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ABSTRACT

Protein structure and dynamics can be probed using x-ray crystallography. Whereas the Bragg peaks are only sensitive to the average unit-
cell electron density, the signal between the Bragg peaks—diffuse scattering—is sensitive to spatial correlations in electron-density variations.
Although diffuse scattering contains valuable information about protein dynamics, the diffuse signal is more difficult to isolate from the
background compared to the Bragg signal, and the reproducibility of diffuse signal is not yet well understood. We present a systematic study
of the reproducibility of diffuse scattering from isocyanide hydratase in three different protein forms. Both replicate diffuse datasets and data-
sets obtained from different mutants were similar in pairwise comparisons (Pearson correlation coefficient >0.8). The data were processed in
a manner inspired by previously published methods using custom software with modular design, enabling us to perform an analysis of vari-
ous data processing choices to determine how to obtain the highest quality data as assessed using unbiased measures of symmetry and repro-
ducibility. The diffuse data were then used to characterize atomic mobility using a liquid-like motions (LLM) model. This characterization
was able to discriminate between distinct anisotropic atomic displacement parameter (ADP) models arising from different anisotropic scaling
choices that agreed comparably with the Bragg data. Our results emphasize the importance of data reproducibility as a model-free measure
of diffuse data quality, illustrate the ability of LLM analysis of diffuse scattering to select among alternative ADP models, and offer insights
into the design of successful diffuse scattering experiments.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/4.0000087

I INTRODUCTION same mean electron density." ~ In addition, recent studies suggest that

In x-ray crystallography, the sharp Bragg reflections are the main
source of information for structure determination; however, they only
contain information about the average electron density of the unit cell.
Diffuse scattering, on the other hand, contains information about the
spatial correlations of electron density variations, and thus can, in
principle, distinguish among different atomic motions that yield the
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diffuse scattering might be used to extend the resolution of density
maps beyond the resolution limit of the Bragg peaks,”” motivating fur-
ther rigorous investigation of this possibility.”

Early studies of protein diffuse scattering focused on interpreting
features in individual diffraction images.” ' Since the development of
modern diffuse data processing methods,'*'” protein diffuse scattering

8, 044701-1


https://doi.org/10.1063/4.0000087
https://doi.org/10.1063/4.0000087
https://doi.org/10.1063/4.0000087
https://doi.org/10.1063/4.0000087
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/4.0000087
http://crossmark.crossref.org/dialog/?doi=10.1063/4.0000087&domain=pdf&date_stamp=2021-07-08
https://orcid.org/0000-0002-9170-7196
https://orcid.org/0000-0001-6254-3519
https://orcid.org/0000-0003-1000-688X
https://orcid.org/0000-0003-1482-1662
https://orcid.org/0000-0001-6317-900X
mailto:mewall@lanl.gov
mailto:yoon82@stanford.edu
mailto:mwilson13@unl.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1063/4.0000087
https://scitation.org/journal/sdy

studies have mostly focused on working with three-dimensional (3D)
datasets. In addition to improvements in light sources and detectors,
notable developments in 3D data processing include finer sampling in
reciprocal space to model long-range correlations,'® rescuing useful
diffuse data from experiments designed for Bragg diffraction,"”
extracting finely sampled 3D datasets from serial femtosecond x-ray
crystallography (SEX) experiments with x-ray free-electron lasers
(XFELs)," increasing data quality via improved rejection of the solvent
contribution and multivariate analysis methods,”” and a major
advance in the scaling and merging of data from multiple crystals,”’
yielding a substantial improvement in data quality.

Given the variety of approaches to data processing, and the
emerging importance of diffuse scattering for modeling protein
dynamics, we sought to gain more insight into some fundamental
questions about protein diffuse scattering data: How reproducible are
single-crystal diffuse datasets? What is the influence of point muta-
tions on the diffuse signal? How do changes in the data translate into
differences in a model? What are the consequences of different data
processing choices for data quality? Can diffuse scattering data dis-
criminate between different models of atomic mobility that agree
equally well with the Bragg data?

