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ABSTRACT Pattern recognition receptors (PRRs) form the front line of defense against
pathogens. Many of the molecular mechanisms that facilitate PRR signaling have been
characterized in detail, which is critical for the development of accurate PRR pathway
models at the molecular interaction level. These models could support the develop-
ment of therapeutics for numerous diseases, including sepsis and COVID-19. This review
describes the molecular mechanisms of the principal signaling interactions of the Toll-
like receptor, STING, MAVS, and inflammasome pathways. A detailed molecular mecha-
nism network is included as Data Set S1 in the supplemental material.
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Pattern recognition receptor (PRR) pathways are highly diverse and include the Toll-
like receptors (TLRs), C-type lectin receptors, NOD-like receptors, RIG-I-like recep-

tors, and AIM2-like receptors (1, 2). PRR pathway mechanisms range from simple bimo-
lecular association reactions to intricate reorganizations of supramolecular organizing
centers (SMOCs). Clinically, PRR pathways can be activated by a single ligand (e.g., by
an adjuvant), by a single pathogen (e.g., SARS-CoV-2), or by a highly diverse population
of microbes (e.g., septic shock caused by acute appendicitis and opportunistic infec-
tions in immunocompromised individuals). PRR pathways can also be chronically acti-
vated in the absence of microbes (e.g., inflammaging) (3–5). Accurate modeling of PRR
pathways is necessary to support the development of prophylactics, diagnostics, and
therapeutics to fight numerous diseases related to the innate immune system.

PRR ligands include pathogen-associated molecular patterns (PAMPs) and damage-
associated molecular patterns (DAMPs). Human PRRs have been reported to form 89
distinct ligand-PRR interactions (PRRDB v2; downloaded 2 June 2021; interaction in $2
entries; only ligands of natural origin; https://webs.iiitd.edu.in/raghava/prrdb2/) (6). Of
these, 67 involved TLRs. Signaling downstream of PRRs is notable for its utilization of
numerous SMOCs (described below). PRR pathways often terminate at the level of tran-
scriptional reprogramming, cytokine release, and programmed cell death (2).

Numerous investigators have published detailed molecular interaction networks of
the mammalian TLR pathways (7–15). In addition, many online pathway databases (e.g.,
the Kyoto Encyclopedia of Genes and Genomes) describe molecular interactions within
pathways of the innate immune system. This review provides significantly more detail by
describing the molecular reactions corresponding to each interaction. For example, a sim-
ple protein-protein interaction might involve only two molecular reactions: one associa-
tion and one dissociation. In contrast, formation of the myddosome involves numerous
copies of the core proteins (six MyD88, four IRAK4, and four IRAK1/2) and multiple instan-
ces of phosphorylation between the complexed IRAKs (described below).

We present a detailed review of the TLR pathway (Fig. 1), as well as the STING,
MAVS, inflammasome, and interferon pathways, in a systematic way that will facilitate
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modeling. In part, we selected these pathways because they are among those that
have known roles in the pathogenesis of bacterial and viral sepsis (2, 16–19). In addi-
tion, these pathways have been well characterized mechanistically (described below).

A tabulated molecular mechanism network is included as Data Set S1 in the supple-
mental material. Each molecular mechanism was manually curated (peer-reviewed
articles were cited), and each mechanism was described in detail (e.g., protein complex
requirements and phosphorylation states). The network includes both the human and
mouse molecular mechanisms. Data Set S1 can be imported into a wide variety of net-
work tools such as Cytoscape (https://cytoscape.org/) (20). With additional data (e.g.,
molecular reaction rates such as kon, koff, and kcat), all or part of Data Set S1 could be
used to construct an SBML model (21) and/or used to perform pathway simulations
using, for example, Simmune (22). Illustrations of the whole network (Fig. 2), a TLR4
network (Fig. S1), and a cytosolic PRR network (Fig. S2) were prepared. In addition, a
summary of the network (Table 1) and a breakdown of the network by module
(Table 2) are below.

