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Abstract

Quality is a key determinant in deploying new processes, products, or services and influences the 

adoption of emerging manufacturing technologies. The advent of additive manufacturing (AM) as 

a manufacturing process has the potential to revolutionize a host of enterprise-related functions 

from production to the supply chain. The unprecedented level of design flexibility and expanded 

functionality offered by AM, coupled with greatly reduced lead times, can potentially pave the 
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way for mass customization. However, widespread application of AM is currently hampered by 

technical challenges in process repeatability and quality management. The breakthrough effect of 

six sigma (6S) has been demonstrated in traditional manufacturing industries (e.g., semiconductor 

and automotive industries) in the context of quality planning, control, and improvement through 

the intensive use of data, statistics, and optimization. 6S entails a data-driven DMAIC 

methodology of five steps—define, measure, analyze, improve, and control. Notwithstanding the 

sustained successes of the 6S knowledge body in a variety of established industries ranging from 

manufacturing, healthcare, logistics, and beyond, there is a dearth of concentrated application of 

6S quality management approaches in the context of AM. In this article, we propose to design, 

develop, and implement the new DMAIC methodology for the 6S quality management of AM. 

First, we define the specific quality challenges arising from AM layerwise fabrication and mass 

customization (even one-of-a-kind production). Second, we present a review of AM metrology and 

sensing techniques, from materials through design, process, and environment, to postbuild 

inspection. Third, we contextualize a framework for realizing the full potential of data from AM 

systems and emphasize the need for analytical methods and tools. We propose and delineate the 

utility of new data-driven analytical methods, including deep learning, machine learning, and 

network science, to characterize and model the interrelationships between engineering design, 

machine setting, process variability, and final build quality. Fourth, we present the methodologies 

of ontology analytics, design of experiments (DOE), and simulation analysis for AM system 

improvements. In closing, new process control approaches are discussed to optimize the action 

plans, once an anomaly is detected, with specific consideration of lead time and energy 

consumption. We posit that this work will catalyze more in-depth investigations and 

multidisciplinary research efforts to accelerate the application of 6S quality management in AM.
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quality management; sensor systems; simulation modeling

I. INTRODUCTION

Additive manufacturing (AM), also known as 3-D printing, is a collective term for processes 

in which a product is made by layer-upon-layer deposition of materials. The advent of 

commercial AM systems has enabled the fabrication of parts with complex geometry 

directly from computer-aided design (CAD) models with minimal intervening steps. Until 

recently, AM parts were primarily restricted to prototype-demonstrator roles; the viability of 

AM parts has now evolved to the extent that they are used in production and final 

assemblies. AM provides significant advantages over traditional subtractive (machining) and 

formative (casting, welding, and molding) manufacturing processes, such as eliminating 

specialized tooling costs, reducing material waste, and life-cycle costs, enabling the creation 

of intricate and free-form geometries, and expanding product functionality for a variety of 

industrial applications.

The powder bed fusion (PBF) process is commonly used for the AM of products from the 

bed of powdered materials. Examples of PBF printing techniques include direct metal laser 
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sintering (DMLS), electron beam melting (EBM), selective heat sintering (SHS), selective 

laser melting (SLM), and selective laser sintering (SLS) that use different types of energy 

sources (e.g., laser, electron beams, or heat) to melt or sinter powders together to fabricate 

the solid 3-D parts. Note that LPBF leverages the laser source to sinter metal powders in a 

layer-by-layer fashion to create the final build. In addition to the PBF AM process, there 

exists a variety of other AM processes, such as material jetting, binder jetting, materials 

extrusion, directed energy deposition (DED), sheet lamination, and vat polymerization. The 

choice of materials ranges from metals, composites, polymers, biomaterials, to ceramics.

Notably, technical challenges in quality management hamper widespread adoption of AM 

technology in the industry. For example, the microstructure and mechanical properties of 

AM builds are influenced by complex, hard to model, process phenomena (e.g., thermal 

effects and residual stresses). These intricate process interactions, in turn, can lead to hidden 

internal defects that deteriorate the quality of the parts. As a result, the rejection rate of AM 

parts is high, particularly when considering one-of-a-kind production. In real-world case 

studies, it is not uncommon that parts that are built simultaneously with the same CAD 

model in the same commercial AM machine may yield different quality outcomes. As 

shown in Fig. 1, seven parts are built simultaneously with the same CAD model in the same 

commercial AM machine, and only two of which are defect-free. The high rejection rate of 

AM builds and associated costs significantly hinder the wider exploitation of AM 

capabilities, beyond the current rapid prototyping status quo.

Six sigma (6S) is a widely used practice in traditional manufacturing industries (e.g., 

semiconductor and automotive industries) for quality planning, quality assurance (QA), 

quality control (QC), and continuous improvements with the extensive use of data, statistics, 

and optimization [5], [6]. As shown in Fig. 2, 6S entails a data-driven Define, Measure, 

Analyze, Improve, and Control (DMAIC) methodology.

1. Define: Outline the quality challenges based on customer requirements.

2. Measure: Collect data about key process variables from the manufacturing 

systems.

3. Analyze: Extract useful information pertinent to defect-causing factors.

4. Improve: Design solutions and methods to improve the manufacturing system.

5. Control: Develop process management plans and optimal control policies when 

the manufacturing system is out of control.

The goal of the 6S techniques is to identify and remove the root causes of defects and further 

improve the quality of final products. The success of 6S can be seen through Motorola’s 

application of its philosophies. In 1978, the company had a net income of $2.3 billion. By 

1988, the net income had increased to $8.3 billion; this is roughly a 260% increase. 

Similarly, General Electric saw massive successes with their own 6S program and achieved 

$4 billion in savings per year. The list goes on with other notable examples, including 

Toyota, Ford, Polaroid, General Motors, and many more.
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Although 6S has achieved significant success in a host of domains ranging from 

manufacturing, healthcare, and logistics, more research needs to be done to initiate the 

practice of 6S quality management in the specific context of AM. In this article, we propose 

to design, develop, and implement the new DMAIC methodology for the 6S quality 

management of AM. First, we define the specific quality challenges arising from AM 

layerwise fabrication and mass customization (even one-of-a-kind production). Second, we 

present a review of AM metrology and sensing techniques, from materials through design, 

process, environment, to postbuild inspection. Third, realizing the full potential of AM-

sensing data depends, to a great extent, on the availability of analytical methods and tools. 

Accordingly, we propose and develop new data-driven analytical methods, including 

artificial intelligence (AI), machine learning, and network science, to characterize and model 

the interrelationships between engineering design, machine setting, process variability, and 

final build quality. Fourth, we present the methodologies of ontology modeling, design of 

experiments (DOE), and simulation analysis for continuous quality improvements. In the 

end, new control approaches are discussed to optimize the action plans, once an anomaly is 

detected, with specific considerations of lead time and energy consumption. It is worth 

noting that this review article mainly focuses on metal AM processes given the popularity in 

high-value industries, such as aerospace, automotive, and healthcare. However, the proposed 

6S framework is applicable, in general, for quality management of different AM processes 

through the intensive use of data, statistics, and optimization. We hope that this article can 

help catalyze more in-depth investigations and multidisciplinary research efforts to lay the 

foundation of a new scientific basis of 6S quality management for AM processes.

The rest of this article is organized as follows. Section II discusses specific quality 

challenges arising from unique AM characteristics, such as mass customization (even one-

of-a-kind), low-volume production, multilayer part fabrication, and sequential 

manufacturing. Section III reviews the development of advanced sensing and measurement 

systems to increase information visibility for AM quality management. Then, we present 

AM data analytics in Section IV. Continuous quality improvements for AM are discussed in 

Section V, and Section VI presents the sequential optimization of layerwise control 

strategies for AM. Section VII discusses the 6S quality management for AM and concludes 

this article.

II. DEFINE QUALITY CHALLENGES

AM’s capability to build objects from the ground stimulates the imagination, causing one to 

envision a broader range of possibilities during design. Nonetheless, AM faces a broad range 

of quality challenges that hamper the wider adoption of AM in the industry. The urgent need 

to produce complex builds in low volume and high mix, combined with rapid advancements 

in AM technology, poses significant challenges to current paradigms for AM quality 

management. As such new standards are being developed for material and process 

qualification and part certification [7], [8], countless experiments and modeling/simulation 

studies are being conducted to gain insights into the complex physics of AM processes [9]–

[11], new in situ sensing capabilities and process monitoring strategies are developed for 

process control [12]–[16], and efforts are underway to capture, store, manage, and assure 

pedigreed data for QA/QC of AM parts [17], [18]. In spite of these advances, repeatability 
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and reliability issues seen in many metal AM processes [e.g., laser PBF (LPBF) and DED] 

unfortunately exacerbate these challenges, particularly when trying to produce end-use parts 

for critical applications and highly regulated industries (e.g., aerospace and medical) [19]–

[22].

A. Quality Management for High-Volume–Low-Mix Production

It is well known that “quality is inversely proportional to variability” [23], [24]. Fig. 3 shows 

the mass manufacturing that focuses on the production of a large volume of parts with a low-

level mix. Traditionally, the measure of “variability” often refers to the scenario of high-

volume–low-mix production in the context of mass manufacturing. In other words, if there is 

a large number of parts produced from the manufacturing systems, then it will be a logical 

step to characterize and measure the process variability and repeatability. The variability can 

be due to random or assignable causes in the manufacturing process. If the quality variations 

are solely because of random factors (i.e., nonassignable causes, not identifiable), then the 

distribution should be normal. However, if there are assignable causes, then statistical 

control charts are often used to monitor the process and detect when and how the process 

performance is affected. As such, the process can be stopped to look for assignable causes 

and eliminate them to resume normal production. Quality improvement involves a series of 

managerial, operational, and engineering activities to reduce the variability in the process. 

Especially, statistical DOE is utilized to realize a robust process by studying the effects of 

controllable settings under the uncertainty of uncontrollable factors, also called “robust 

parameter design” [25].

As a result, the 6S program emerged to meet the needs of mass manufacturing in the 

automotive and semiconductor industries and has achieved enormous successes in the past 

century. As shown in Fig. 4, the 6S program utilizes the DMAIC methodology for the 

reduction of process variability to the level that failures and defects are extremely unlikely. If 

the 3σ limits overlap with product specification limits, then the probability for a part falling 

outside the μ ± 3σ limit is 0.27%, which means that the number of defective parts per 

million (PPM) is about 2700. For the μ ± 6σ limit, the probability will be 0.0000002%, 

which means that the PPM is 0.002 (i.e., extremely unlikely). In the 6S scenario, if a 

finished product has 100 components and each component must be nondefective for the 

product to be nondefective, then the probability of the product to be nondefective is 

(0.999999998)100 ≈ 1.0. The 6S concepts (e.g., design for 6S, lean production, and variation 

reduction) have been widely used to improve the capability of many business processes 

nowadays. The development of the 6S program has gone through three phases as follows.

1. Phase I: Address process monitoring, defect elimination, and variability 

reduction.

2. Phase II: Reduce total production cost and increase system performance.

3. Phase III: Emphasize the value creation to business organizations.

However, AM moves toward a high level of customization by enabling low-volume–high-

mix production (even one-of-a-kind production) directly from the digital designs from the 

customers, resulting in “economies of one” [26]. The large quantity of parts produced from 
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the same design is not available anymore, as in the traditional paradigm of mass 

manufacturing, to establish and measure process variability. Therefore, the 6S practice from 

mass manufacturing tends to be limited in the ability to be generally applicable to AM. 