Here, we address each of these questions in a study of diffuse scat-
tering from crystalline isocyanide hydratase (ICH). We selected the
ICH system because it diffracts x-rays to atomic resolution at ambient
temperature, has clearly visible diffuse features in ambient temperature
x-ray diffraction datasets, and displays large concerted motion of an
o-helix that is modulated by the chemical state of the active site nucleo-
phile.”” Upon formation of the catalytic thioimidate intermediate, this
helix becomes more mobile and permits water to enter the active site
and complete the reaction. Because the extent of this concerted, func-
tionally important o-helix motion can be controlled using various
experimental tools, ICH is a very promising system for exploring the
utility of diffuse scattering data for characterizing functional protein
dynamics.

Specifically, we address the above questions using multiple data-
sets collected from wild-type (WT) ICH and two mutants (G150A,
GI150T) that affect helix motion. Using a modular data processing
pipeline in Python that we developed, we assessed quantitatively the
reproducibility of the data and the influence of various data processing
choices on the final quality of the datasets. Because our processing
pipeline is modular in construction, individual steps can be easily
modified and their impact on data quality separately evaluated. In this
workflow, we assessed the data quality using unbiased measures of the
internal consistency (CCy,,)”’ and reproducibility (CCgep)> which we
compared with prior metrics such as CCp e and CCpyieqer Finally, we
analyzed the diffuse data using simple phenomenological models of
correlated protein motion: the liquid-like motion (LLM) model”"’
using three different treatments of atomic displacement parameters
(ADPs) (B-factors) and an independent rigid-body translational
motions (RBT) model."* This analysis yields insights into the impact
of the various data processing choices on the model parameters and
the agreement with the data.

Overall, the results of this study indicate that single-crystal diffuse
datasets can be measured reproducibly from WT and mutant ICH
crystals (CCrep > 0.81 below 1.4 A resolution). Differences in diffuse
scattering among different ICH mutants are small when assessed
directly using the data, yet are still detectable using the LLM analysis.
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Importantly, the LLM analysis showed that diffuse scattering can dis-
criminate between ADP models that fit the Bragg data equally well. In
addition, the LLM models of ICH yield higher correlations with the
data than the independent RBT models. Finally, a systematic investiga-
tion of the influence of data processing methods using our Python
workflow yielded a matrix of data quality measures, revealing insights
into best practices for data collection and processing. In particular, the
results emphasize the importance of background subtraction for
increasing data quality and highlight the benefits of adding a step to
remove some of the variation in the isotropic radial intensity
profiles.”’

Il. METHODS
A. ICH protein expression and crystallization

WT, G1504, and G150T Pseudomonas protegens Pt-5 (formerly
Pseudomonas fluorescens) ICH proteins were expressed in BL21(DE3)
E. coli, purified by Ni*"-metal affinity chromatography, and crystallized
by hanging drop vapor equilibration as previously described.”””* Briefly,
ICH crystals were grown at room temperature (~22 °C) by mixing 2 ul
of protein at 20 mg/ml with 2 ul of reservoir [22%-24% polyethylene
glycol (PEG) 3350, 100mM Tris-HCl, pH 8.6, 200 mM magnesium
chloride, and 2 mM dithiothreitol (DTT)] and typically took one week
to reach maximum size. Microseeding of drops equilibrated for 6-12h
improved crystal size and morphology. As previously noted,” G150T
crystals form in a different space group (C2/I12) than WT and G150A
crystals (P2;) even when seeded with WT crystals. The largest crystals
were ~700 x 700 x 150 um® although typically G150A and G150T
ICH crystals grew with a more compact prismatic habit than WT ICH.

B. Diffuse and Bragg x-ray data collection

To study the reproducibility of diffuse scattering in independent
samples, data were collected from three crystals of each form of ICH.
For simplicity, these datasets are denoted as WT-1, WT-2, WT-3,
G150A-1, G150A-2, G150A-3, G150T-1, G150T-2, and G150T-3,
indicating the WT, G150A, and G150T mutant ICH proteins. Crystals
were mounted in 10 um thick glass number 50 borosilicate capillaries
(Hampton Research) ranging from 0.7 to 1.0 mm diameter and sealed
with wax. Excess solution near the crystal was wicked away while
retaining a small volume of reservoir solution in the end of the capil-
lary to maintain vapor equilibrium. For WT ICH, the plate-like crys-
tals were mounted “edge-on,” such that their shortest axis was roughly
parallel to the capillary axis. In this geometry, the x-ray beam illumi-
nates approximately equivalent volumes of the crystal during rotation
about the spindle axis, which was parallel with the capillary axis.
G150A and G150T ICH crystals had more prismatic habits than WT
ICH and did not require special orientation for data collection.