FIG 1 The core TLR4 pathway. The key interactions of both the extracellular (MyD88-dependent) and endosomal
(MyD88-independent) components of the TLR4 pathway are illustrated. Note that it is unclear if TRAF3 K63-
polyubiquitin chains undergo M1 polyubiquitin branching, but if so, NEMO probably binds to them.
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The network includes transcription factor-target gene relationships for cytokines and
PRR pathway proteins. These could support the modeling of transcription and translation
and enable longer (in silico time) pathway simulations. These transcription factor-target
gene relationships were constructed using data from two online databases. CytReg
(downloaded 2 June 2021; http://cytreg.bu.edu) (23) was used to model transcription
factor-mediated expression of cytokines. RegNetwork (downloaded 2 June 2021; http://
www.regnetworkweb.org) (24) was used to model transcription factor-mediated expres-
sion of PRR pathway proteins (except for cytokines). Proteins were not included if they
were outside the PRR pathways (e.g., metabolic enzyme expression affected by the mito-
gen-activated protein kinase [MAPK]-activated transcription factors).

TLR PATHWAY

TLRs are a class of dimeric PRRs which sense a variety of extracellular and endoso-
mal PAMPs and DAMPs and initiate signal transduction resulting in transcriptional

FIG 2 The PRR pathway network. The PRR network (see Data Set S1) is depicted. The network includes both the human and the mouse interactions. Two
subnetworks of this network (the TLR4 pathway and the cytosolic PRR pathways) are shown in Fig. S1 and S2.

TABLE 1 Summary of the molecular mechanism network

Attribute Count
Modules 18

Molecules 398
Proteoforms 312
Ligands (and related) 39
Systems (e.g., proteosome) 47

Interactions 2,687
Reactions 3,855
References 253
Citations 5,785

Minireview

May/June 2021 Volume 6 Issue 3 e00336-21 msystems.asm.org 3

http://cytreg.bu.edu
http://www.regnetworkweb.org
http://www.regnetworkweb.org
https://msystems.asm.org


reprogramming or programmed cell death (25–28). The vertebrate TLR family of genes
contains at least 27 members, of which 13 are found in the mammalian TLR family (29).
Humans express TLR1 to TLR10, whereas mice express TLR1 to TLR9 and TLR11 to
TLR13 (29). One or more PAMPs have been discovered for all 13 mammalian TLRs, and
DAMPs have been discovered for almost all 13 (29–34).

Human TLRs have been reported to bind 46 distinct ligands of natural origin
(PRRDB v2; downloaded 2 June 2021; interaction in $2 entries; https://webs.iiitd.edu
.in/raghava/prrdb2/) (6). Many TLR-ligand structures have been solved (35–38). Some
TLR dimers bind to only a single ligand copy. For example, the TLR1-TLR2 heterodimer
binds to only a single copy of triacyl-lipopeptide (35).

TLR activation initiates a signal transduction which includes the MAPK phosphoryla-
tion cascade and the NF-kB pathway (25–28). This results in broad reprogramming of
gene expression, resulting in physiological alterations related to metabolism, cell sur-
vival, cell stress, and cytokine signaling (25–28). Numerous pathogens express viru-
lence factors that antagonize signaling proteins of the TLR pathway (39).

TLR4 activation. Lipopolysaccharide (LPS) is a highly diverse class of molecules con-
sisting of a lipid moiety, a core oligosaccharide moiety, and an O-antigen moiety (40–42).
The chemical structure of an LPS molecule determines its function. For example,
Escherichia coli LPS is proinflammatory whereas Yersinia pestis LPS is anti-inflammatory af-
ter temperature-specific remodeling at 37°C (41). Though energetically unfavorable, LPS
sheds from bacterial outer membranes, binds LPS-binding protein (LBP), and then associ-
ates with CD14 (LBP of the LPS-LBP binds CD14, and then this complex reorganizes until
LPS-CD14 releases LBP) (42–44). CD14-bound LPS translocates to MD2, and LPS-MD2 binds
a TLR4 monomer (43, 44). Two copies of LPS-MD2-TLR4 can associate at their ectodomains
and subsequently associate at their Toll/interleukin-1 (IL-1) receptor (TIR) domains (43–45).
A ligand-bound TLR4 cannot associate with an unbound copy at their ectodomains (45).

