Table 3. Performance values (Mean ± Standard deviation) of generic pain estimation model for different sensor and model combinations across all subjects.
Sensor | Model | Performance | |
---|---|---|---|
MAE | RMSE | ||
EDA | Linear Regression | 0.99 ± 0.15 | 1.18 ± 0.18 |
SVR | 0.93 ± 0.19 | 1.15 ± 0.21 | |
Neural Networks | 0.95 ± 0.17 | 1.15 ± 0.19 | |
Random Forest | 0.96 ± 0.18 | 1.15 ± 0.20 | |
KNN | 0.98 ± 0.16 | 1.17 ± 0.18 | |
XGBoost | 0.95 ± 0.17 | 1.13 ± 0.19 | |
ECG | Linear Regression | 1.16 ± 0.10 | 1.35 ± 0.12 |
SVR | 1.15 ± 0.16 | 1.36 ± 0.18 | |
Neural Networks | 1.17 ± 0.11 | 1.37 ± 0.12 | |
Random Forest | 1.17 ± 0.12 | 1.36 ± 0.13 | |
KNN | 1.19 ± 0.09 | 1.39 ± 0.11 | |
XGBoost | 1.16 ± 0.10 | 1.34 ± 0.12 | |
EMG | Linear Regression | 1.20 ± 0.05 | 1.39 ± 0.06 |
SVR | 1.20 ± 0.00 | 1.41 ± 0.00 | |
Neural Networks | 1.22 ± 0.05 | 1.41 ± 0.06 | |
Random Forest | 1.21 ± 0.05 | 1.40 ± 0.06 | |
KNN | 1.23 ± 0.05 | 1.43 ± 0.06 | |
XGBoost | 1.20 ± 0.04 | 1.39 ± 0.05 | |
Early fusion of EDA+ECG+ EMG | Linear Regression | 0.98 ± 0.17 | 1.17 ± 0.19 |
SVR | 0.96 ± 0.19 | 1.16 ± 0.21 | |
Neural Networks | 1.01 ± 018 | 1.22 ± 0.19 | |
Random Forest | 0.95 ± 0.18 | 1.14 ± 0.19 | |
KNN | 1.02 ± 0.15 | 1.21 ± 0.17 | |
XGBoost | 0.94 ± 0.18 | 1.13 ± 0.20 |