There is an urgent need to push forward the next phase of the 6S program for AM. Fig. 5 

shows the low-volume–high-mix production scheme for a customized design, which may 

only be fabricated once or in low volume. Note that there are significant layer-to-layer 

variations in part geometry. AM presents new QA/QC challenges: mass customization, low-

volume production, and layer-to-layer variations in part geometry. In particular, because of 

the customized design and layer-by-layer fabrication in AM, it is not uncommon that each 

layer is different in terms of part geometry. Hence, it is difficult to characterize and measure 

the process variability and repeatability from one layer to another or from one build to the 

next.

B. Multilayer and Sequential Manufacturing Process

The layer-by-layer approach to AM brings significant challenges for QA/QC. Many AM 

processes use the raw materials of metal powders, where particle sizes and shapes vary 

between batches. Also, a laser or electron beam is utilized as the heating source in LPBF and 

DED. Slight variations in the intensity and diameter of the beam contribute to the issue of 

repeatability both between different machines and between the same machines at different 

locations on the build plate. Thus, every parameter that affects the end result of the process 

must be tailored to the materials used [27]. Furthermore, an AM system can utilize different 

layer thicknesses when manufacturing parts. A 2-cm-high object that uses a layer thickness 

of 100 μm will require 200 layers. IF the layer thickness is 50 μm, then the number of layers 

would be 400. Each of these layers has the opportunity for failure. Even if a single layer has 

a small probability of having a defect, the overall build will have a high probability of 

having at least one defect. To illustrate the effects and challenges of multilayer fabrication, 

consider the following example.

1. If the probability to contain defects is 0.0114 in a layer, then what is the 

probability for this layer to be nondefective?

1 − 0.0114 = 98.86 % .

2. For an AM build with 100 layers, what is the probability to have no defects?

1 − 0.0114 100 = 31.77 % .

3. For an AM build with 100 layers, what is the probability of having at least a 

defect?

1 − 1 − 0.0114 100 = 68.23 % .

4. If the probability of a build to contain defects is specified to be less than 10%, 

then what should be the probability for a layer to have defects?
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1 − 1 − x 100 = 10 % x = 0.0011 .

It is worth noting that this example assumes that each layer is independent of each other. 

However, AM is highly correlated from one layer to another layer. In other words, the 

defects in one layer can be corrected during the processing of the subsequent layer or can 

negatively impact the next layer and all the subsequent layers. This is analogous to the 

multistage assembly line in the traditional manufacturing paradigm. In the automotive 

industry, a car body assembly often involves a sequence of assembly operations. The 

variations in one assembly step can potentially introduce a stream of variations in the 

following steps [28]. However, the physics of multistage assembly operations are different 

from multilayer AM with LPBF in each layer. A 6S program for multistage manufacturing 

systems typically analyzes the current state of a process and then incrementally improves 

system performance with statistical methods and tools.

Establishing a 6S paradigm for AM calls upon new innovations to tackle these emerging 

quality challenges, including mass customization, low-volume production, lay-to-layer 

variations, and multilayer manufacturing process, which are unique when moving from 

traditional mass production to the new paradigm of AM. “Measure” requires the design and 

development of new sensor technologies for materials, processes, and postbuild inspections 

at different stages of AM. “Analyze” should be able to handle and connect the big data that 

are generated during the AM product lifecycle. “Improve” calls upon a better understanding 

of the process physics and an ontological knowledge of the underlying phenomena through 

statistical DOE on physical machines, AM processes, and/or computer experiments on 

simulation models. “Control” should consider the sequential decision-making problem for 

the multilayer fabrication process in AM and further address the multiobjective optimization 

of AM, for example, minimizing total cost (e.g., energy or time) consumed in the LPBF 

process and maximizing the quality of final parts. The new scientific basis of 6S quality 

management will impact the production-scale viability of AM and enable wider exploitation 

of AM capabilities beyond the current rapid prototyping status quo.

III. MEASURE AM

In the DMAIC approach, the measure step is aimed at collecting data from key variables 

during the AM process, such as: 1) process input variables (e.g., characteristics of metal 

powders and design parameters); 2) in situ variables (e.g., machine settings, layerwise 

imaging, and thermal maps); and 3) process output variables (e.g., postbuild CT scans). 

Modern manufacturing industries have invested in advanced sensing and measurement 

systems to cope with high levels of complexity in AM and increase the information visibility 

about key variables from raw materials, manufacturing process to final products. As 

mentioned in Section II, the low-volume–high-mix production presents specific challenges 

to AM quality management. With rich data readily available from the step of “measure 

AM,” this provides an opportunity for the “analyze” step to develop an in-depth 

understanding of the current state and performance of the AM process. Here, data could be 

collected online (i.e., in the layer-by-layer fabrication process) or offline (i.e., prebuild 

material characterization or postbuild CT scan). The offline measurements allow for the 
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inspection of quality but are limited in the ability to help in-process corrections or repairs 

because the defects are often embedded within the build already. Online sensing captures the 

dynamics of process–machine interactions and offers a higher level of flexibility for on-the-

fly control actions. The data collected in the “measure” step can be visualized in different 

ways to provide comprehensible information about the AM process, for example, image 

stacks, 3-D point clouds, histograms, network representation, and Fourier and wavelet 

transformations. An effective visualization further helps the “analyze” step to estimate and 

extract salient features about the process variability or product defects.

A. Prebuild Measurement and Characterization

Fig. 6 shows a broad representation of AM qualification flow about the material, process, 

and product. Metal powders are used as the input to the LPBF (and many DED) AM 

machines. Material qualification is indispensable to avoid the scenario of “garbage in, 

garbage out.” Standard powder characterization techniques include X-ray photoelectron 

spectroscopy, sieve analysis, inert gas fusion, scanning electron microscopy, laser light 

diffraction, and differential thermal analysis. These techniques allow the characterization of 

powders in three main aspects: particle morphology and distribution (e.g., the shape, surface 

roughness, or size), powder chemistry (i.e., elemental composition), and powder 

microstructure (e.g., porosity and rheology) (see [29] for a review of AM powder 

characterization). The standard practices for sampling metal powders are provided by 

standards organizations, such as ASTM International B215 and Metal Powder Industries 

Federation (MPIF). These sampling standards provide practical guidelines to obtain a 

representative sample from the whole lot and then apply the powder characterization 

techniques to measure the powder properties. Furthermore, manufacturers will be able to 

leverage the characterization results to pose requirements for suppliers, select the best 

supplier, and improve the powder reuse practices.

After prebuild material qualification, there are also system qualifications in the AM process 

and performance qualification of the part after the build is completed (see Fig. 6). In this 

article, we mainly focus on the in situ sensing of AM process performance to improve the 

understanding of machine–process physics, in-process monitoring, diagnostics, and 

prognostics (see details in Section III-B), Then, we briefly discuss postbuild measurement 

and inspection in Section III-C.

B. In Situ Sensing and Measurement

The in situ sensing of AM is a rapidly developing area encompassing new hardware systems, 

approaches for system integration, and data analytics. The need for in situ sensing in AM is 

motivated by the fact that a defect in any layer, if not detected and promptly corrected, will 

remain permanently sealed in on the deposition of subsequent layers. Recent review articles 

in this area include Grasso and Colosimo [30], Mani et al. [31], [32], Moylan et al. [33], 

Everton et al. [34], Spears and Gold [35], and Tapia and Elwany [36]. The challenges for in 
situ sensing of AM are steep and discussed as follows.

1. Each type of AM process (there are currently seven) imposes a unique layer 

bonding mechanism ranging from photochemical-initiated bonding to thermal-
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induced bonding; therefore, it is not possible to devise a generalized sensing 

scenario that is decoupled from the process physics.

2. The defects in AM are multifarious and are linked to specific process phenomena 

that range across length scales [37]. For example, delamination and cracking in 

LPBF processes occur at the part level (100 μm and above, and extending to the 

millimeter scale and beyond) due to thermal-induced residual stresses. In 

contrast, balling and keyhole melting are related to the instability at the meltpool 

level (less than 100 μm). A single sensor is not likely capable of capturing these 

diverse phenomena.

3. Integrating sensors into AM machines is difficult due to the tight form factor and 

mechanics of the process [38]. In the fused filament fabrication process, for 

instance, material in the form of a polymer filament is heated past its glass 

transition temperature and deposited by a nozzle. The gap between the nozzle 

and the top of the part is of the order of tens of millimeters. Therefore, sensors, 

such as an infrared (IR) thermal camera, are intractable to be mounted near the 

nozzle to obtain the surface distribution. This is because a large surface of the 

part will be blocked by the nozzle as it translates over the part [39]. A similar 

argument is made for the material jetting process.

4. In the LPBF process, layers of the powder material are spread across a bed and 

melted with a laser. The temperature gradient in the part is responsible for a host 

of defects, such as microstructural heterogeneity and delamination [40]–[42]. 

However, it is tractable only to obtain an estimate of the surface temperature 

distribution with the use of IR cameras and pyrometers. The temperature at the 

bottom layer is not easy to obtain in LPBF because the part is surrounded by 

powder, which acts as an insulating medium and progressively attenuates the 

thermal signatures generated as the laser melts the material on the layers near the 

top.

Moreover, it is not possible to obtain the temperature distribution in the interior 

of the part without altering the process flow, for example, a thermocouple can be 

introduced inside the part by stopping the process [43], [44]. However, this will 

lead to loss of the chamber atmosphere and invariably alter the thermal profile. 

Researchers in Penn State’s CIMP-3D have pioneered wireless sensing 

attachments that fit into the power bed and collect temperature information from 

thermocouples and strain gages [43], [44]. Moreover, the thermal phenomena in 

LPBF occur at multiple spatial and temporal scales. For example, the meltpool-

related thermal phenomena are at the order of a few micrometers and last for 

tenths of seconds, with cooling rates exceeding 105 °/s. In the same vein, the 

surface-level thermal signatures last for a few seconds. Hence, different thermal 

imaging modalities are required for measuring meltpool-level and part-level 

phenomena. For the meltpool thermal imaging, a high frame-rate thermal camera 

with imaging range in the shortwave IR region is typically used, while, at the 

part level, a long-wave IR camera with a large field-of-view and smaller frame 

rate and integration time is used [33], [45], [46].
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5. Even though the process dynamics might be notionally similar, such as DED and 

LPBF, the sensors from one process cannot be readily transferred between them. 

For example, in the DED AM process, the meltpool is several orders of 

magnitude larger than in LPBF, and in the former, the meltpool can approach the 

millimeter level, while, in LPBF, it is close to 100 μm [47]. Likewise, the 

deposition rates in DED can be more than ten times that of LPBF. Moreover, in 

DED, the part is exposed on all sides of the chamber and therefore convection 

forces (due to carrier gases from the nozzle) and radiation are all active at the 

same time. Consequently, it is exceedingly difficult to demarcate and measure all 

of these heat transfer mechanisms.

6. The sensor measurements must be synchronized with the state of the process if 

the data is to be used for process control. Furthermore, the data from multiple 

sensors must be synchronized with each other. From an LPBF perspective, 

recording the process state would involve capturing the position of the laser (i.e., 

the angular displacement of the galvanometer) and merging the laser position 

with the sensor data being acquired. In other words, the data acquisition system 

must communicate with the AM machine and sensor hardware with temporal 

error in the microsecond range (the laser in LPBF can translate at a velocity 

exceeding 0.5–1.0 m/s). The challenge is further complicated given that the 

sensor array may include both temporal sensors, such as photodetectors, and 

image-based sensors, such as thermal and optical cameras.