Myddosome formation. The TIR domain of every mammalian TLR dimer except
TLR3 can activate MyD88 and stimulate the formation of a myddosome (30). TLR1,
TLR2, TLR4, TLR6, and TLR9 first bind to TIR domain-containing adapter protein (MAL),
and then the MAL TIR domain binds to and activates MyD88 (30, 46, 47). The MAL TIR
domain can oligomerize, and it is unclear if these oligomers can cause TLR clustering
(46–48). The MyD88 TIR domain can oligomerize beyond six subunits in vitro, but in a
functional myddosome it may be limited to six copies (25, 46, 47, 49, 50). Each MyD88
TIR domain is tethered to its death domain (DD), and the MyD88 hexamer DDs bind
four copies of the interleukin-1 receptor-associated kinase 4 (IRAK4) via its DDs (25, 46,
47, 49). Likewise, these four IRAK4 DDs each bind to either an IRAK1 DD or an IRAK2

TABLE 2 Summary of the interactions within each module

Module Interactions
PAMP cell entry 51
TLR 70
Myddosome 56
K63-polyUb 109
IKK 79
NF-kB 269
MAPK 159
IRF 34
RIPK 49
STING 18
PKR 8
MAVS 36
Autophagy 52
Deubiquitinase 103
Inflammasome 53
Gene expression 1,340
Secretion 109
IFN 92
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DD (25, 46, 47, 49). The core myddosome is therefore composed of 6:4:4 copies of
MyD88:IRAK4:[IRAK1 or IRAK2].

The IRAK4 kinase domains (KDs) catalyze intracomplex phosphorylation of each
other (51). The phospho-IRAK4 KD binds to and phosphorylates an IRAK1 DD or an
IRAK2 DD (49, 51). Eventually, the IRAK1/2 copies each become multiply phosphoryl-
ated, which destabilizes the myddosome (25, 49, 52). The IRAK1/2 copies are released
(possibly still bound to IRAK4 and Myd88) (25, 52).

K63-M1 polyUb signaling. Active IRAK1/2 tetramers bind and activate the TRAF-C
domain of tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) monomers
(53, 54). TRAF6 subsequently forms a homotrimer at the TRAF-C and coiled-coil (CC)
domains (53, 54). TRAF6 trimers subsequently dimerize at their RING domain, forming
an active homohexamer which can homo-oligomerize (53, 54). Activated TRAF6 is an
E3 ubiquitin ligase which catalyzes K63-linked polyubiquitin (polyUb) onto numerous
substrates including IRAK1, IRAK2, TRAF6, and NEMO (53–55). Subsequently, the
LUBAC complex (composed of HOIP, HOIL1, and Sharpin) catalyzes M1-linked polyubi-
quitination branches off the K63-linked chains (55, 56).

TAB2 and TAB3 are components of a heterotrimer consisting of TAB1, TAK1, and ei-
ther TAB2 or TAB3 (55). TAK1 kinase activity is activated by TAB2/3 binding to K63-
polyUb (55, 57). TAK1 autophosphorylates itself (54) and initiates MAPK signaling by
phosphorylating and activating MKK3, MKK4, MKK6, and MKK7 (58). These MKKs phos-
phorylate and activate p38a, p38b , p38g, p38d , JNK1, JNK2, and JNK3 (58). These
MAPKs activate numerous transcription factors, broadly reprogramming transcription
and affecting metabolism, growth, proliferation, programmed cell death, stress, immu-
nity, chemotaxis, and differentiation (58).

In addition, TAK1 phosphorylates nearby substrates that are also bound to K63-M1
polyubiquitin. NEMO (at its ubiquitin binding domain) binds to M1-polyUb (53–55, 57,
59), and this step is critical for TAK1 activation of IkB kinase alpha (IKKa) and IKKb (IkB
is short for inhibitor of NF-kB) and subsequent NF-kB pathway activation. IKKa, IKKb ,
and NEMO each form homodimers, and a NEMO homodimer (via its kinase binding do-
main) can bind to either an IKKa homodimer or an IKKb homodimer (via their NEMO
binding domains) (53, 54, 59). Additionally, the IKKa and IKKb homodimers can form
higher-order homomeric complexes, and possibly also heteromeric complexes with
each other. IKKa homodimers can trimerize (i.e., 6 copies total), and this complex can
dimerize (i.e., 12 copies total; higher-order IKKa structures were not reported) (60).
IKKb homodimers can dimerize (i.e., 4 copies total), trimerize (i.e., 6 copies total), and
form a variety of higher-order oligomers (61). It remains unclear exactly which IKKa-
IKKb-NEMO complexes form in vivo.

As mentioned above, NEMO binds to M1-polyUb. This brings IKKa/b into close
proximity with TAK1. TAK1 phosphorylates and activates IKKa and IKKb (55, 56).
Activation of IKKa/b is completed via intracomplex trans-autophosphorylation (55, 56).
In addition to activating the NF-kB pathway, IKKb also activates MAPK signaling via
TPL2 (see Data Set S1 in the supplemental material for details), resulting in broad tran-
scriptional reprogramming (58).