Diffraction data were collected at 274K on BL12-2 at the
Stanford Synchrotron Radiation Lightsource (SSRL) using 16 keV inci-
dent x-rays and shutterless data collection with 0.5° rotation/image,
0.3 s/exposure, and 98% attenuation. The data were recorded on a
PILATUS 6M pixel array detector (PAD) with roughly 0.95 A resolu-
tion at the edge of the detector for each dataset. Absorbed doses were
approximately 2-4 x 10* Gy per crystal as calculated using https://
bl831.als.Ibl.gov/xtallife.html.”” Doses were kept low to minimize x-
ray-induced oxidation of the catalytic Cys101 nucleophile to sulfenic
acid, which has been previously reported.””***® To allow subtraction
of the capillary background scattering from the diffraction images,
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non-crystal background diffraction patterns were collected using iden-
tical parameters to those used for crystal data collection but by increas-
ing the exposure time and slightly shifting the x-ray beam to the
region of the capillary away from the crystal, as shown in Fig. 1. The
exposure time was 1s per image for the non-crystal background pat-
terns in order to accumulate more scattered photons and reduce error
in the background measurements. The background images were later
scaled by the ratio of the exposure times prior to subtraction from the
crystal diffraction data.

C. Analysis of Bragg data

The Bragg data from each crystal were indexed and scaled using
XDS,”” Pointless,”” and Aimless™ with statistics reported in Table SI.
For G150T, the data were (equivalently) reindexed from C2 to 12,
yielding unit cells more comparable to those of WT and G150A ICH
datasets in space group P2,. Structures of WT, G150A, and G150T
ICH were refined against these data in PHENIX (v1.17.1-3660)™"
using riding hydrogen atoms and restrained anisotropic ADPs with
weight optimization for coordinate and ADP refinements. Riding
hydrogen atoms have their positions calculated from the geometry of
the bonded heavier atoms upon which they “ride” and thus contribute
to both the calculation of model structure factors and non-bonded
contacts without adding additional refinement parameters. As noted
previously,”* Tle152 is a Ramachandran outlier in all structures
except G150T and is well-supported by the electron density maps in
all cases. We also refined protein structures using the Refmac5 package
(v5.8.0266)"" in the CCP4 suite of programs’” in order to compare the
behavior of Refmac5- and PHENIX-refined models against the same
datasets. The Refmac5 refinements used riding hydrogen atoms and
restrained anisotropic ADPs with a matrix weight term of 0.2-0.4.
This range for the matrix weight term produced bond length root
mean square differences (RMSD) in Refmac5-refined models that
were comparable to those of the PHENIX-refined models. These
refinement protocols produced models with similar Reee/Ryori for the
Bragg data (see Tables S2 and S3 for refined model statistics and
Protein Data Bank (PDB) codes). Despite similar Reee/Ryorc values,
the anisotropic ADPs of the PHENIX-refined models have anisotropy
ratios (the ratio of smallest to largest eigenvalues to the ADP variance-
covariance matrix) that were lower (more anisotropic) than the

Crystal
Capillary

X-ray beam

Refmac5-refined models (Fig. S1), while the ADP magnitudes in both
models are highly similar (Fig. S2). This difference in anisotropies was
observed for all models, but was most pronounced in the WT datasets.
Moving from isotropic to anisotropic ADPs decreased the R value
by ~3%-4% in all datasets in both Refmac5 (Table S2) and PHENIX
(Table S3), confirming that anisotropic ADPs yield higher agreement
with the Bragg diffraction data than isotropic displacements and justi-
fying the use of the additional parameters.