To overcome these barriers, researchers use heterogeneous sensing modalities [47]. A 

notable example of such a multiphenomena sensing array in LPBF is the so-called open 

architecture LPBF platform at the Edison Welding Institute (EWI), which is currently 

instrumented with the following sensors [48], [49]:

1. local sensors for monitoring the meltpool-level phenomena (10–200 μm scale):

a. a coaxial shortwave IR thermal camera for meltpool temperature 

measurement (85 frames per second (fps), 13.4 × 7.12 mm field of 

view, and 5-μm spatial resolution);

b. a coaxial high-speed camera to track the meltpool shape (1000 fps and 

10-μm resolution);

c. a photodetector to record the meltpool intensity (350–1100 nm and 10-

kHz sampling rate);

d. an spectrometer to measure the optical emission in the meltpool region 

(200–1100 nm and 1 kHz).

2. global sensors for monitoring phenomena at the bulk part level (500 μm–100 

mm):

a. a coaxial short-wave IR thermal camera focused on the powder bed to 

detect part temperature gradients (4 fps, 127 × 95 mm field of view, and 

400-μm resolution);
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b. a laser interferometer (405 nm) for measuring surface finish and 

distortion in a layer;

c. an structured light optical imaging of the powder bed with two digital 

cameras to detect distortion of the part (21 fps, 25.4 × 14.7 mm field of 

view, 6.6-μm pixel resolution, and 165-pixel/mm fidelity);

d. an acoustic microphone and a surface acoustic wave transducer to 

detect when the part cracks due to distortion or makes contact with the 

powder recoater (sampling rate of 10–40 kHz).

3. sensor data acquisition, data synchronization with the laser position, and noise 

isolation:

a. close to two terabytes of sensor data are acquired in a 12-h build cycle 

on EWI’s LPBF platform. Researchers at EWI have built the hardware 

and software mechanisms to ensure the seamless acquisition of sensor 

data of such high volume, variety, and sampling speed (a big data 

problem).

EWI’s open-architecture LPBF platform provides the capability to measure the temperature 

distribution in the part and track changes of thermal gradients that are not available on other 

commercial LPBF systems. Another recently operational and comparable apparatus is the 

Additive Manufacturing Metrology Testbed at the National Institute of Standards and 

Technology (NIST). In addition, CIMP-3D at Penn State developed a multisensor suite for 

monitoring and control of a commercial 3D System ProX 320 PBFAM system, as shown in 

Fig. 7. The multisensor suite has also been demonstrated on 3D Systems ProX 200, EOS 

M280, and GE Concept Laser M2 machines. The system consists of a variety of sensors as 

follows:

1. a high-resolution/high-magnification imaging system (six differing lighting 

schemes);

2. two high-speed/high-magnification cameras, including a coaxial camera with 

405-nm filter and a front-facing camera with 520-nm filter;

3. high-speed video (>33 000 fps);

4. optical process emissions (100 kHz), including a spectrometer and multispectral 

sensors;

5. acoustic sensors (100 kHz);

6. a thermal imaging and DMP meltpool sensor.

This multisensor suite includes an optical layerwise imaging system to monitor the LPBF 

AM process, which consists of a 36.3 Mpixel digital single-lens-reflex (DSLR) camera that 

is placed inside the chamber of the EOS M280 machine [15]. In-process optical images have 

also been collected and used to identify and characterize defects caused by lack-of-fusion in 

the LPBF process [50]. Stutzman et al. [13], Nassar et al. [51], and Dunbar and Nassar [52] 

describe the use of an in situ optical emission spectroscopy system consisting of two filtered 

photodetectors in a series of papers.
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Montazeri et al. [53] demonstrated the use of this relatively inexpensive system to monitor 

lack-of-fusion porosity in Inconel 718 test parts an use features derived from the line-to-

continuum ratio as inputs to detect lack-of-fusion porosity. Inconel has chromium as an 

alloying element. When Inconel is fused (melted) by the laser, atomically excited chromium 

is vaporized and emits photons corresponding to electronic transition. One set of transitions 

occurs in the wavelength around 520 nm [54]. If melting is stable, so will be line emission 

from the vapor. A key innovation is the use of two photodetectors, one of which is filtered to 

have a frequency spectrum in a region where line emissions are not likely and measures 

emissions pertaining to the background radiation (a wavelength different from the line 

emission wavelength, called the continuum emission spectrum). Furthermore, Nassar et al. 
[51], [52] divide this difference (line emission intensity minus continuum emission intensity) 

by the continuum emission intensity; this ratio is called the line-to-continuum ratio. In 

summary, multisensor systems generate high-dimensional and heterogeneous data (e.g., time 

series, video, and image profiles) that provide rich information about AM processes. 

However, realizing the full potential of these data for AM system qualification depends, to a 

great extent, on the development of analytical methods to characterize, represent, and extract 

useful information about the defective state in each layer of AM builds, as detailed in 

Section IV.

C. Postbuild Measurement and Inspection

As shown in Fig. 8, postbuild quality inspection and function integrity assessment for AM 

are often performed with radiographic-based computed tomography (CT). Here, CT scans of 

AM builds are collected with a GE vTomex M300 microfocus X-ray CT (XCT) scanner and 

are processed using the Volume Graphic myVGL3.0 software to extract the 2-D image 

profiles of every layer in an AM build. CT reconstructs hundreds to thousands of 2-D 

radiographs in a 3-D volume of voxels. The resolution of image profiles is determined by the 

CT voxel size, typically with a pixel size of 10–50 μm or less. These data will enable the 

investigation of the effect of design parameters or LPBF process settings, for example, hatch 

spacing (H), scan velocity (V ), and laser power (P), on the defect patterns in AM image 

profiles. The sensor data and offline CT scans can be used to create a library of (sensor) 

patterns that correlate to specific defects using sensor fusion and predictive analytics. These 

sensor signal patterns, which exemplify specific process defects, can be integrated with 

prescriptive models (i.e., for decision-making) to optimize the selection of corrective action 

in case an anomaly is detected in the process. The focus is to minimize defects, 

delamination, and warpage of the final workpiece and maximize final strength and fatigue 

resistance. In addition, other equipment, such as coordinate measuring machines (CMMs) 

and surface probing machines, provide important information about part dimensional 

metrology and surface roughness [55], [56].

D. AM Data Management

Large amounts of data are generated, exchanged, and used dynamically during AM test 

coupon and part development processes. As the volume of data grows with increased in situ 
sensing and nondestructive examination (NDE), the types of data generated by AM activities 

also become richer. The information necessary for AM process qualification includes not 

only measurement data but also material/machine specifications, design models, control, and 
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management data. Characterizing the entire AM process demands a comprehensive analysis 

of all the information collected through the build history of thousands of parts and coupons, 

in the context of the complete AM value chain. As a result, it requires an effective and 

efficient AM data management system to ensure that data are captured, stored, and used 

appropriately.

In the area of data management, several AM information management systems are available 

as commercial products. For example, the Senvol Database (http://senvol.com/database/) 

provides researchers and manufacturers with open access to information about industrial 

AM machines and materials. Granta, a material information management technology 

provider, offers the product GRANTA MI: Additive Manufacturing, specifically customized 

for AM data capturing and use. At the same time, multiple database and data management 

systems are built to organize and manage the data generated from research and industry 

projects. The Data Management System for Additive Manufacturing (DMSAM) was 

developed by researchers at Penn State’s CIMP-3D (http://www.cimp3d.org/

datamanagement). DMSAM is a schema-based software tool that stores and tracks all of the 

data and information related to an AM part, including the state of associated AM resources 

(e.g., powder, software, and machine), part requirements for sponsors, 3-D solid models, part 

workflow, build plan, postprocessing plan, and all data associated with part properties, in 
situ monitoring, postprocessing, testing, and inspection. DMSAM stores data locally, 

communicating with global (i.e., shared) databases and generating build reports for QA/QC 

as needed through XML, as well as Excel. NIST’s Additive Manufacturing Materials 

Database (AMMD) [57] is a data management system built with Not Only Structured Query 

Language (NoSQL) database technology and provides a Representational State Transfer 

(REST) interface for application integration. The database captures rich research data sets 

generated by the NIST AM program (https://ammd.nist.gov/) based on an open XML 

schema. In addition, as an open data management platform, the AMMD system is set to 

evolve through codevelopment of the AM schema and contributions of data from the AM 

community.

However, due to the multifarious factors that could affect AM part quality, existing data-

driven AM process qualification requires extensive testing of material, which is beyond the 

capability of any individual organization. None of the existing databases provide 

comprehensive data sets with a multitude of geometries and processes settings by itself to 

qualify an AM process for parts with various features and specifications. In order to 

significantly reduce the cost and time associated with the data management for AM process 

qualification, a collaborative data space is required, and a collaborative data management 

system is necessary. Fig. 9 shows a multitier AM collaborative data management system 

with the characteristics: 1) distributed data storage facilitated by using common data terms 

and definitions; 2) collaborative linked data through federation based on neutral data 

formats; 3) continuous knowledge management by extracting AM material process–

structure–property relationship automatically from AM data; 4) lifecycle and value chain-

based decision support; and 5) an adaptive data generation system that helps AM community 

to efficiently design experiments. The collaborative data management system is set to 

identify, generate, curate, and analyze AM data through AM product lifecycle and can 

significantly reduce the cost and time associated with AM product deployment.
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IV. ANALYZE THE DATA

The “analyze” step focuses on the extraction of useful information from online and/or 

offline data collected in the “measure” step or from historical data available in the AM data 

management system. The main purpose is to explore the interrelations among key variables 

(i.e., process inputs, outputs, and in-process variables) during the AM process, model causal 

relationships between these variables, and quality problems and further develop a new 

understanding of how they contribute to the process variability and product defects. In other 

words, multiple sources of variability may exist in the AM process and can potentially lead 

to quality problems in products and customer services. The “analyze” step helps delineate 

and determine the random causes and assignable causes to quality problems. If only random 

causes (i.e., nonassignable factors, not identifiable) are presented in the process, then the 

distribution should be normal [1]–[3]. However, if there are assignable causes, then the 

“analyze” tools should be able to monitor the process and detect when and how the process 

performance is affected. As such, the process can be stopped to look for assignable causes 

and eliminate them to resume normal production.

However, advanced sensing systems bring more and more complex-structured data from the 

“measure” step for AM quality management, which are different from geometric features, 

linear, and nonlinear profiles generated in conventional manufacturing settings [4], [58]. For 

example, CT scanning and layerwise imaging result in high-dimensional image profiles from 

the AM process. As such, traditional “analyze” tools, such as control charts and confidence 

intervals, are limited in the ability to handle such high-dimensional image profiles. Control 

charts and confidence intervals are much easier to establish for a single random variable or 

multiple variables (e.g., geometric features of products) in the setting of mass manufacturing 

but are more difficult to be developed for high-dimensional images; let alone geometrical 

structures in these images may vary from one layer to another layer in the AM builds. 

Hence, new “analyze” tools are urgently needed to help handle and connect large amounts of 

data, model the cause-and-effect relationships among key process variables, and pinpoint 

potential root causes to quality problems during the AM process. This, in turn, will help the 

“improve” step (see Section V) to further identify and develop new strategies for quality 

improvements. New experiments can then be designed to test the effectiveness of these 

improvement strategies on either physical AM machines or computer simulation models

A. Engineering Design Versus Build Quality

Engineering design and relevant parameters are some of the key process input variables 

during the AM process. Traditional subtractive manufacturing tends to be limited in the 

ability to handle complex designs. “Design for manufacturing” refers to the conventional 

scheme that adapts a design to enable manufacturing within the capability of available 

machines and tools. AM offers a higher level of design freedom and enables the new scheme 

of “manufacturing for design.” Complex designs can now be manufactured in a layer-upon-

layer fashion with the new generation of AM technology. Nonetheless, complex designs still 

pose quality challenges on AM-fabricated products, despite the fact that AM can handle 

certain aspects of fabrication better than traditional manufacturing technologies.
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The new research question is whether and how design parameters influence the quality of 

AM builds? Our prior work has designed and performed experiments on an LPBF machine 

to investigate how design parameters (i.e., height, width, recoating orientation, and hatching 

pattern) impact the quality in the final build of thin-wall structures [59], [60] that are widely 

used in the fabrication of heat exchangers. As shown in Fig. 10, our experiments built the 

thin-wall structures with a variety of design parameters, that is, heights, widths, recoating 

orientations, and hatching patterns. The metal powder is Spherical ASTM B348 Grade 23 

Ti-6Al-4V, with the distribution of powder size in the range of 14–45 μm. Each build 

includes 25 thin walls that are fabricated on a 15 mm × 15 mm × 55 mm platform. 