NF-kB pathway. NF-kB is a class of five dimeric transcription factors: NF-kB1, NF-
kB2, RelA, RelB, and c-Rel (54, 59, 62, 63). Unlike the three Rel forms, NF-kB1 and NF-
kB2 lack a carboxy-terminal transactivation domain, and therefore, they cannot
directly initiate transcription. Instead, the full-length forms of NF-kB1 and NF-kB2
(termed p105 and p100, respectively) each contain a carboxy-terminal ankyrin repeat
domain (ARD). p105 processing into p50 is constitutive, whereas p100 processing into
p52 is induced by its phosphorylation by IKKa (63). There are 28 NF-kB dimeric forms
(Data Set S1).

The IkB family consists of nine members: p105, p100, IkBa, IkBb , IkB« , IkBh , IkBz ,
IkBNS, and BCL3 (59, 63). The IkB family members are all characterized by their ARD.
The NF-kB family (including both forms of NF-kB1 and NF-kB2) all contain an amino-
terminal Rel homology region (RHR) (54, 59, 62, 63). The IkB ARD regions can bind to
NF-kB dimers (at the NF-kB RHR sequences) (54, 63). This results in exactly 200
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potential trimeric complexes (Data Set S1; not every combination is necessarily chemi-
cally possible). The cytosolic IkB forms (p105, p100, IkBa, IkBb , and IkB« ) inhibit NF-
kB by preventing its localization to the nucleus, whereas the nuclear IkB forms (IkBh ,
IkBz , IkBNS, and BCL3) can function by activating or inhibiting transcription (54, 62,
63). Phosphorylation of the classical IkB forms (IkBa, IkBb , and IkB« ) by either IKKa or
IKKb results in dissociation of the IkB from the NF-kB RHR (54, 62, 63). This enables nu-
clear import of the NF-kB and K48 polyubiquitination and degradation of the IkB.

MyD88-independent TLR signaling. TLR3 and TLR4 can signal independently of
MyD88, and both do so exclusively from the endosome (25, 27). Activated TLR3 binds
to and activates TIR domain-containing adapter molecule 1 (TRIF) directly (27, 64). In
contrast, activated endosomal TLR4 binds to and activates TIR domain-containing
adapter molecule 2 (TRAM) (27, 32, 65, 66). Subsequently, TRAM probably homodimer-
izes and/or homo-oligomerizes and then binds to and activates TRIF (32, 65–67). TRIF
probably homodimerizes and/or homo-oligomerizes and binds to and activates TRAF3
and TRAF6 (27, 32, 65–67). Like TRAF6 (described above), activated TRAF3 forms a
trimer, and then the trimers dimerize (i.e., six copies total), which enables its K63 E3
ubiquitin ligase activity (54). It is unclear if TRAF3 and/or TRAF6 can form heteromers
with each other or with other TRAFs (68).

In addition to its K63-polyubiquitination signaling function, TRIF-bound TRAF3 also
has a key role in signaling via IKK« and TBK1 (27). TRAF3 binds to dimeric TRAF family
member-associated NF-kB activator (TANK), and then TANK binds to dimeric IKK« , di-
meric NEMO, and dimeric TBK1 (66). TRAF3 probably K63-polyubiquitinates IKK« and
TBK1, and then IKK« or TBK1 phosphorylates TRIF at its pLxIS motif (32, 69–72). The
transcription factors IRF3 and (likely) IRF7 then bind to this motif and are phosphoryl-
ated and activated by IKK« or TBK1 (69, 73, 74). IRF5 is activated via a different mecha-
nism; it is phosphorylated and activated by IKKb (75). The three IRFs dimerize, translo-
cate to the nucleus, and activate transcription of immune response genes (69, 74).

As described above, a key outcome of TLR activation is the reprogramming of gene
expression (another TLR-mediated effect is programmed cell death, described below).
Notably, TLR activation upregulates the production and secretion of cytokines (26, 64).
For example, NF-kB upregulates the expression of interleukin-1 (IL-1), IL-2, IL-6, IL-8, IL-
12, and TNF, which upregulate proliferation, inflammation, and angiogenesis (76). TLR
activation also upregulates the production and secretion of interferons, which can act
in an autocrine or paracrine manner, resulting in the transcriptional reprogramming of
a wide range of genes with diverse effects (74, 77).

