Skip to main content
. 2021 Jul 9;16(7):e0254108. doi: 10.1371/journal.pone.0254108

Table 3. Performance values (Mean ± Standard deviation) of generic pain estimation model for different sensor and model combinations across all subjects.

Sensor Model Performance
MAE RMSE
EDA Linear Regression 0.99 ± 0.15 1.18 ± 0.18
SVR 0.93 ± 0.19 1.15 ± 0.21
Neural Networks 0.95 ± 0.17 1.15 ± 0.19
Random Forest 0.96 ± 0.18 1.15 ± 0.20
KNN 0.98 ± 0.16 1.17 ± 0.18
XGBoost 0.95 ± 0.17 1.13 ± 0.19
ECG Linear Regression 1.16 ± 0.10 1.35 ± 0.12
SVR 1.15 ± 0.16 1.36 ± 0.18
Neural Networks 1.17 ± 0.11 1.37 ± 0.12
Random Forest 1.17 ± 0.12 1.36 ± 0.13
KNN 1.19 ± 0.09 1.39 ± 0.11
XGBoost 1.16 ± 0.10 1.34 ± 0.12
EMG Linear Regression 1.20 ± 0.05 1.39 ± 0.06
SVR 1.20 ± 0.00 1.41 ± 0.00
Neural Networks 1.22 ± 0.05 1.41 ± 0.06
Random Forest 1.21 ± 0.05 1.40 ± 0.06
KNN 1.23 ± 0.05 1.43 ± 0.06
XGBoost 1.20 ± 0.04 1.39 ± 0.05
Early fusion of EDA+ECG+ EMG Linear Regression 0.98 ± 0.17 1.17 ± 0.19
SVR 0.96 ± 0.19 1.16 ± 0.21
Neural Networks 1.01 ± 018 1.22 ± 0.19
Random Forest 0.95 ± 0.18 1.14 ± 0.19
KNN 1.02 ± 0.15 1.21 ± 0.17
XGBoost 0.94 ± 0.18 1.13 ± 0.20