Experimental factors such as height, width, recoating orientation, and hatching pattern are 

detailed as follows.

1. Height: The height of thin walls varies from 0.6 to 3.0 mm with a step size of 0.1 

mm. The height-to-width ratio is 0.1 in each thin wall.

2. Width: The width of thin walls ranges from 0.06 to 0.3 mm with a step size of 

0.01 mm.

3. Orientation: Thin-wall structures are fabricated vertically upward with the layer 

thickness of 60 μm in three orientations with respect to the travel direction of the 

recoater blade (i.e., 0°, 60°, and 90°). Fig. 10 shows three orientations with the 

reference of recoating direction.

4. Hatching: The hatching patterns of thin walls follow the standard processing path 

of EOS machines, but various categories of scan paths are utilized when the 

width increases (see Fig. 10). Fins 1 and 2 have two inner rectangle paths, two 

outer layer paths (or contours), and rotating diagonal hatching from rectangles. 

In Fins 3–14, there are three outer layer paths and rotating diagonal hatching 

inside the innermost rectangle. In Fins 15–18, there is one rectangular hatching. 

In Fins 19–25, there is one thin area path.

As shown in Fig. 10, we fabricate three thin-wall parts in this experimental study, each of 

which includes 25 thin walls. The orientations are different for three thin-wall parts on the 

build plate. In other words, the orientation of each thin-wall part is adjusted to the degree of 

0°, 60°, or 90° with respect to the travel direction of the recoater blade in the EOS machine. 

After fabrication, we scan each build with XCT. These XCT images are then registered with 

the original CAD models to extract the quality characteristics (e.g., edge roughness and 

defect levels) in each layer of the thin wall. Here, the edge roughness refers to the geometric 

deviation of build boundary between CT scans and CAD designs. The defect level refers to 

the number and degree of defects in each layer of the thin wall. These quality characteristics 

are tracked from one layer to another for the detection of the impending collapse of thin-wall 

failures (see [59] and [60] for the analysis of variance with respect to design parameters).

Through the analysis of XCT data and in-process imaging data, experimental results show 

that the build quality of thin-wall parts is impacted by design parameters (height, width, and 

height-to-length ratio) and machine settings (hatching and recoating orientation). This study 

helps provide a set of design guidelines on the use of LPBF machines for the fabrication of 

thin-wall structures as follows.
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1. The 0° orientation gives a superior quality in the thin-wall builds to other 

orientations. Fewer defects are generated when the travel direction of the recoater 

blade is parallel to the long edge of a thin wall. The 90° orientation should be 

avoided to build thin-wall structures, which tends to generate more flaws by 

making the recoater motion perpendicular to the long edge of a thin wall.

2. The height of a thin wall should not be more than nine times its width. 

Otherwise, this thin-wall build tends to collapse. The LPBF machine in this 

experiment is limited to build the thin-wall structures with a width that is smaller 

than 0.15 mm. If the length-to-width ratio exceeds 73 (11 mm/0.15 mm), thin 

walls also tend to collapse.

This study made an attempt to answer the research question about whether and how design 

complexity influences quality characteristics of AM thin-wall builds. There is more research 

to be done to optimize the engineering design for AM. For example, it is imperative to 

generalize design guidelines for different LPBF machines, process conditions, or thin walls 

with overhang structures.

B. Machine Setting Versus Build Quality

Machine settings (e.g., hatching space, laser power, and scan velocity) often influence the 

final outcomes of the AM manufacturing process, including the cosmetic appearance and 

build quality. To increase the information visibility and cope with the complexity in the 

machine–process interactions, advanced sensing is increasingly employed in AM (see the 

multisensor suite and CT scanner in Figs. 7 and 8), thereby generating large amounts of data 

(e.g., optical images and postbuild CT scans). Realizing the full potential of sensor data 

hinges on the development of new statistical QC (SQC) methods. Existing SQC methods for 

conventional manufacturing processes are more concerned about key features of finished 

products (e.g., dimensional accuracy) and linear and nonlinear profiles, as opposed to high-

dimensional sensor data. The research on AM sensing, machine–process interaction, and 

QA/QC poses several new challenges:

1. Sensor-based metrology for in situ quality inspection: Traditional QA/QC 

techniques, such as surface metrology geometric and dimensioning and 

tolerancing (GD&T), are more concerned about the Euclidean features of the 

finished AM products. They are offline and not amenable to the inspection of 

internal defects in AM parts with complex geometries [61]–[64]. In the absence 

of sensor-based approaches for in situ quality monitoring, benchmarking of AM 

builds remains relegated to postbuild inspection and qualitative attributes [65]–

[67].

2. Statistical quality management for AM: Current quality monitoring approaches 

are offline, based on purely data-driven techniques (neural networks, mixture 

Gaussian modeling, and statistical analysis), or lumped-mass formulations [68]–

[71]. Very little has been done to investigate AM quality management using 

sensor-based analytical models and layerwise AM QA/QC strategies. In situ 
monitoring provides an opportunity to in-process AM defect mitigation that is 
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indispensable for manufacturing industries mandating stringent quality standards 

and product esthetics.

Hence, the first step is to extract useful information from AM sensing data and then estimate 

the defect levels in AM builds. Fig. 11 shows an illustration of AM images in different 

scales, where multiscale self-similarity can be observed to some extent. In other words, fine-

grained images of AM builds can often show multifractal characteristics over a range of 

scales. Traditional linear methods are limited in the ability to handle nonlinear fractals and 

irregular patterns in the images. Fractal analysis extracts a single fractal dimension that 

describes the self-similarity (scale-invariant) behavior of fractal objects but cannot fully 

characterize multifractal patterns that are often shown in real-world objects [72], [73]. 

However, image profiles of AM builds are often comprised of complex self-similar patterns 

that are not due to a single fractal but rather the existence of a spectrum of fractal 

dimensions. These fractals interact with each other and then generate highly nonlinear and 

complex self-similar behaviors (see Fig. 11).

Little has been done to characterize multifractal patterns in large amounts of image profiles 

to investigate how machine settings influence the AM build quality. Our prior work has 

developed new multifractal methods for the analysis of large amounts of AM imaging data 

and extracts features that are sensitive to the defects, instead of extraneous factors and 

random noises [72]–[76]. As shown in Fig. 12, multifractal analysis characterizes the 

nonlinear and self-similar behaviors of AM images in multiscale lenses, ranging from large-

scale approximations to small-scale details. AM images are then decomposed as an 

interwoven set of fractals with different dimensions, which is shown as the multifractal 

spectrum. In addition, lacunarity measures the degree or extent to which this set of fractals 

fill the space, which cannot be provided by multifractal analysis alone. Therefore, we 

developed the method of joint multifractal and lacunarity analysis to characterize and 

quantify the nonlinear and multifractal patterns in AM images that cannot be otherwise 

achieved by either traditional statistical methods or fractal analysis.

After the multifractal characterization results of AM images, we investigated how AM 

machine settings [e.g., laser power (P), hatch spacing (H), and velocity (V)] influence the 

build quality. In the experimental study, we printed cylinder parts in the EOS M280 machine 

with varying levels of machine settings (see Fig. 20). Especially, laser scanning velocity is 

increased from 1250, 1562.5, to 1875 mm/s. The hatching space is varied from 0.12, 0.15, to 

0.18, and laser power is decreased from 340 250, to 170 W. Furthermore, a regression model 

is constructed to predict the relationship between machine settings with the Hotelling T2 

indices of build quality, which are computed with multifractal and lacunarity features of 

XCT image profiles [72]–[76]. The model achieves the adjusted R2 value of 94.76%, 

showing a strong correlation between process conditions and build quality.

C. In Situ Sensing Variables Versus Build Quality

CT scans help characterize the quality of a finished build but cannot detect the flaws during 

the AM process. In situ sensing provides a means for on-the-fly defect characterization. As 

shown in Fig. 13, a drag link part with complex geometry was printed in CIMP-3D with 
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intentional defects at four layers (i.e., 1.5, 6.7, 12.0, and 16.0 mm), each of which includes 

eight defects as follows:

1. 0.050-, 0.250-, 0.500-, and 0.750-mm cubed defects are on each plane.

2. 0.050-, 0.250-, 0.500-, and 0.750-mm diameter cylinder defects are also on each 

plane surrounding the cubes. All cylinders have a 1:1 diameter to depth ratio 

except for 0.050, which has a depth of 0.250 mm.

3. The top of the defect is the flat plane in the build direction.

In situ optical images are recorded after each layer is printed. This experimental study is 

aimed at predicting incipient defects from in situ imaging data for QC in the AM processes. 

The state-of-the-art deep neural network (DNN) models show superior performance in the 

handling of imaging data. However, layerwise imaging data from AM processes pose 

significant challenges to DNN defect analysis.

1. Region of Interests (ROIs): Each image contains not only metal powders but also 

many AM parts in the build plate. As such, there is a need to delineate the image 

for a specific part. Often, a squared region is cropped around the part, and then, 

the images of layers are fed to the DNN model. This guarantees the same 

dimensionality of input images to the DNN model. However, due to the broad 

geometrical diversity from one layer to another, images of some layers will have 

small part geometries and large powder areas, while others have large part 

geometries and small powder areas. DNN learning will be biased by the 

layerwise geometrical diversity, as well as the varying areas of unfused powders. 

Therefore, it is more desirable to leverage CAD files to delineate and register the 

ROI for the part geometry in each layer (see Fig. 14).

2. Layer-to-Layer Geometry Variation: AM provides a higher level of flexibility for 

the low-volume and high-mix production, even for a one-of-a-kind design. As 

shown in Fig. 5, AM fabricates the build directly from a complex CAD design 

through layer-upon-layer deposition of materials. Although we may register the 

ROI for the part geometry in each layer, there will be ROI variations among 

layers. Hence, both the shape and dimensionality of ROIs will be varying from 

one layer to another. The inconsistent ROIs consist of different numbers of pixels 

and cannot be used as inputs to the DNN models for learning the incipient 

defects in the layers.

3. ROI Segmentation and Spatial Characterization: To tackle the challenge of 

inconsistent ROIs, one approach is to extract features from layerwise ROIs (e.g., 

mean, median, and variance). However, statistical features tend to aggregate 

useful information within the ROIs, thereby leading to the deficiency in defect 

characterization and predictive modeling. The other approach is to segment ROIs 

into smaller ROIs with the same number of pixels. Although the dimensionality 

of ROIs is changing from one layer to another, the greatest common divisor 

(GCD) for ROIs of all layers can be leveraged to segment ROIs with the same 

number of pixels. However, these ROIs may still have variations in shapes. 

Furthermore, spatial characterization can be used to measure spatial correlations 
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among pixels and describe pertinent patterns about defects in the ROIs. As the 

number of pixels is constant in the ROIs, characterization images share the same 

dimensionality that can be fed into DNN models for the learning and prediction 

of defects in each ROI in the AM processes.

As shown in Fig. 14, our prior work has designed a new DNN model to learn incipient 

defects from sROIs of in situ image profiles [77], [78]. The experimental study provides 

large amounts of images taken for each layer with different lighting schemes. To tackle the 

aforementioned challenges, DNN learning of in situ AM defects consists of the following 

critical steps.