The differences in the anisotropic ADPs of models refined in
Refmac5 and PHENIX against the same dataset were surprising
initially; however, we were able to demonstrate that they are
explained by differences in the overall anisotropic scaling matrices.
To demonstrate this, we obtained refined anisotropic scaling
parameters from the headers of both the Refmac5 and PHENIX
models after zero cycles of refinement against the same data in
PDB-REDO.” Using PDB-REDO in this way invokes the Refmac5
refinement engine to recover the anisotropic scale parameters and
guarantees that all models are handled in an identical fashion. The
resulting anisotropic scaling matrices for Refmac5 and PHENIX
models are often different (see Table S4).

To determine whether differing anisotropic scale matrices are
responsible for the different anisotropic ADP models obtained using
Refmac5 and PHENIX refinement, we calculated difference aniso-
tropic scaling matrices and used them to rescale the model ADPs (sup-
plementary material Sec. III).”* These difference matrices were added
to the ANISOU records for each atom in the model after being made
traceless by subtracting trace/3 from each diagonal element to ensure
that Beq would not be altered (Table $4). Using the difference matrices,
we found that we were able to convert a PHENIX-refined anisotropic
ADP model into one that resembles its Refmac5-refined counterpart
and vice versa (Figs. $3-S5; supplementary material Sec. IIT).™
Importantly, this rescaling of the models scarcely influenced the agree-
ment with the Bragg data but could substantially influence the agree-
ment of LLM models with the diffuse data (see below).

D. Construction of 3D diffuse scattering maps

Our 3D diffuse map construction pipeline includes six image
pre-processing steps followed by 3D merging and two volume process-
ing steps (Fig. 2). The pre-processing steps were designed to convert

FIG. 1. lllustration of distinction between crystal exposure and background exposure. (Left) Experimental setup for diffuse data collection. (Right) The dark object in the center
is the WT-1 crystal and the blue cross marks the x-ray beam position for crystal diffraction measurements. The crystal is hydrated by a buffer solution inside the capillary. The
non-crystal background images were collected by translating the capillary so that the x-ray beam (red cross) only interacts with the capillary, buffer, and air bubbles. Crystal

and background diffraction pattern pairs were collected in each orientation.
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the raw intensities into useful diffuse signals and to reject non-diffuse
intensities such as Bragg peaks, bad pixels, random noise, and isotropic
and anisotropic background. In order of application, these steps were
as follows: (1) detector masking; (2) bad pixel removal; (3) non-crystal
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= FIG. 2. Data analysis pipeline from raw
diffraction patterns to a Laue-symmetrized
anisotropic diffuse map. Numbers (1)—(6)
correspond to the same image pre-
processing substeps as mentioned in
Sec. |l Following this pipeline, the (a)
crystal diffraction and (b) non-crystal back-
ground patterns are applied with the user-
defined detector mask and a deeper bad
pixel removal step based on pixel posi-
tions and intensities. The non-crystal
background patterns are then scaled with
the exposure time and subtracted from
crystal diffraction patterns, giving rise to
the (c) background subtracted patterns,
followed by multiple pixel intensity and
position corrections to produce the (d) cor-
rected diffraction patterns. Bragg peaks
are predicted in positions and then
replaced with median intensities to gener-
ate (e) patterns without Bragg peaks, fol-
lowed by image scaling and the radial
profile variance removal method which
end up with the final pre-processed dif-
fraction patterns (f). These patterns are
merged into a (g) 3D diffraction volume
using indexing results and orientations
from the goniometer. This 3D volume is
then applied with Laue symmetrization to
generate the (h) Laue-symmetrized dif-
fraction volume, followed by the isotropic
component subtraction step which produ-
ces the final (i) Laue-symmetrized aniso-
tropic  diffuse  map. For improved
visualization, panels (g)-(i) were created
using more finely sampled diffraction vol-
umes than were used in data quality eval-
uation and modeling.

background pattern subtraction; (4) pixel position and intensity cor-
rections; (5) Bragg peak cleaning; and (6) image scaling and radial pro-
file variance removal.” Starting with raw diffraction patterns, step (1)
was to mask out obvious bad pixels in the detector, including dead

8, 044701-4
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pixels, shadows, and grid lines between detector panels, pixels near the
beamstop, or with intensities that were either non-positive or greater
than 10 000 photons. Step (2) was to perform a deeper cleaning of bad
pixels by masking pixels with intensities that are beyond five standard
deviations from the mean value inside a 11 x 11 square window. Steps
(1) and (2) were also applied to non-crystal background patterns in
the same manner. In step (3), the filtered background patterns were
scaled by the exposure time and subtracted frame-by-frame from the
matching crystal diffraction patterns (see Sec. II). In step (4), pixel
positions were corrected by the parallax broadening effect in the
PILATUS 6M detector,” and raw pixel intensities were converted to
scattering intensities by applying polarization,'® solid-angle,"® and
detector absorption corrections.”'

