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Abstract

C-arm cone-beam CT (CBCT) is an emerging tool for intraoperative imaging, but current 

embodiments exhibit modest soft-tissue imaging capability and are largely constrained to high-

contrast imaging tasks. A major advance in image quality is facilitated by statistical iterative 

reconstruction techniques. This work adapts a general penalized likelihood (PL) reconstruction 

approach with variable penalties and regularization to C-arm CBCT and investigates performance 

in imaging of large (>10 mm), low-contrast (<100 HU) tasks pertinent to soft-tissue surgical 

guidance. Experiments involved a mobile C-arm for CBCT with phantoms and cadavers 

presenting soft-tissue structures imaged using 3D filtered backprojection (FBP), quadratic, and 

non-quadratic PL reconstruction. Polyethylene phantoms with various tissue-equivalent inserts 

were used to quantity contrast-to-noise / resolution tradeoffs in low-contrast (~40 HU) structures, 

and the optimal reconstruction parameters were translated to imaging an anthropomorphic head 

phantom with low-contrasts targets and a cadaveric torso. Statistical reconstruction - especially 

non-quadratic PL variants - boosted soft-tissue image quality through reduction of noise and 

artifacts (e.g., a ~2-4 fold increase in contrast-to-noise ratio (CNR) at equivalent spatial 

resolution). For tasks relating to large, low-contrast tissues, even greater gains were possible using 

non-quadratic penalties and strong regularization that sacrificed spatial resolution in a manner still 

consistent with the imaging task. The advances in image quality offered by statistical 

reconstruction present promise and new challenges for interventional imaging, with high-speed 

computing facilitating realistic application. Careful investigation of performance relative to 

specific imaging tasks permits knowledgeable application of such techniques in a manner that 

overcomes conventional tradeoffs in noise, resolution, and dose and could extend application of 

CBCT-capable C-arms to soft-tissue interventions in neurosurgery as well as thoracic and 

abdominal interventions.
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I. INTRODUCTION

Mobile C-arms are being increasingly used for 3D cone-beam CT (CBCT) surgical 

guidance, providing navigation in up-to-date images that properly reflect anatomical change 

as well as a valuable tool for verification of the surgical product.1–4 While image quality 

with traditional reconstruction techniques like filtered backprojection (FBP) is sufficient for 

visualization of high-contrast, bone structures, soft-tissue imaging remains a major 

challenge due to inherently low contrast relative to fairly high levels of noise and artifact.5 

The ability to delineate soft tissues in C-arm CBCT would facilitate broader application of 

high-precision guidance in surgery of the head (e.g., brain lesions), thorax (e.g., mediastinal 

masses), and abdomen (e.g., liver and kidney tumors);6–8 improve patient safety through 

detection of complications within the operating room, such as intracranial hemorrhage or 

device malplacement; and provide quality assurance, including verification and 

quantification of the surgical product.

Specific challenges for C-arm CBCT compared to diagnostic CT include non-circular orbits, 

limited view angles, large scatter-to-primary ratio, reduced detection efficiency, object 

truncation, and increased electronic noise. FBP presents a classic and well understood 

tradeoff between spatial resolution and noise, while a growing arsenal of statistical iterative 

reconstruction approaches offer the potential for higher image quality. By incorporating a 

statistical model of the imaging chain in combination with regularization, such approaches 

can overcome conventional noise-resolution tradeoffs, and they can further incorporate prior 

images (e.g., preoperative planning 9) and improve robustness to artifacts. Such 

characteristics make them attractive to application in interventional imaging. While 

significantly more computationally intensive, parallelizable implementations on high-speed 

computer architecture continues to accelerate statistical reconstruction methods to meet the 

demands of clinical workflow.10 This work adapts statistical reconstruction (viz., variants of 

penalized likelihood, PL, estimation) to C-arm CBCT in the context of soft-tissue surgical 

guidance, seeking to quantify the limits of soft-tissue visualization and the dependency of 

soft tissue detectability on imaging dose, object contrast, and object size while stressing fair 

comparison of noise properties at matched spatial resolution.