1. Image Registration and Segmentation: We first used the CAD design to perform 

shape-to-image registration and extract the ROIs of 362 layers in the drag link 

part. Then, these ROIs are segmented into 1708 sROIs, each of which has the 

same number of pixels. Furthermore, the dyadic partitioning of sROIs can be 

used to split each region into smaller subregions and provides a large amount of 

data for multiresolution DNN learning of layerwise AM defects.

2. Spatial Characterization: Although these sROIs are in different shapes, we 

utilized the spatial characterization to extract pertinent patterns about defects 

from sROIs and then fed images of spatial correlations for deep learning.

3. Deep Learning: The DNN model includes a series of convolutional layers to 

learn sROI characterization images with multiple levels of abstraction. Each 

hidden layer is followed by nonlinear modules, which transforms the 

representation at one level into a representation at a higher, slightly more abstract 

level [77]. The DNN builds up effective learning and representations of various 

intentional defects [i.e., embedded in the drag link part (see Fig. 13)] that help 

significantly reduce the size of state space and state-action pairs for predictive 

modeling and optimization in the following.

The DNN model described earlier is shown to effectively predict the layerwise defects with 

the specificity of 93.85±0.83%, the sensitivity 90.01±1.56%, the negative predictive value of 

93.83±0.67%, the positive predictive value of 90.03±2.34%, and the accuracy of 

92.50±1.03%. This experimental study avoids the use of DNN as a blackbox by just feeding 

cropped images of layers (i.e., with the broad geometrical diversity) into the neural networks 

and then letting AI classify ROIs and identify the defects. Indeed, engineering domain 

knowledge is indispensable to preprocessing AM training data and developing effective AI 

methods for in situ AM defect learning and analysis.

V. IMPROVE THE SYSTEM

This section presents a set of statistical methodologies— ontology models, DOE, and 

simulation analysis—for the quality improvement of AM processes. The “measure” step 

provides rich data about key variables to increase information visibility during the AM 

process. The “analyze” step extracts useful information from the data and performs the 

cause-and-effect analysis between and among these key process variables. Now, the 
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“improve” step exploits data-driven knowledge to look for changes or parameter designs that 

can be made to the AM process so that the performance can be improved.

Ontology provides a high-level map that is useful to explore and understand the 

interrelationships of parameters, elements, and variables during the AM process. Hundreds 

of terms may be involved in the AM process ontology to describe input–output parameters 

of the laser, thermal, microstructure, and mechanical properties of AM parts. These terms 

may be physical parameters or concepts that are based on mathematical modeling and 

physical phenomenon characterizing the AM system. For instance, the laser source affects 

the thermal behavior and microstructure evolution during an AM process [79], and the 

thermal distribution of the heat source affects the microstructure behavior and mechanical 

properties [80]. As a result, ontology models relate process parameters to mechanical 

properties and material characteristics and can be used for process redesign, sensor 

selection, and quality improvement.

Furthermore, DOE is one of the most widely used tools for quality improvement. Note that 

the “analyze” step delineates multiple sources of variability in the AM process, for example, 

assignable causes or random causes. Therefore, the “improve” step can then choose 

experimental factors and vary the factor levels with statistical designs (e.g., randomized 

block design, factorial design, and response surface design) to investigate how these factors 

influence the quality of AM process and final builds. Most importantly, optimal factor 

settings can be determined to ensure that the desired performance of the AM process can be 

achieved, which is robust to uncontrollable factors and/or random noises [25].

It should be noted that the designed experiments can be conducted on physical AM 

machines, computer simulation models, or both to improve the performance of AM 

processes. Simulation analysis involves the design of computer experiments that is often 

faster and cheaper than physical experiments. As such, before expensive experiments are 

undertaken on AM machines, simulation analysis can help screen the process variables to 

reduce the number of factors and design more cost-effective experiments in the “improve” 

step. If the AM process is far from the desired level of performance and produces a large 

number of defective builds, then it may be necessary to abandon the old process and 

redesign a new AM process. In this way, the “improve” step is converted into a “design” step 

in the DMAIC approach.

A. Ontology Modeling

As shown in Fig. 15, the growing body of AM research exists in many forms (e.g., papers, 

models, simulations, graphs, and data) and is both specific to a given AM process and 

generalizable to AM more broadly. Several complementary efforts are underway to develop 

data management systems by NIST,1 CIMP-3D,2 Granta,3 and many others. Also, numerous 

sensing capabilities (e.g., photodiodes, cameras, pyrometers, thermocouples, and 

spectrometers) are available for metal AM processes (e.g., PBF and DED). Different sensors 

1https://ammd.nist.gov/
2http://www.cimp3d.org/datamanagement
3https://grantadesign.com/industry/products/granta-mi/support-materials-engineering/granta-miadditive-manufacturing/
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have been installed on different AM systems to generate empirical data to help validate 

simulation models, for instance, or develop process maps for different AM systems and 

materials. The challenge now lies in the integration of all the information into useful AM 

knowledge, which includes the selection of the right sensors to generate the right data for the 

right analytics for QA/QC.

Our previous work developed an ontology to support AM process model development and 

reuse [81], [82]. The AM ontologies sought to overcome pertinent challenges about 

disparate AM process models and simulations (e.g., with variations in the input–output 

specification), not to mention the levels of detail, fidelity, and composability. This limitation 

restricts their reuse and makes it difficult to integrate different models from different groups 

into the most accurate AM simulation model or for different use cases. The AM ontologies 

developed by Penn State and NIST allowed users to navigate complex relationships and 

understand the connections between different process parameters, microstructural 

characteristics, and mechanical properties for AM parts. A sample of the ontology is shown 

in Fig. 16 where the details on the class hierarchy for AM thermal models can be seen along 

with the definition of the Absorbed_laser_power class.

The AM process ontology generates a network of parameters that can be visualized as a 

graph to look for similarities and differences across different models from different 

researchers. We will refer to these as knowledge graphs as they can be navigated forward (or 

backward) to identify important relationships between parameters and phenomena that were 

previously disconnected. Two examples of navigating such a knowledge graph to identify 

important relationships during AM are shown in Fig. 17. In Fig. 17(a), the knowledge graph 

is used to trace a process parameter that we can measure (i.e., meltpool area) to understand 

how it influences different mechanical properties that may be of interest (e.g., tensile 

strength, yield strength, elongation, and the Vickers hardness). The graph does not tell us 

exactly how they are related, but we know from the AM ontology that these parameters 

influence each other based on data and models in the literature.

These same ontologies developed to manage process models can be easily extended to 

support data management and configuration. As noted in Section III, a vast amount of AM 

process data is being measured, often used for the development and validation of AM 

process models. Fig. 17(b) shows an example of how the AM ontology can be leveraged to 

navigate the knowledge graph in reverse to identify what sensor data should be captured to 

help ensure that a requirement is met. In this example, we assume that a requirement is 

specified on the Vickers hardness of the part, and then, we navigate the knowledge graph 

backward until we find process parameters that we might be able to sense, namely, scanning 

speed and absorbed laser power in this case. While we may not be able to measure absorbed 

laser power directly, this, nonetheless, provides an indication of what we might want to 

sense during the process to gather data to help ensure that our requirement is met.

The AM ontology and corresponding knowledge graphs can also be used to support the 

analysis of process parameters and sensor data. For instance, Table 1 shows data from an 

experiment where several input process parameters (e.g., laser power, velocity, and spot size) 

were varied, and sensors were used to capture meltpool depth and width; deposition height 
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and width were also measured for each test specimen [83]. Linear regression was then used 

to analyze the data in Table 1, and Radjusted
2  values for deposition height and deposition depth 

are 91.75 and 89.97, respectively, as a function of the process parameters that were varied. 

The Radjusted
2  value for meltpool width is also good (94.85); however, the Radjusted

2  value for 

meltpool depth is not (68.00). When we trace these relationships in our AM ontology, we 

find that the Marangoni effect, the velocity of the fluid, and the Buoyancy effect have a 

relationship with meltpool depth, yet none of these are in the data because they were not 

measured or sensed during the experiment. Had the researchers had the ontology, the 

corresponding knowledge graph could have been used to plan the experiment more carefully, 

that is, what data to sense and capture based on what they wanted to analyze after the 

experiment. This simple example demonstrates what might be achieved (and potentially 

avoided) by using a knowledge graph, such as the AM ontology to guide sensing and inform 

the analysis.

B. Design of Experiments

The distinctive aspects of AM compared to traditional subtractive and formative 

manufacturing processes are the relative tight coupling of the part geometry (shape), 

microstructure evolved, and process conditions [84]–[86]. In other words, the shape, 

microstructure, and process conditions interact to influence the functional integrity aspects 

of the part, such as its strength, fatigue life, adherence to geometric, and dimensional 

specifications, among others. This coupling of part shape, process parameters, 

microstructure, and part properties is rather weak in conventional manufacturing; for 

instance, in subtractive machining, although the near-subsurface microstructure is influenced 

by the cutting conditions and geometry, the bulk microstructure is largely unaltered. Some of 

these process–structure–property relationships in AM are exemplified in Fig. 18.

This intricate interaction in AM lies at the crux of the large uncertainty in part quality 

aspects, and accordingly, the use of traditional DOE-based methods to achieve the optimal 

processing conditions is constrained for the following reasons.

1) Large Number of Key Process Input Variables Can Be Adjusted and 
Several Output Variables Need to Be Simultaneously Optimized: For example, in 

the LPBF process alone, a schematic of which is shown in Fig. 19, over 50 process input 

variables are known to influence the part properties [76], [87]. Taking just the example of 

LPBF, the key input variables can be categorized into two main categories, namely boundary 

condition factors and input parameters, as demarcated in Table 2. Within the former 

boundary, condition-related factors are again divided into two: 1) part design related and 2) 

material-related aspects. Under the category of controllable input factors, condition-related 

factors are three further subdivisions: 1) environmental factors; 2) process–machine factors; 

and 3) the characteristics of the energy source, such as the laser, optics, and scanning factors.

Moreover, researchers have found that key process output variables may conflict with each 

other. For instance, part strength and geometric integrity are known to conflict, while 

increasing the infill percentage can increases the strength of the part, the increase in material 
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density due to the added material has the tendency to create large residual stresses, which 

causes the part to warp [88], [89].

2) Influence of Part Geometry, Process Parameters, and Build Strategy on 
the Build Quality: In AM, the mechanical and physical properties of the final part are 

governed by thermal aspects, such as heat flux and cooling time between layers. These 

thermal aspects are, in turn, functions of the process parameter, part geometry, support 

structures, and build plan. Hence, process parameters optimized for rudimentary test 

coupons established for one type of geometry may not typically carry over to another 

geometry. To explain further, currently, in the metal AM processes, such as LPBF, process 

parameters, such as the laser power (P) [W], velocity (V) [m·s−1], hatch spacing (H) [m], 

and layer height (T) [m], are aggregated in terms of the incident laser energy per unit 

volume, called global energy density, Ev = P/(V × H × T) [J/mm3], which, when coupled 

with the scanning strategy, determines the average rate of heat input at the build surface. 

However, the global energy density is not sufficient to ensure part quality because, apart 

from the part geometry and process parameters, the placement of parts on the build plate, 

shape, and placement of other parts in the build plan (build layout) also influence the cooling 

rate. For example, Fig. 20 depicts the XCT images of the cross section of an Inconel 718 

cylinder made using the LPBF process [53]. The parts are built simultaneously using a 

commercial LPBF machine. The part demarcated as Disc B is built under the so-called 

default, factory optimized process conditions recommended by the manufacturer for Inconel 

718. Nonetheless, the part shows pronounced lack-of-fusion porosity.

Lack-of-fusion porosity, also called acicular porosity, occurs due to poor consolidation of the 

material with insufficient energy. The energy density for Disc B is close to 80 J/mm3. 