In step (5), Bragg peaks were predicted in positions and fur-
ther cleaned although some peaks were already removed in step
(2) due to their strong intensities. Pixels were mapped into recip-
rocal space and converted into fractional Miller indices (h, k, )
using the XDS”” indexing result. Intensities were identified as
belonging to Bragg peaks if their indices (h, k, ) are all within 0.25
to the nearest integers. The intensity of each Bragg pixel was
replaced with the median value in a 11 x 11 square window cen-
tered on this pixel. The order of filtering, background subtraction,
and correction steps described above is flexible, but Bragg peaks
must be cleaned before image scaling and radial profile variance
removal in step (6). The diffraction pattern after the previous five
steps is considered as a combination of diffuse scattering, random
noise, and isotropic signals from multiple sources such as the crys-
tal, water, and air diffraction. Random noise can be averaged out
later in the 3D merging stage, so dealing with the isotropic signal
was the main focus in step (6). First, the diffraction pattern was
scaled using the radial intensity profile scale factor, which was cal-
culated by minimizing the L2 distance between radial intensity
profiles of the target diffraction pattern and a fixed reference dif-
fraction pattern (the first pattern of each dataset in our method).
Another radial profile variance removal step, first described in
Peck et al,”’ was applied by performing principal component
analysis (PCA) on the matrix of the scaled radial profiles and sub-
tracting the contribution from the subspace of the three largest
eigenvalues, as shown in Fig. S6.

Each diffraction pattern corresponds to the intersection of an
Ewald sphere surface with the 3D diffraction volume. Diffraction
patterns after six pre-processing steps were mapped into reciprocal
space using crystal orientations and experiment parameters,
including the x-ray wavelength, detector distance (z;), and pixel
size. The orientation information was calculated from XDS”
indexing results (including the A matrix) as well as the relative
rotation angles in the experiment. Each pixel located at (x, y, z,) on
the detector corresponds to fractional Miller indices (h, k, I) in
reciprocal space, which lies within a voxel in the 3D diffraction
volume. The voxel value was measured as the average intensity of
all pixels that were assigned to it. To avoid contamination arising
from Bragg peaks, we rejected every pixel located within a
0.5 % 0.5 x 0.5 box centered on the nearest reciprocal-space point
with integer Miller indices. This Bragg rejection step can be equiv-
alently applied in the image pre-processing stage by masking pixels
rather than replacing them with median intensities. In previous
work, three different methods were mentioned regarding removal
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of Bragg pixels, by either filtering out Bragg pixels,'® " replacing
intensities,”* or preserving Bragg peak intensities together with dif-
fuse scattering features.”’ In this work, we chose to filter out all
pixels in Bragg peak positions as we were interested in large-scale
diffuse features that vary on a length scale longer than the separa-
tion between Bragg peaks. The other two methods are useful for
obtaining more finely sampled datasets and analyzing sharper dif-
fuse scattering features.

The 3D diffraction volume obtained by merging all crystal dif-
fraction patterns (denoted as the raw unsymmetrized map) was sym-
metrized according to its Laue/Friedel point group into a Laue-/
Friedel-symmetrized map. For the ICH crystal, Friedel symmetrization
averages two voxels related by an inversion symmetry, and Laue sym-
metrization averages four voxels related by the Laue group (2/m for all
nine crystals). To remove the scattering from other sources such as
water, air, and uncorrelated protein motions, the symmetrized map
was further processed with an isotropic component subtraction step
by subtracting the radially averaged 3D volume to get the symmetrized
anisotropic diffuse scattering map (Fig. 2). The 3D anisotropic diffuse
scattering map is called the diffuse map in this work and is assumed to
contain anisotropic diffuse scattering features arising from correlated
motions in the crystal although further analysis and modeling are still
required to confirm this. The dspack package for the whole analysis
pipeline, including image pre-processing steps, 3D merging, and vol-
ume operations, is available online: https:/github.com/zhenwork/
dspack.