II. METHODS

Experimental System.

A prototype mobile C-arm system (modified Siemens PowerMobil) with a flat-panel 

detector (PaxScan 3030+, Varian) was used for volumetric imaging of the phantoms and 

cadavers. The system has a (15×15×15) cm3 FOV and maximum angular range of 178°. A 

typical low-dose acquisition involves 200 projections [768×768 pixels (2×2 mode)] at 100 

kVp, 40 mAs (1.6 mGy for a head scan, c.f., ~20-60 mGy for diagnostic CT 11). All images 

were reconstructed with isotropic (0.6×0.6×0.6) mm3 voxels using a GPU implementation 

(GTX 580, NVIDIA). A separable footprints forward and backprojector (Fig. 2) provided 

increased accuracy over the commonly used Siddon or distance-driven methods by 

geometrically computing the “footprint” of each voxel onto the detector grid.12 Two 

phantoms were used to study imaging of low-contrast targets: a 15 cm polyethylene “head” 

cylinder with tissue-equivalent inserts ranging from high-contrast bone (+640 HU contrast 
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with respect to the polyethylene) to low-contrast adipose (−40 HU contrast). A second 

phantom involved an anthropomorphic head with spherical low-contrast inserts ranging from 

110 HU to −30 HU.

Penalized-Likelihood (PL) Estimation.

As shown in Eqs. (1–3), the reconstructed image μ is solved from measurements y by 

iterative updates using the parallelizable separable quadratic surrogates (SQS) technique.13 

The log-likelihood term L maximizes consistency of the reconstructed image with the 

measurements while simultaneously accounting for the statistics of the measured data. The 

strength of regularization R(μ) is controlled by the parameter β and depends on the penalty 

function ψ(x) of neighboring pixel signal differences. While regularization seeks to reduce 

noise, its behavior depends not only on β, but also the function ψ(x). which can vary from 

quadratic (PL-Q), to Huber (PL-H), to linear (commonly called total variation, TV 14) as 

shown in Fig. 3. The edge-preserving Huber penalty is parameterized by the transition 

width. δ, below which PL-H applies a quadratic penalty and above which a linear (TV) 

penalty is applied. Importantly, it is convex, continuous, and differentiable. The parameter δ 
carries units of the difference in voxel values (attenuation coefficient or Hounsfield Units 

(HU)).

μ = argmax
μ logL(μ; y) − βR(μ) (1)

R(μ) = ∑i ∈ I ∑j ∈ N ψ(μi − μj) (2)

ψQ(x) = 1
2x2;   ψH(x) =

1
2δx2 x ≤ δ

x − δ
2, x > δ

;  ψTV (x) = x (3)

Filtered Backprojection.

Fair comparison of imaging performance in FBP and PL requires careful “matching” of 

spatial resolution or noise - e.g., comparison of contrast-to-noise ratio performed at 

equivalent spatial resolution, since each approach has parameters allowing free variation 

(tradeoff) of noise and resolution. Because both FBP and PL can exhibit anisotropic spatial 

resolution in-plane (x, y) and axially (z), “matching” spatial resolution should be done in a 

manner that is local (i.e., at a common location in the image over which the image statistics 

to do not vary) and object-specific (i.e., at a specified level of contrast (difference in voxel 

values)). Since PL regularization is applied in all directions in a 3D neighborhood of the 

reconstruction, the apodization “smoothing” kernel in the FBP filtration step should not be 

limited to a ID filter in the u direction along detector rows (as in typical FBP 

implementations, where the smoothing filter is only applied in the u direction to mitigate 

high-frequency noise imparted by the ramp filter). Rather, a 2D apodization kernel should be 
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applied along both the u (row) and v (column) directions (e.g., cosine filter with cutoff 

frequency fc in both directions) to provide fair matching of 3D spatial resolution (Fig. 4). 

This is an important consideration that is often overlooked and is intrinsic to the 

comparisons of FBP and PL reported below.

Analysis of Noise-Resolution Tradeoffs.