Programmed cell death. Successful human pathogens often express virulence fac-
tors to antagonize the host immune response (78). For example, Yersinia pestis can enter
host cells and secrete YopJ into the host cell cytosol which inhibits TAK1, IKKs, and MKKs,
thereby blocking the NF-kB and MAPK pathways (78, 79). To prevent the host cell from
becoming a means to immune evasion and/or pathogen proliferation, the TLR pathway
activates receptor-interacting serine/threonine-protein kinase 1 (RIPK1), which will cause
programmed cell death if it is not deactivated by the NF-kB and MAPK pathways.

Activated TRIF binds to RIPK1 as well as to TRAF6 (78). TRAF6 K63-polyubiquitinates
and activates cIAP1 and cIAP2, which dimerize (70, 80, 81). cIAP1/2 K63-polyubiquiti-
nates RIPK1 (78). Alternatively, activated TRIF binds to RIPK1, and RIPK1 homodimerizes
and trans-autophosphorylates itself (82, 83). RIPK1 might first oligomerize and then
trans-autophosphorylate itself (84–86). In a third option, RIPK1 can be phosphorylated
and inhibited by numerous kinases (IKKa, IKKb , IKK« , TAK1, TBK1, and MK2) under vari-
ous circumstances (see Data Set S1 for details). Absent this inhibition, each monomer
of the autophosphorylated RIPK1 homodimer binds to and activates a copy of fatty
acid synthase (FAS)-associated death domain protein (FADD) (83, 87). Each of the two
FADD copies binds to and activates a copy of caspase-8 (CASP8), and CASP8 trans-
autoproteolyzes and activates itself (78, 83, 88–90). Activated CASP8 proteolyzes and
activates gasdermin-D (GSDMD) and GSDME, which form pores, ultimately triggering
apoptosis (89). Activated CASP8 also proteolyzes and activates the proinflammatory
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cytokines IL-1b and IL-18, which exit the cell through the pores (89). RIPK1 can alterna-
tively trigger necroptosis via RIPK3 and MLKL (see Data Set S1 for details).

CYTOSOLIC PRR PATHWAYS
STING pathway. Cyclic GMP-AMP synthase (cGAS) is an enzyme that is activated by

binding to double-stranded DNA (dsDNA) originating from DNA viruses, retroviruses (via
reverse transcription), bacteria, damaged mitochondria, phagocytosed dead cells, and
host cell chromatin (e.g., via genomic instability and retrotransposons) (64, 91). Upon
DNA binding, cGAS homodimerizes and synthesizes cyclic-GMP(29-59)-AMP(39-59), which
binds to and activates STING (which is a homodimeric transmembrane protein located at
the endoplasmic reticulum [ER] or Golgi complex) (64, 91). STING can also be activated by
three bacterial cyclic dinucleotides: cyclic-di-AMP, cyclic-di-GMP, and 39,39-cyclic-GMP-
AMP (92). Activated STING binds to homodimeric TBK1, and this complex oligomerizes
(91). TBK1 trans-autophosphorylates and activates itself and then phosphorylates the
STING pLxIS motif (69, 91). IRF3 binds to this motif and is activated via a similar mecha-
nism as TRIF (described above) (69, 91).

MAVS pathway. Long (.1,000-bp) double-stranded viral RNA binds to multiple
copies of MDA5 (64, 93–95). Subsequently, TRIM25 and TRIM65 K63-polyubiquitinate
MDA5, possibly causing it to homo-oligomerize (64, 94–96). MAVS is a transmembrane
protein of the outer mitochondrial membrane, its CARD domain is cytosolic, and one
or both of the CARD domains of MDA5 bind to the CARD domain of monomeric MAVS
(64, 93–95). TRIM31 K63-polyubiquitinate MAVS, enabling it to oligomerize (96, 97).
MAVS binds to and activates TRAF2, TRAF3, TRAF5, and TRAF6, which activate the NF-
kB and MAPK pathways (described above and in Data Set S1 in the supplemental ma-
terial) (64, 93, 96). In addition, IKK« and TBK1 phosphorylate the MAVS pLxIS motif,
which ultimately results in the activation of IRF3 and IRF7 via a similar mechanism as
TRIF and STING (described above) (64, 69, 93).

Short (10- to 300-bp) double-stranded viral RNA (59 diphosphate or 59 triphosphate)
binds to single copies of RIG-I (64, 93, 95). RIPLET K63-polyubiquitinates the RIG-I C-ter-
minal domain (CTD), and RIG-I homodimerizes (64, 95). MEX3C, RIPLET, TRIM4, and
TRIM25 K63-polyubiquitinate the second RIG-I CARD domain (64, 93, 95, 96). RIG-I
forms homotetramers and homomers, and the RIG-I CARD domains bind to and acti-
vate MAVS in a similar manner as MDA5 (64, 93, 95).