E. Evaluation of the quality of diffuse scattering maps

The diffuse map produced by our analysis pipeline contains both
anisotropic diffuse scattering from correlated protein motions and any
merging artifacts that have anisotropic features. Previous studies' ' **’
have used symmetry metrics such as CCp e and CCpyiegel (See Table I)
to assess the quality of 3D diffuse datasets, calculated using the
function,

S (xe - x) (v - )

CC(X,Y) = , (D
V3 (e xe) 'y 3o, (v - )’

where X¢ and Y represent two vectors sampled from # common
voxels of unsymmetrized (X) and Laue-/Friedel-symmetrized aniso-
tropic maps (Y), respectively, and X¢ and Y€ represent the mean val-
ues. The symmetrized maps were calculated by averaging related
Laue/Friedel voxels, as described in Sec. 11 D.

Here, we use two additional metrics for quality evaluation of dif-
fuse maps: the data symmetry (CCy,) and reproducibility (CCrep).
CC;yy, is an accepted metric for assessing the quality of Bragg diffrac-
tion data® and also has been used for diffuse scattering data.”' The
CC,/, metric was calculated using phenix.merging_statistics™’ with the
unsymmetrized anisotropic map as input. The CC,;, measures
whether the diffuse map follows the target symmetry, but it can be
misleading if the diffuse map contains substantial anisotropic back-
ground features that partly obey the symmetry. To address this prob-
lem, we introduce another metric, CCgep, which is the average
correlation coefficient (CC) between diffuse maps of the selected data-
set and other independent datasets measured from different crystals of
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TABLE I. The diffuse data quality statistics of each dataset. CCqqss Was not evaluated for G150T datasets due to the different space group.

Sample WT-1 WT-2 WT-3 G150A-1 G150A-2 G150A-3 G150T-1 G150T-2 G150T-3
Compl* 98.36 100.0 99.30 100.0 98.80 100.0 99.84 100.0 98.97
CClicdel 0.93 0.91 0.91 0.93 0.91 0.91 0.91 0.92 0.94
CClase 0.90 0.87 0.87 0.88 0.86 0.85 0.86 0.88 0.91
CCij 0.85 0.78 0.81 0.81 0.76 0.77 0.82 0.84 0.89
CCrep 0.86 0.84 0.85 0.82 0.81 0.82 0.88 0.87 0.89
CClross 0.83 0.84 0.85 0.84 0.84 0.85 e e .

*Compl represents the completeness (%) of the diffuse data.

the same protein (see Table S5). For example, in this work, the CCrep
for the first dataset of WT ICH (WT-1) is measured as the average CC
of CC(WT-1, WT-2) and CC(WT-1, WT-3), where WT-2 and WT-3
are two additional datasets measured from crystals of WT ICH.

F. Modeling diffuse scattering data with the LLM
model

We applied the LLM model using the refine_llm.py script in the
Lunus software package,'” starting with inputs of the experimental
Laue-symmetrized diffuse map and the corresponding PDB file
refined from Bragg data of the same dataset (Table S2). The LLM
model uses the following equation to describe the diffuse intensity

Id(q) :
La(q) o ngZe*JZqz [Io(9)*T(a)], (2)

where Iy(q) is the squared structure factor of the unperturbed crystal
and F,(q) is the Fourier transform of the function describing the
distance-dependence of the atomic displacement correlations. The
LLM model has two refinable parameters: the average atomic displace-
ment ¢, which estimates the average amplitude of atomic motions,
and the correlation length 7, which is the characteristic length scale of
correlated atomic displacements.”'' Before comparing I (q) to the
experimental data, I;(q) was Laue-symmetrized and the isotropic
component was removed to ensure that both maps were processed in
a similar way. The parameters ¢ and y of the LLM model were opti-
mized using the Powell minimization method in scipy.optimize’
using the CC between the model and the data as a target—the highest
value of the correlation is denoted as CCy .