Recognizing that contrast-to-noise ratio (CNR) is not a comprehensive image quality metric 

(viz., describing only the large-area, low-frequency transfer characteristics), it is nonetheless 

a reasonable starting point for analysis of low-contrast, low-frequency tasks pertinent to soft-

tissue visualization. The edge spread function (ESF) of each tissue-equivalent insert was fit 

to an error function (erf) that provided the insert contrast c and edge width parameterized by 

σ to provide basic characterization of spatial resolution (Fig. 5). It bears reiteration that 

comparing the ESFs of FBP and PL is local and object-specific and that resolution 

“matching” pertains to a specific contrast, object, and location (and does not necessarily 

apply to the entire image). As the image is smoothed (either by reducing the FBP 

apodization cutoff frequency fc or increasing the PL regularization β). the CNR reflects the 

corresponding reduction in noise. The PL-H variant has an additional dependency on the 

transition width δ, whose effect is contrast-dependent. Soft-tissue imaging performance 

(CNR) was analyzed as a function of fc, β, and δ with comparisons at matched ESF (σ) 

balanced by qualitative assessment of resulting images by a clinician.

III. RESULTS

The CNR as a function of ESF width (Fig. 6) immediately conveys several interesting points 

among the various reconstruction techniques. First, we observe that spatial resolution is 

directionally dependent, and the noise is spatially nonstationary, which can be independently 

predicted using analytic models.15 The ESF of an insert depends on its contrast and whether 

it is considered in the radial or tangential direction. For example, in the bone insert, FBP 

shows higher resolution than PL-Q in the tangential direction, while the converse is true in 

the radial direction. Subsequent measurements of the ESF width, σ, involve the median 

width (more robust against outliers than the mean) measured in all directions.

FBP and PL-Q show comparable performance for both high and low contrast, showing - 

perhaps surprisingly - that quadratic penalties alone give little improvement over the classic 

noise-resolution tradeoffs of FBP. However, PL-H exhibits sharper edge-preservation for 

bone while significantly reducing the noise due to the linear region of the penalty preferring 

sharp, high-contrast edges (bone, +640 HU) and otherwise uniform regions with fluctuations 

on the order of δ. For low-contrast edges (adipose, −40 HU), however, the linear penalty is 

only exercised when δ is smaller than the contrast, and even for δ = 5 HU, PL-H is seen to 

behave similarly to PL-Q. The low-contrast edge is preserved only at δ = 1 HU, at which 

point the Huber penalty approaches TV.

Based on the quantitative analysis of CNR and ESF in low-contrast inserts in simple 

phantoms, the resulting parameters were applied to CBCT images of an anthropomorphic 

head phantom and (with separate parameter sets) to a cadaveric torso. While the optimal 

parameters in each case are recognized to depend on the object size, dose, and contrast 
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associated with the particular task, the head phantom - for example - was approximately the 

same size as the CNR phantom, the scan parameters were identical, and the target tissues 

were roughly the same contrast (−30 HU) and size (12 mm diameter). Figure 8 provides a 

quantitative and qualitative summary of results for CBCT of the anthropomorphic head. 

Analysis of CNR versus ESF shows that FBP and PL-Q follow similar, conventional noise-

resolution tradeoffs, as does PL-H for the larger value of δ. A steep dependence on δ is 

observed as PL-H becomes heavily edge-preserving in its noise reduction performance, 

departing from the classic tradeoff and giving significant gains in CNR at equivalent spatial 

resolution. The seeming gains in soft-tissue image quality must be balanced relative to the 

clinical acceptability of the images, which exhibit the characteristic “patchy” texture of TV 

for small δ. The steep dependence on δ in this regime requires a careful, quantitative guide 

to parameter selection, with results in Fig. 8 presenting an initial map of task-dependent 

CNR-ESF tradeoffs that help navigate the complex parameter space presented by these 

reconstruction methods. A qualitative comparison of the reconstruction techniques is shown 

in Fig. 9 for a cadaver torso, with future work required to more quantitatively assess the low-

contrast imaging performance of PL in regions outside of the head such as the torso.