However, increasing, indeed doubling, the energy density Ev to 160 J/mm3 as in the case of 

Disc A did not eliminate the lack-of-fusion porosity. The reason for this observation can be 

explained on the basis of the placement of the parts on the build plate and requires an 

understanding of the manner in which the laser beam is focused on the powder bed. In LPBF 

systems, typically, the laser is in the IR region with a wavelength in the vicinity of 1050 nm, 

and the beam is rastered with the galvanic mirror assembly in the xy plane and focused on 

the build plate by means of an optic called the f − θ lens. This lens is designed to maintain a 

constant focal length (f) irrespective of the angle of incidence (θ) of the laser beam after it is 

directed by the galvanic mirror assembly. A drawback with the f − θ lens is that, at extreme 

incidence angles, corresponding to the edges of the build plate, the focal length tends to 

deviate from the desired setpoint. In other words, the beam tends to become defocused at the 

edges, and hence, building parts near the edges is not advisable, as the energy delivered will 

not be sufficient to melt the material. Some of the newer LPBF systems, such as the 

Renishaw RenAM 500M system, have overcome this problem by replacing the f − θ lens 

with a dynamic focusing system.

We note that Both Disc B and Disc A are placed on the far corners of the build plate (the 

recoater scans from right to left), and since the LPBF system uses an f − θ lens, there is a 

possibility of exacerbated defocusing of the laser beam. This claim is substantiated in the 

case of Disc D, which has a smaller global energy density applied to it (107 J/mm3) as 

opposed to Disc A, but is nominally devoid of porosity. This example serves to demonstrate 

YANG et al. Page 23

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2021 July 09.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



that setting the process parameters to offline-optimized process conditions based on ideal 

conditions is not guaranteed to result in flaw-free parts in AM. Indeed, the placement of the 

parts on the build plate is also an important factor.

The geometry of the part beneath the powder bed in LPBF determines the rate at which the 

heat is conducted away from the build surface (heat flux) and, hence, governs the cooling 

rate, which, in turn, influences defects, such as cracking and microstructure heterogeneity. 

The placement of supports bares an important aspect of the part geometry because they serve 

as conduits for heat to dissipate [37], [90].

Furthermore, if more parts are added onto the build plate, the time for scanning a layer 

increases, and therefore, the heat from a previously melted region has a longer time to 

dissipate, which, in turn, alters the cooling rate. Thus, if any aspect of the build layout 

changes, for instance, new parts are added or taken away, the orientation of a component is 

altered, the scanning strategy and order are varied, and then these changes will affect not just 

one part but potentially every part present on the platen during that build. Consequently, a 

part must be requalified when it is built as part of a different build layout.

3) Empirical Testing Is Expensive: In AM, and more so in metal AM, the 

consumables are prohibitively expensive (the cost of powder material, such as titanium, can 

exceed several hundred dollars per pound), the process is slow (Φ 8 mm × 60 mm-tall build 

takes approximately 180 min), and only a few parts can be made at a time. Moreover, 

postprocess destructive mechanical testing is expensive, and there are no standard 

approaches to ascertain the mechanical properties of complex objects, such as lattices. 

Indeed, nondestructive testing approaches, such as XCT, are cumbersome, and the resolution 

progressively degrades with the material density and size.

4) Sensitivity to Disturbances (Nonstationarity) Makes Maintaining Stable 
Experimental Conditions Difficult: One of the main tenets of statistical DOE is that the 

process should remain stationary during the duration of the test. This condition is not strictly 

true in AM, as the process parameters tend to fluctuate. For instance, in LPBF, during long 

experimental builds, the hot residue, such as vaporized material from the printing process, 

tends to accumulate in the cooler areas of the machine. For instance, soot buildup on the 

optics leads to occlusion of the laser beam during long builds. Consequently, the shape of 

the laser beam and the power delivered tend to drift over time, which, in turn, affects the part 

properties.

Likewise, the morphology of the top surface of the part tends to change in DED. In contrast 

to LPBF, the top surface in DED is not relatively flat but has an uneven wavy surface. This 

wavy surface emerges because only a part of the material may be melted and adhered to the 

surface due to a variety of reasons, such as insufficient energy to melt the surface, loss of 

powder in the stream, and either too much or too little material flow. Subsequently, the 

distance between the top surface and the powder delivery nozzle (called the standoff 

distance) varies from its initial setpoint. If the standoff distance between the part and nozzle 

decreases, more power tends to be delivered, and accordingly, more volume of the powder is 

melted, leading to a further decrease in the standoff distance. Eventually, the deviation of the 
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standoff distance from the setpoint will rapidly exacerbate; the standoff distance will 

decrease and the nozzle may eventually crash into the part.

On the other hand, if the standoff distance increases, the power delivered is insufficient to 

melt the powder, and the standoff distance will decrease, causing the laser beam to walk off 

from the part. Such process drifts inherent to AM processes cause the part properties to vary 

along the build direction and, as a consequence, induce a large spread in the measurement of 

the output variables.

For example, the XCT image of a titanium alloy coupon deposited using the DED process is 

shown in Fig. 21 [91]. One of these parts is deposited under suboptimal process conditions; 

the laser power (300 W) is insufficient to melt the material and manifests long lack-of-fusion 

flaws. When after extensive testing, it was found that, when the laser power is increased 

from 300 to 475 W, the lack-of-fusion flaws are mitigated; however, a relatively small flaw 

is still evident, whose root cause cannot be pinpointed. In other words, there is a stochastic 

(random) aspect to defect formation.

These challenges pose considerable uncertainty in the generalizability and effectiveness 

concerning the conventional statistical DOE in AM. To address these concerns, researchers 

have explored several strategies. First, to reduce the number of expensive empirical tests 

required, sequential and evolutionary DOE strategies have been demonstrated [92]. The key 

idea of the evolutionary optimization approach is to use previous experiments to inform the 

next set of experiments. One approach to evolutionary optimization is to conduct a set of 

experiments and test for the key process output variables. Based on the results, the next set 

of experiments is conducted in the vicinity of those process settings that result in outcomes 

closer to the desired. Another approach is to use a technique called minimum-energy DOE, 

which provides a set of candidate points using a Bayesian analysis [93].

Another strategy is to augment DOE with machine learning models trained on the available 

data set. In this regard, King et al. suggest including results from simulation models to 

rapidly narrow the process conditions. With regard to the development of experimental data 

sets, extensive part design and testing strategies have been formalized by the ASTM F42 

Committee.

Note that the global energy density is not sufficient to ensure part quality because, apart 

from the part geometry and process parameters, the shape and placement of other parts in 

the build plan (build layout) also influence the cooling rate. The uncertainty introduced in 

the component quality due to the complex interdependence between material, part geometry, 

process parameters, and build plan negates one of the most attractive aspects of AM: the 

flexibility to implement changes to the part design without the need for extensive 

optimization of the process parameters. This process complexity in AM strengthens the case 

for supplanting an empirical build-and-test optimization approach with a thermal physics-

driven methodology.

YANG et al. Page 25

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2021 July 09.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



C. Simulation Modeling and Analysis

Computationally efficient and accurate physical models are critically needed for AM to: 1) 

narrow the process parameter space for a property of interest; 2) identify red-flag problems 

in the part design; 3) aid support placement, build orientation, and build plans; 4) predict the 

distortion and microstructure evolved; and 5) augment process control by providing a model-

based baseline for adjusting the process (feedforward control) [94]–[97]. From a broader 

vista, simulation in AM can be categorized into three classes contingent on the dominant 

phenomena: thermal, fluid, and photopolymerization based. To explain further, in the metal 

AM processes, such as LPBF and DED, the energy applied in joining the layers is supplied 

by a laser; accordingly, researchers have focused on modeling the thermal phenomena in 

metal AM. Melting- and extrusion-based polymer AM approaches, such as fused filament 

fabrication, may also be considered to fall under the category of thermal initiated AM. 

Processes such as binder jetting and aerosol jet printing are governed by the mechanics of 

droplet formation, fluid flow, and wetting. Finally, material jetting stereolithography is 

governed by photochemical reactions.

In this article, we have chosen to focus on metal AM processes given their popularity in 

high-value industries, such as aerospace and biomedical. The industrial interests in LPBF 

and DED have propelled active research in simulation modeling of these processes, with 

several commercial ventures being initiated in the last decade. The three key problems faced 

by researchers in this area are as follows:

1. simulation time;

2. coupling of phenomena across multiple scales;

3. difficulty in experimental validation.

These difficulties originate because thermal modeling in LPBF and DED involves multiscale 

physics, which starts at the meltpool level, progressing to the layer level, and, finally, the 

part level [42], [96], [98]. The various process-part thermal interactions in the LPBF and 

DED processes are depicted in Fig. 22. The meltpool or particle-level dynamics are tied to 

material solidification rates and the interaction of the laser beam with the powder, and hence, 

it is the key to predict the microstructure evolved and, as a consequence, mechanical 

properties, such as hardness, strength, and fatigue life [99]. Next, in ascending order, is the 

so-called mesoscale or track level, which ranges from a few hundreds of micrometers to 

under a millimeter. The aim of track-level simulations is to predict consolidation of the 

powder and dynamic evolution of the meltpool as the laser is scanned, which is 

consequential to the density of the part formed. Finally, at the macroscopic or part level, 

which ranges from millimeters and beyond, the thrust is to predict the thermal-related 

residual stresses and geometric deformation.

At the meltpool or particle level, the interaction of the laser beam with particles is the focus. 

Particularly, in LPBF, the energy absorbed by the material is a function of its reflectivity (in 

electron beam PBF, the electronegativity is of importance). Highly reflective material will 

tend to absorb a smaller magnitude of the incident laser energy. Furthermore, the laser is 

reflected repeatedly by the powder particles when it is incident on the powder bed. This is 

advantageous to material melting as the energy absorbed by the material increases on 
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account of multiple reflections. The laser–particle interaction is also important to understand 

the formation of the pinhole (due to vaporization) and keyhole-type porosity. The former 

occurs due to one of three reasons: first, the vaporization of remnants of moisture on the 

surface of powder particles; second, the escaping gases trapped within the meltpool; and 

third, due to the vaporization of impurities within the powder that has a lower melting point 

than the desired alloy. Keyhole melting porosity occurs at inordinately high laser energy 

conditions, which causes the powder to vaporize and create a cavity. This cavity serves to 

further focus the laser into a narrow beam, exacerbating the vaporization of more material. 

Eventually, the surrounding material falls into the cavity and fills it incompletely, causing a 

void (keyhole collapse). In the case of the DED process, the simulation at this scale includes 

modeling the interaction of the falling powder with the carrier gas, as well as the laser.

At the track levels, the simulations must take into account surface tension-related 

phenomena, such as the Plateau–Rayleigh effect, which is the root cause of meltpool 

instability and, consequently, inferior consolidation of the material. Furthermore, at the 

meltpool level, the material changes from solid to liquid and back to solid again; as a result, 

latent heat effects cannot be neglected. The simulations at this scale have been used to model 

the segregation or breakup of the meltpool into discrete chunks, called balling. This 

phenomenon is typically observed underneath unsupported features in the part and is related 

to the accumulation of heat in a region. The temperature increase causes the surface tension 

of the meltpool to decrease, which, in turn, leads to an increase in its length. The inordinate 

increase in the meltpool causes the onset of the Plateau–Rayleigh instability causing the 

meltpool to break up into discrete chunks. Each of these chunks eventually coalesces into 

spheroid shapes. The occurrence of balling phenomena is tied closely to the laser power and 

hatch spacing. This example serves to emphasize that the dynamics of the meltpool and 

track levels involve both fluid and heat transfer phenomena.