Inflammasomes. Inflammasomes are cytosolic oligomeric sensors of numerous
PAMPs. Inflammasomes promote proinflammatory cytokine signaling, they cause pro-
grammed cell death, and their structure and function have been recently reviewed in
detail (46, 48, 98–108). Briefly, inflammasomes are composed of a receptor, an adapter,
and an effector. Inflammasome ligand-receptor interactions include double-stranded
DNA binding to AIM2, lipoteichoic acid binding to NLRP6, and lipopeptide binding to
NLRP7. Some ligand-receptor interactions require an intermediate protein. For exam-
ple, NLRP9b activation by double-stranded RNA requires DHX9, and NLRC4 activation
by bacterial proteins (flagellin, and the rod and needle from type III secretion systems)
requires NAIP. Finally, some ligands activate their receptor using a mechanism other
than receptor ligation (e.g., Bacillus anthracis lethal factor cleaves NLRP1B).

Upon ligand binding, the receptor homo-oligomerizes (46, 48, 98–108). For exam-
ple, NAIP-NLRC4 forms either a disk of ;12 monomers (48, 98, 105, 106) or a helix of
;12 monomers per turn (105). The receptor binds to the adapter protein ASC, which
then homo-oligomerizes into a linear chain which might form branches (106). Two
receptors (NLRC4 and NLRP1b) are capable of forming functional inflammasomes with
or without ASC. Oligomeric ASC binds to CASP1, which homo-oligomerizes into a linear
chain and is activated by trans-autoproteolysis. CASP1 processes and activates
GSDMD, which forms pores in the cell membrane. CASP1 also processes the proinflam-
matory cytokines IL1b and IL-18, which exit the cell via the GSDMD pores. In contrast
to the above canonical inflammasomes, the noncanonical inflammasome CASP4/5
directly binds to LPS, is activated by trans-autoproteolysis, and processes GSDMD. For
more details, see Data Set S1.
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DISCUSSION

The molecular mechanisms utilized by the TLR and cytosolic PRR pathways are
highly diverse. Very characteristic are the oligomeric SMOCs and the branching chains
of ubiquitin. It remains unclear what benefit, if any, is derived from the utilization of
such large and complex molecular structures in the struggle against pathogens and
their virulence factors. Modeling can be used to address these questions, but accurate
modeling of these pathways remains challenging.

Molecular interaction networks of the TLR pathway have been published previously
(7–14), and this review includes a molecular mechanism network of the TLR and cyto-
solic PRR pathways (see Data Set S1 in the supplemental material). Despite having sig-
nificant scope and detail, none of these networks are comprehensive, primarily
because so many significant pathway components remain obscure. For example,
although numerous alternative splice isoform sequences of TLR pathway proteins have
been sequenced, many of their functions remain unclear. This is unfortunate because it
is likely that many of these isoforms have important physiological roles. For example, it
is known that a truncated isoform of MyD88 is dominant negative and plays an impor-
tant role in preventing chronic inflammation (109). Other unresolved issues include
fully determining the structure-function relationship of branched polyubiquitin and
identifying the phosphatases that act on TLR pathway phosphoproteins.

Developing PRR pathway models at molecular interaction level for performing path-
way simulations will aid the development of therapeutics for diseases related to the
innate immune system (e.g., sepsis), but developing these models will require more
than just molecular mechanism networks. Critically, the molecular reaction rates (kon,
koff, and kcat) and reactant concentrations are required. Targeted proteomics has been
used to measure protein concentrations to support the development of numerous sig-
naling pathway models (110). However, measuring the corresponding reaction rates
remains challenging, but they can be predicted using bimolecular simulations (111,
112). These two sets of values can be used as input parameters for pathway modeling
and simulation (22, 113). Importantly, pathway models can be trained using, for exam-
ple, microscopy data, which is how we trained our model of the mouse macrophage
chemotaxis signaling pathway (114). Although the development of PRR pathway mod-
els remains a formidable challenge, they will be necessary for accurately predicting the
behavior of these pathways, especially for pathways stimulated by a diverse popula-
tion of microbes and PAMPs.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
FIG S1, PDF file, 1.1 MB.
FIG S2, PDF file, 0.6 MB.
DATA SET S1, XLSX file, 0.2 MB.
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