IV. DISCUSSION AND CONCLUSIONS

Application of statistical iterative reconstruction methods - like the PL variants summarized 

above - hold considerable promise for low-dose, soft-tissue imaging capability in C-arm 

CBCT and raise new challenges in quantifiably assessing and validating imaging 

performance, especially in fair comparison of noise and spatial resolution characteristics. 

The parameters intrinsic to such algorithms (e.g., β and δ) impart tradeoffs in noise and 

spatial resolution that in some cases have little or no gain over conventional FBP, and in 

other cases depart rapidly with significant gain in CNR achieved via edge-preserving noise 

reduction. The optimal choice of parameters is task-dependent, and the analysis detailed 

herein begins to construct an understanding and framework by which such parameters may 

be knowledgeably selected with respect to the task. Future work includes applying 

quantitative noise-resolution tradeoff analysis to determine low dose limits of soft-tissue 

imaging for intracranial neurosurgery applications as well as soft-tissue imaging for spine 

and abdominal surgery. Incorporation of more advanced modeling of the imaging physics 

and statistics (e.g., scatter, polyenergetic spectrum, detector correlations, and electronic 

noise) into statistical reconstruction is anticipated to yield further improvement in image 

quality and low-dose imaging capabilities beyond conventional limits of soft-tissue 

visualization.
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Fig. 1: 
A prototype mobile C-arm CBCT imaging system assists the surgeon during a cadaver 

procedure.
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Fig. 2: 
Separable footprints projector. The contribution of each projected voxel onto pixels within 

the detector can be accurately approximated using separable trapezoidal functions along 

each detector axis.
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Fig. 3: 
Penalty functions for the quadratic, TV, and Huber variants.
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Fig. 4: 
PL penalizes in all three dimensions, so fair comparison to FBP should involve matching the 

spatial resolution such that the smoothing kernel is also extended in the z-direction of the 

reconstructed volume.
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Fig. 5: 
Spatial resolution characterized by an error function fit to the edge spread. Varying the FBP 

cutoff frequency fc or PL regularization strength β provides a range in the edge smoothness 

of the adipose insert, as captured by this family of fits.
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Fig. 6: 
Axial slices of a cylindrical phantom for various reconstruction methods. (Top) Axial 

images. (Bottom) Noise maps computed from the difference of non-adjacent slices. The low-

contrast Adipose insert is marked at the ~9:00 position, while high-contrast Bone is marked 

at ~3:00. The FBP and PL variants show differences in noise magnitude, correlation, and 

stationarity. The examples shown have a cutoff frequency (fc) and regularization (β) such 

that the adipose ESF is matched at 1.1 mm.
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Fig. 7: 
Analysis of the noise-resolution tradeoff in various reconstruction methods. Each plot shows 

CNR in a given insert as a function of ESF width (σ). A vertical line therefore compares 

noise at matched spatial resolution. (Left) Directional-dependence in spatial resolution. 

(Right) CNR in adipose versus ESF, showing the Huber penalty with δ = 1 HU to depart 

from classic noise-resolution tradeoffs as it approaches a TV-like penalty.
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Fig. 8: 
Analysis of noise-resolution tradeoffs among various reconstruction methods in C-arm 

CBCT of the head. (Left) CNR versus ESF width. PL-H, δ = 5 HU behaves approximately 

like the quadratic penalty for the low contrast (−30 HU) sphere, while PL-H, δ = 1 HU is 

TV-like. The CNR benefit of PL-H is greatest at lower spatial resolution, but the increase in 

CNR is steep. Several intermediate points are plotted to show the rapid gain in CNR at low 

δ. (Right) Axial images of the head phantom. Each PL-H image is paired with an FBP image 

below at matched spatial resolution (for the low-contrast sphere).
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Fig. 9: 
C-arm CBCT of a cadaver torso in the region of paraspinal muscles. Intra-operative soft 

tissue imaging in larger regions of the body (e.g., thorax or abdomen) poses further 

challenges, such as scatter, lateral truncation, and electronic noise.
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