Finally, at the part level, the prediction of the temperature distribution has garnered 

commercial interest, with the emphasis on four aspects: 1) predicting distortion during and 

after the build; 2) possibility of a recoater crash due to part distortion during the build; 3) 

optimizing part orientation and placement of supports; and 4) build layout planning. To 

explain further, the three main factors that influence the thermal distribution at the part level 

in LPBF are as follows:

1. the geometry of the part, including features such as steep overhangs, and the 

presence of anchoring supports [90], [101]–[103];

2. type and characteristics of the feedstock material and process parameters, such as 

the laser power, hatch spacing, layer thickness, laser scan velocity, and scanning 

strategy, which influences the average heat input (global energy density) [104];

3. the time required for scanning a layer and the interval between the melting of 

successive layers (interlayer cooling time), which are functions of the build 

layout determined by the number, geometry, orientation, placement, and 

scanning sequence of other parts on the build plate.

At the part level, the effect of meltpool-level phenomena (e.g., latent heat aspects) is 

neglected to aid computation. Mathematically, the aim is to solve the heat diffusion 

YANG et al. Page 27

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2021 July 09.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



equation, in which conduction is the model heat transfer, and radiative and convective effects 

are considered postfacto, that is, after the heat diffusion equation is solved. The heat 

diffusion equation takes the following form:

ρcp
∂T
∂t − k ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 T = Q . (1)

Solving the heat equation results in the instantaneous temperature T(x, y, z, t) at a time t for 

a Cartesian spatial coordinate (x, y, z). The temporal map of T(x, y, z, t), that is, the trace of 

the temperature T at the location (x, y, z) over time, gives the temperature history in the part 

for that location. The right-hand side term is the energy supplied by the laser per unit 

volume of the material per second (Q). Although the units are identical to the global energy 

density (Ev), Q is a more encompassing term because of the flexibility to include the effect 

of the beam shape.

The benchmark computational approach for solving the heat equation originates in the 

welding literature, as exemplified in the work of Goldak et al. [105]. This model called 

Goldak’s double-ellipsoid model considers, as the name suggests, the laser source to be 

ellipsoidal in shape. The beam energy is assumed to be concentrated in the center and 

dissipates near the boundary of the ellipse. In the AM context, researchers tend to model the 

beam to be ellipsoidal and the energy distribution within its Gaussian. A key difference 

between welding and AM is that, in the latter, the heat source has a smaller profile, and the 

translation speed (scan velocity) is a magnitude higher. Consequently, the cooling rates in 

LPBF approach the order of nearly 105 °/s. In DED, the spot sizes are much larger than 

LPBF.

The main problem faced at the part-level thermal modeling is the evolving nature of the part 

geometry in AM. To explain further, the model must take into account the change in the 

computational domain and boundary conditions as the material is deposited layer-upon-

layer. The key challenge is to keep track of the elements from a finite-element modeling 

perspective [106]. Typically, this is done through the element birth-and-death approach, 

where the elements are slowly activated. The second is the quiet element method, wherein 

the part was meshed beforehand, but the thermal properties of an element are activated at the 

appropriate interval. Commercial software, such as Netfabb, makes use of a hybrid strategy 

involving both the quite element and birth-and-death approach. It may be noted that 

researchers at the Lawrence Livermore National Laboratories have developed 

comprehensive multiscale modeling tools based on their extensive code base, at the 

mesoscale (ALE3D) to the part level (Diablo). Techniques such as finite difference and 

discrete element methods have been employed to solve the heat diffusion equation [107]. 

Newer approaches based on circuit theory and graph analysis have been introduced for 

mapping the thermal distribution in AM [100], [108].

Fig. 23 shows a schematic of the mesh-free graph theory to solve the heat diffusion equation. 

The key idea is that the discrete heat diffusion equation is solved as a function of the 

eigenvalues and eigenvectors of the Laplacian matrix of a graph projected onto the geometry 
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of the part. The main advantage of the graph theory approach is that the temperature 

distribution part can be potentially computed many times faster compared to FE because: 1) 

graph theory eliminates time-consuming meshing steps and 2) it avoids cumbersome matrix 

inversion operations needed to solve the heat equation and, instead, uses the matrix 

eigendecomposition.

Furthermore, the graph theory approach is verified with a finite-element implementation of 

the so-called gold standard Goldak’s double-ellipsoid model, which has its genesis in 

welding [105]. The graph theory solution was also quantitatively compared with the 

commercial Netfabb solution. The results for three-part geometries are shown in Fig. 24. 

The graph theory simulation accurately predicts the accumulation of heat in the overhang 

region of a C-shaped part. Moreover, the approach also predicts that heat trapped in an 

overhang region can be dissipated by build extra supports. More pertinently, at the graph 

theory, the approach converged to within 90% of Goldak’s solution within 10% of the 

computation time. The fast convergence of the graph theory approach opens the possibility 

of recognizing and correcting red flag problems in part design even before the part is 

printed. In other words, thermal simulations can be used as a viable path for design 

optimization in AM.

VI. CONTROL THE PROCESS

This section presents the learning and optimization of action strategies for AM QC when the 

state of the build is dynamically evolving from one layer to another. As the finish in each 

layer will impact the next layer and all subsequent layers, this is a typical sequential 

decision-making program under real-world uncertainty (e.g., random variations, 

perturbations, or errors from measurements, machine settings, environments, and statistical 

estimation). Furthermore, we present a constrained framework for sequential decision-

making. Examples of constraints include the lead time to complete a build, materials, and/or 

energy consumption in the manufacturing process.

A. Sequential Decision-Making Under Uncertainty

Modern industries pose more stringent standards in product esthetics, QA, and functional 

integrity. Thus, it is critical that AM machines can mitigate incipient defects. Hybrid 

machines with both additive and subtractive manufacturing abilities provide an opportunity 

to take corrective actions and perform layerwise repairs, thereby realizing a new paradigm of 

zero-defect AM [109]. For instance, sensor-based analytical methods (see Section IV) help 

characterize and estimate the state of defects in each layer of the AM build. If a layer is 

estimated to have a small likelihood sl to contain defects, the AM process will continue and 

take no corrective action, denoted as aW. On the other hand, if a layer has a high likelihood 

sh to have embedded defects, the AM process will pause and take an action to machine off 

this defective layer, denoted as aM. The number of available actions depends, to a great 

extent, on the technological advancement of hybrid machines. For example, for the defects 

due to lack of fusion, a potential action is to refuse with the laser and mitigate such defects, 

denoted as aL. If there are more actions available after each layer is built, then dynamic 

transitions among state-action pairs will become more complex. This is mainly due to the 
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fact that AM layers are not independent but rather highly interrelated with each other. As 

shown in Fig. 25(a), the action chosen for one layer will impact the evolving dynamics of 

defect states in the next layer and, through that, all subsequent layers. In addition, there are 

uncertainties in the sensor measurements, machine settings, environments, defect estimation, 

and layer-to-layer transitions. The new sequential optimization framework needs to account 

for the uncertainty in AM processes and realize the zero-defect AM by minimizing the 

expected cumulative cost at the end when all layers are completed.

As shown in Fig. 25(b), each layer of AM builds will be captured by the sensors (i.e., high-

resolution cameras) as imaging profiles. The probability for a layer to contain defects (e.g., 

sh, sm, and sl) will be estimated with sensor-based analytical methods, such as layerwise 

deep learning of incipient defects [77], [78]. The sequential decision-making framework for 

smart AM is formulated as a Markov decision process (MDP) model. Although the MDP 

has been widely used and proved to be effective in the management of engineering systems 

[110]–[113], very little has been done to realize smart AM using MDPs. Our prior work 

formulated this problem as an MDP corresponding to a five-tuple (Ω, S, A, T, and R), where 

Ω is the set of sensor observations, S is the set of defective states, A is the set of actions, T : 

S × A × S represents the state transition, and R is the reward function. The main objective is 

to search for an optimal policy π*(s) specifying the optimal action a* in state s, which will 

maximize the sum of rewards after taking the action a* and, thereafter, keeping being 

optimal.

1. States, Actions, and Observations: The complexity of AM poses challenges in 

measuring and characterizing the exact defective state of a layerwise build. As 

shown in Fig. 14, we have developed a DNN learning method that tackles the 

challenge of layerwise geometrical variations and then estimate the risk 

probability of defects in a layer. As such, we can take full advantage of in-

process image profiles and integrate them with MDP models. Each action affects 

the state transitions between layerwise builds in the AM process. Here, actions 

that are generally available in hybrid AM may include doing nothing, cutting off 

a layer, refusion, or process adjustments.

2. State Transitions: p(s, a, s′) provides the probability that an intervention a in 

state s at layer i will lead to the state s′ at layer i + 1. The transition can be 

estimated from rich data collected in the AM processes, but it is influenced by 

the uncertainty in sensor measurements and process conditions. Few works in the 

AM literature studied sequential decision-making under uncertainty.

3. Reward Function: R(s, a, s′) is a reward that the decision agent receives for a 

specific state transition. For example, if an action drives the defect likelihood 

from high to low, it will be rewarded. Otherwise, this action will be penalized. 

The utility V* (s) represents the sum of rewards received when starting in the 

state s and acting optimally, and Q*(s, a) is the utility when taking the action a 
from the state s and, thereafter, acting optimally.

Furthermore, we performed preliminary studies to develop a novel “sensing-modeling-

optimization” framework that is tailored for AM processes. First, we leveraged the advanced 

sensing capabilities readily available in Penn State CIMP-3D to collect large amounts of 
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layerwise image data. Second, we developed new sensor-based models to estimate the risk 

probability for a layer to contain defects and then predict the evolving dynamics of defect 

conditions from one layer to the next. Third, new MDP models are developed to model state-

action transition dynamics among layers as a stochastic Markov process and further derive 

the optimal control policy [114], [115]. The new “sensing–modeling–optimization” 

framework enables the implementation of in-process corrective actions to repair and 

counteract incipient defects in each layer of AM builds prior to the completion. The 

propagation of defects will be detected by sensor-based modeling and analysis of in situ data 

and will be mitigated long before they reach the nonrecoverable stage.

B. Constrained Optimization of AM Processes

MDP helps optimize the policy to choose layerwise actions by maximizing expected rewards 

(or minimizing the expected cumulative cost incurred by the AM defects) for a sequential 

decision-making problem in the real-world AM environment. Traditional MDP frameworks 

commonly focus on a single objective (e.g., minimizing the defects in each layer of AM 

build) [114] and are less concerned about multiple simultaneous objectives that may be 

added to the AM processes (i.e., minimizing total cost—wasted materials, consumed energy, 

or lead time, as well as improving the quality). As a vertical step to advance smart and 

sustainable AM, there is an urgent need to investigate the multiobjective optimization of 

sequential decision-making problems for 6S quality management of AM.

If there are multiple objectives, for example, minimizing total cost (e.g., lead time or 

consumed energy) in the AM process while improving the quality of layerwise builds, then 

sequential optimization becomes a challenging task because some objectives may be 

conflicting with others. For instance, if we increase the frequency to take corrective actions 

and make sure that each layer has a small likelihood to contain defects, then the lead time to 

complete the build will be longer, and more energy will be consumed. In other words, the 

number of defects will be minimized in each layer of the build, but the total cost will be 

high. On the other hand, if we do not take as many corrective actions as needed, the build 

can be completed in a shorter period of lead time, and less energy will be consumed. The 

total cost is low, but the likelihood to contain defects in the AM build will be higher. In the 

state of the art, few, if any, previous works have considered multiobjective optimization of 

the sequential decision-making strategy for AM processes. In particular, there is a need to 

balance multiple conflicting objectives for the quality management of AM builds.

