, etc.),
age (days old of captive individuals), weight (mass in
grams for captive individuals), collection date, and his-
tory of coccidiosis (positive/negative) can explain micro-
bial community variance. In addition, we ran linear
models to determine whether captivity status or coccidi-
osis history were good predictors of both bacterial and
fungal alpha diversity and community composition. We
used Shannon Diversity Index values as a response vari-
able for alpha diversity. In our community composition
models, we used principal coordinates analysis axis
values as our response variable. To fit the assumptions
of the model and accommodate negative values, we
added the minimum value plus one and log transformed
the data. We ran a mixed effects model using site as a
random effect, however, Akaike information criterion
(AIC) and ANOVA confirmed that it did not improve
the fit.
We used clamtest [17] to categorize bacterial and fun-

gal OTUs into the following groups: generalist, too rare,
and group specialist (wild-, captive-, positive-, negative-).
Positive and negative correspond to individual kiwi who

have had a history of coccidiosis. We conducted a sim-
per analysis [17, 18] to determine which OTUs explain
over 70 % of the differences between groups and to iden-
tify OTUs that are overrepresented.

Abbreviations
OTU: Operational taxonomic unit; PCR: Polymerase chain reaction;
DNA: Deoxyribonucleic nucleic acid; rRNA: Ribosomal ribonucleic acid; PERM
ANOVA: Permutational analysis of the variance; NMDS: Non-metric
multidimensional scaling
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Additional file 1: Supplementary Figure 1. Fungal alpha diversity
significantly decreases from wild to captive. Using Shannon’s diversity
index, there is a 74.2% reduction in the average alpha diversity (ANOVA,
p = 0.012) (linear model, r2 = 0.1348, p = 0.01233).

Additional file 2: Supplementary Figure 2. Betadiversity of bacterial
and fungal communities vary in their response to captivity. (A) There is
no significant difference in betadiversity (distance to centroid) observed
in bacteria (ANOVA, p = 0.948). (B) Fungal betadiversity shows a
marginally significant trend with an increase in distance to centroid
(ANOVA, p = 0.051). Distance to centroid was calculated using a
multivariate version of the Levene’s test. Lower values indicate more
shared microbial taxa among individuals of the same treatment. Higher
values show higher microbial taxa variability among individuals of the
same treatment.

Additional file 3: Supplementary Figure 3. The Brown Kiwi fungal
community is highly variable within and across groups. Relative
abundances of fungi classes present at > 3% between captive and wild
kiwi.

Additional file 4: Supplementary Figure 4. History of coccidiosis
influences kiwi gut bacteria. PCoA plot using Bray-Curtis distance metric
shows samples clustering by coccidiosis history (PERMANOVA, r2 = 0.048,
p = 0.095)(linear model, r2 = 0.1183, p= 0.041). Ellipses denote 95% confi-
dence level.

Additional file 5: Supplementary Table 1. Sample collection sites
along with the latitude and longitude, captivity status, and sampling size.

Additional file 6: Supplementary Table 2. Captivity influences
bacterial and fungal communities. PERMANOVA results for different
factors as predictors of microbial variance. Number of asterisks indicate
level of statistical significance (***p < 0.001, **p < 0.01, *p < 0.05).

Additional file 7: Supplementary Table 3. Clamtest categorizing
bacterial and fungal OTUs found in wild and captive kiwi into rare,
generalist, wild specialist, and captive specialist.

Additional file 8: Supplementary Table 4. Most influential bacterial
OTUs distinguishing between wild and captive kiwi samples listed by
highest contributing OTU in descending order. Thirteen bacterial OTUs
significantly account for over 70% of the differences between captivity
status. OTUs that contributed to less than 1% significance was removed.
A p-value was calculated per OTU, in addition to false discovery rate
(FDR) adjusted p-value. Mean abundance and standard deviation of each
OTU is listed between groups.

Additional file 9: Supplementary Table 5. Most influential fungal
OTUs distinguishing between wild and captive kiwi samples listed by
highest contributing OTU in descending order. Two fungal OTUs
significantly account for over 70% of the differences between captivity
status. OTUs that contributed to less than 1% significance were removed.
A p-value was calculated per OTU, in addition to false discovery rate
(FDR) adjusted p-value. Mean abundance and standard deviation of each
OTU is listed between groups.

Additional file 10: Supplementary Table 6. Clamtest categorizing
bacterial and fungal OTUs found in captive kiwi with and without a
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history of coccidiosis into rare, generalist, positive specialist, and negative
specialist.
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