To address these challenges, our prior work proposed a new constrained MDP (CMDP) 

framework to derive the optimal control policy in each layer of the AM processes that 

minimize the total cost (e.g., lead time or consumed energy) and makes sure that the quality 

standards are met for the AM builds [115]. The CMDP formulation is detailed as follows:

1. State Space: The state space is defined as S = (T, S), where T = {1,2,..., T} 

denotes the set of layer index, and S is the set of defect states, i.e., s1, s2, . . ., sl, 

which is structured in the increasing order of defect levels (i.e., s1 is the lowest 

defect level, and sl denotes the highest defect level).
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2. Action Space: In this study, the action space is simplified to include three 

actions, A = {aM, aL, aW}, where aM denotes the action of removing a layer with 

the cost of cM, aL is the action of laser repair and refusion with the cost of cL, 

and aW represents the action to do nothing with the cost of cW. With rapid 

advances of hybrid AM technology, it is anticipated that more actions will be 

available with different costs to be considered in future work.

3. Decision Policy: Let Qt(st, a) denote the decision rule at layer t, which is defined 

as the probability to choose an action a ∈ A given the presence of defect state st 

at the layer t.

4. State Transition: Let Pt
a st + 1 ∣ st  be the transition probability from state st of 

layer t to state st+1 of layer t + 1 under the action a ∈ A. Given the decision 

policy Qt(st, a), the state transition is then defined as

Mt(i, j) = ∑
a ∈ A

Qt st, a Pta st + 1 = sj ∣ st = si .

Let the vector xt = xt1, …, xtl
T  (1T xt = 1, where 1 is a vector of 1’s) represent the 

probability distribution of defect states st ∈ s1, …, sl  at layer t, which means that the 

probability of defect state st staying in the defect level si is xti. Then, xt evolves according to

xt + 1 = Mtxt .

The CMDP model will then be formulated as follows:

min
Q1, …, QT − 1

vT = Ex1 ∑
t = 1

T − 1
ct xt, Qt + cT

s.t. xt ≤ h, 1Txt = 1
xt + 1 = Mtxt, Qt1 = 1, Qt ≥ 0
for t = 1, 2, …, T − 1

where Qt is the decision matrix for layer t, νT  is the expected total cost in energy or time, 

ct xt, Qt = ∑aϵAcaQt st, a  is the immediate cost at layer t, and cT is the terminal cost at the 

final layer T. The first constraint makes sure that the quality standards are met by bounding 

the probability of each defect state with an upper limit h and 0 ≤ h ≤ 1. The second 

constraint guarantees each row of Qt to be a valid probability distribution. If we delete the 

quality constraint (i.e., xt ≤ h) in the CMDP model, then the rows of Qt will be independent 

and not correlated. As such, the CMDP model can be solved with dynamic programming 

and simple backward induction algorithms. However, due to the quality constraint on the 

density distribution xt of defect state st, the rows of Qt are correlated in the formulation 

through state-action transition dynamics xt+1 = Mtxt. As a result, it is difficult to solve the 

CMDP model here with traditional dynamic programming algorithms. Therefore, our prior 

work developed new dynamic programming algorithms to solve the CMDP model and 
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demonstrated the optimal control policy for the worst case scenario of the probability 

distribution of defect states [115].

In the proposed “sensing–modeling–optimization” framework, in situ sensor signals, which 

exemplify specific process defects, are integrated with AI, machine learning, and CMDP 

models to optimize the selection of corrective actions for smart and sustainable AM. In 

addition, the objectives can also be extended to include the minimization of delamination 

and warpage of the final workpiece and the maximization of reliability measures, such as 

build strength and fatigue resistance. As opposed to purely data-driven approaches, which 

cannot suggest process adjustments, this sensor-based modeling and optimization approach 

not only detects process anomalies but also guides the optimal corrective action, thereby 

enabling closed-loop control of AM to build quality and functional integrity.

VII. CONCLUSION AND DISCUSSION

AM provides an unprecedented opportunity to produce complex geometries that are often 

impossible with traditional subtractive (machining) and formative (casting, welding, and 

molding) manufacturing processes. Once the quality challenge is tackled, such a capability 

will result in the advent of newer and cheaper consumer products. Also, AM offers the 

possibility of taking a computer-generated design and directly putting the build into the 

hands of an end user. If the designs can be repeatably produced with a very low probability 

for defects, then new disruptive business models will become possible. A brick-and-mortar 

retail store will no longer need to carry an inventory of final products. A consumer could 

simply go to the store or the store’s online website, select a premium and validated product 

from a catalog, push a button, and wait for the product to be made using an AM process. 

This so-called “zero lead time” store could see extended applications with at-home AM 

machinery and systems. Digital designs could be downloaded from the internet and created 

in the comfort of one’s own home. Nonetheless, these concepts of “zero defects” or “zero 

lead time” depend to a great extent on the effective management of AM quality to recognize 

and anticipate defects and then take the appropriate corrective action to control process 

variability and ensure the final build’s conformance to standards.

However, effective management of AM quality cannot just rely on the purchase of new 

machines and the installation of sensing and automation systems but rather requires a set of 

quality-focused activities, ranging from quality planning, QA/QC, and continuous quality 

improvement. Quality planning identifies the needs of AM customers, for example, whether 

they are interested in zero-defect products, esthetic aspects, or geometric accuracies. Only 

by listening to the customers, the AM manufacturers can develop the right strategic plan to 

help save time and costs in the handling of product returns, warranty charges, and customer 

complaints. QA/QC focuses on the reduction of process variability and ensures that the 

quality levels of final builds meet with standards (or specifications) from the customers. An 

important QA/QC function is to develop the ontological knowledge graph, document 

fundamental elements of the AM process (e.g., suppliers, materials, machines, processes, 

outputs, and customers in the AM ontology), analyze their relevance to the product quality, 

and identify the responsibilities (and accountability) of each element or business unit. 

Quality improvement goes beyond QA/QC activities to engage in the continuous 
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improvement of quality toward gaining competitive advantages in the global market. As 

mentioned in Section V, ontology analytics, DOE, and simulation analyses are major 

methods and tools that can be used to help AM manufacturers further improve quality on a 

continual basis.

Furthermore, quality management is not just the job of the quality-inspection unit in an AM 

enterprise, but rather depends on all units during the AM process. For example, the design 

should consider the capability of AM machines and then be optimized for quality. The 

selection of suppliers should not only be based on the cost only but also focus on the quality, 

timely delivery of raw materials, and so on. Indeed, quality management should include 

engineering, operational, and managerial activities to ensure that the AM builds are 

conforming to standards and then continuously engage in quality improvement. On the other 

hand, quality should not become anybody’s job once everybody is involved. QA/QC is 

needed to develop the documentation and policy to explicitly provide the quality-related 

responsibility and accountability of each person or business unit during the AM process, 

from procurement engineers to machine operators to higher levels of management, and so 

on. The philosophy of quality management is to emphasize quality, raise awareness, engage 

each person in the AM process, and then communicate quality problems effectively, so as to 

optimize resource allocation and tackle such problems efficiently.

Lest quality-related challenges with AM are addressed, it is unlikely that traditional 

manufacturers will forego well-established conventional methods. In light of the strategic 

and economic prize at stake, there is a burgeoning need to address the quality challenges in 

AM, reduce process variability, and improve AM process repeatability. This article aims to 

advance the scientific basis of AM quality management. The DMAIC approach for AM 

quality improvement has the potential to substantially improve the production-scale viability 

of AM and enable wider exploitation of AM capabilities beyond the current rapid 

prototyping status quo. Achieving quality excellence in AM may have consequential 

socioeconomic impacts and outcomes, in terms of profitability (quick scaling of process 

conditions to changing requirements), sustainability (economy of resources and energy by 

the reduction in waste, scrap, and rework), and efficiency (minimize efforts required toward 

obtaining the best quality product). This will spur the growth of advanced manufacturing in 

the nation and the world, thus leading to broader social and economic impacts. It is hoped 

that this article will help catalyze more in-depth investigations and multidisciplinary 

research efforts to advance the new practice of 6S quality management for AM.
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Fig. 1. 
Seven stainless steel parts built on a commercial AM system in a case study at the University 

of Nebraska–Lincoln. The parts only differ in their orientation, with all other process 

conditions identical.
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Fig. 2. 
DMAIC methodology for 6S quality management.
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Fig. 3. 
High-volume–low-mix production scheme in mass manufacturing.
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Fig. 4. 
Area under the normal curve and the proportion of defectives produced.
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Fig. 5. 
Low-volume–high-mix production scheme for a customized design with layer-to-layer 

variations in part geometry in 3-D printing.
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Fig. 6. 
Broad representation of AM qualification flow about the material, process, and product.
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Fig. 7. 
Illustration of multisensor suite for monitoring a Commercial ProX 320 PBFAM system.

YANG et al. Page 47

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2021 July 09.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



Fig. 8. 
Radiographic-based CT for postbuild inspection.
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Fig. 9. 
Multitier data management system for AM.
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Fig. 10. 
Illustration of design parameters (i.e., orientation, width, height, and hatching pattern) for 

the thin-wall structure.
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Fig. 11. 
Illustration of multifractal patterns in the image profiles of an AM build.
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Fig. 12. 
Multiscale analysis of fractal and lacunarity patterns in the layerwise AM images with 

Voronoi tessellation from 100, 1000 to 10000 cells and Delaunay triangulation from 100, 

1000 to 10000 cells for multiresolution quality inspection of the layerwise AM build.
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Fig. 13. 
(a) Four layers of intentional defects. (b) Different shapes and sizes of defects.
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Fig. 14. 
Schematic illustration of deep learning of incipient defects from in situ image profiles.
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Fig. 15. 
Challenges navigating research, sensing, and data management for metal AM.
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Fig. 16. 
Sample of AM ontology showing detail for absorbed laser power class definition.

YANG et al. Page 56

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2021 July 09.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



Fig. 17. 
Examples of using knowledge graphs from AM ontology to identify relationships between 

measurable process parameters and potential requirements for metal AM part. (a) Example 

of using a knowledge graph to navigate from a measurable process parameter (meltpool 

area) to mechanical properties of interest (tensile strength, yield strength, and so on). (b) 

Example of navigating knowledge graph backward to trace a requirement (Vickers hardness) 

to two measurable process parameters (scanning speed and absorbed laser power).
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Fig. 18. 
Complex part design-process parameters—property linkages in AM.
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Fig. 19. 
Large number of process variables in the LPBF AM process makes process optimization 

using DOE expensive and untenable.
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Fig. 20. 
XCT of the four disks, and their relative placement on the build platen.
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Fig. 21. 
Two DED parts (15 mm × 15 mm × 10 mm) show that (left) systemic flaws due to poor 

selection of processing conditions and (right) random (stochastic) flaws tend to occur even 

under flaw-free conditions [91].
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Fig. 22. 
Thermal phenomena in metal AM processes range across multiple scales, starting from the 

meltpool level to the part level [100].
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Fig. 23. 
A graph theory approach for simulating the LPBF process: Step 1 convert he geometry to a 

set of discrete nodes; Step 2 network construction; Step 3 simulation modeling of laser 

sintering and heat transfer; and Step 4: analysis of temperature distribution [100], [108].
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Fig. 24. 
Comparison of the graph theory approach with an FE-implementation of Goldak’s model 

and the commercial Netfabb software for three different part geometries [100], [108]. The 

images are the temperature distribution in the last layer of the part (the part is 20-mm long × 

2-mm wide × 20-mm tall). The temperature distribution is shown in normalized units.
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Fig. 25. 
(a) Illustration of state-action transition diagram. Note that sh, sm, and sl denote the high-, 

median-, and low-defect states of an AM layer. (b) MDP for smart AM.
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