In Eq. (2), Io(q) is computed after setting the individual B-factors
to zero. In addition to this model, here we consider models in which the
individual B-factors are preserved. Preserving the B factors yields the fol-
lowing equation for the LLM (supplementary material Sec. [V):™*

Iy(q) < |q* [I5(q)*T; (q)] (3)

where Ip(q) is the Bragg intensity computed using the individual
ADPs in the PDB file, and ¢ is the amplitude of the correlated atomic
displacements (assumed to be the same for all atoms). Equation (3) is
the same as Eq. (2), withzl(z)(q) replaced by Ip(q) and with the overall
Debye-Waller factor e~”9 replaced by unity. Note that, whereas in
Eq. (2), sufficiently high values of ¢ influence the resolution-
dependence of the diffuse intensity, in Eq. (3), ¢ only influences the
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overall scale of the intensity. Because in our study the diffuse data are
not placed on an absolute scale, and the CC target we use for optimiza-
tion is not sensitive to the absolute scale, we cannot determine the
value of ¢ using Eq. (3).

We used fits to Eq. (2) to assess whether the diffuse intensity is
more accurately described using LLM models with individual ADPs.
Equation (2) was used directly for the case of zero ADPs, and Iy(q)
was replaced by I5(q) for the case of isotropic and anisotropic ADPs.
In calculating Iy(q) and I5(q), multiple conformations were handled
by selecting only the A conformations and setting the occupancies to
unity. In the case of zero ADPs, we interpret the value of ¢ after fitting
the model as being indicative of the amplitude of motion of the atoms;
however, in the case of individual ADPs, ¢ is smaller, for reasons
described above, and the precise value is not as meaningful; in this
case, we only consider whether the value of ¢ refines to nearly zero,
making the overall Debye-Waller factor close to unity. In this limit,
Eq. (2) reduces to Eq. (3), indicating that the model is consistent with
the use of this equation. If ¢ does not refine to something close to zero
(as is the case for some models we consider here), it indicates a possi-
ble inconsistency with Eq. (3).

The isotropic ADPs were calculated as Beq values from the aniso-
tropic ADPs in the input PDB file that were previously refined against
the Bragg data. Anisotropic ADPs contain information about both the
direction and the amplitude of atomic motion, while the isotropic
ADPs contain only information about displacement amplitude. To
further examine the utility of using the LLM model for diffuse data
analysis, we also fit the diffuse data using a RBT model for compari-
son, as was performed in a previous study.’” The RBT model assumes
that the only correlated motions are rigid-body translations of asym-
metric units and does not include rigid-body rotations and/or correla-
tions between rigid units. The RBT contains a single fitting parameter
o that describes the average translational displacement of the asym-
metric unit. Lunus software'” was used to refine ¢ with respect to the
CC of the model with the data. The best-fit correlation of the RBT
model to the experimental data, denoted CCgpr, was compared with
CCrim to determine which physical model was in better agreement
with the processed diffuse maps.

G. Determining the importance of various steps
in the analysis pipeline
There are several reported methods™'>'”***"** for producing 3D

protein diffuse scattering datasets, and they differ with respect to
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image pre-processing, scaling, and radial profile normalization techni-
ques. In this work, we only focused on the most commonly used meth-
ods for processing single crystal synchrotron diffuse data'®'”*"** as
described in Sec. II and then studied the effects of non-crystal back-
ground subtraction, pixel position and intensity corrections, *"’
radial profile variance removal, and per-image scale factors on the
quality and reproducibility of the extracted diffuse scattering maps.
We evaluated the impact of each of these processing steps on data
quality by sequentially omitting each step in the standard pipeline as
well as testing the influence of different scale factors on final data qual-
ity. Different processing choices were evaluated using multiple diffuse
scattering quality metrics, including CC,/, and CCgep. A similar type
of analysis was used by Meisburger et al’' to assess different
approaches to merged diffuse data using a CC, statistic.

For the data processing choice analysis, we capitalized on the
modular design of our developed program to turn on, turn off, or tune
parameters in specific processing steps. For the present study, choices
were assessed by eliminating individual data processing steps and
determining the effect on the CCpyieder CCraues CCi/2 CCrep» and
CCppy values. In total, we studied seven data processing choices,

including (A) the standard pipeline as well as processing that omits
either (B) the non-crystal background image subtraction, (C) the
polarization correction,'® (D) the radial profile variance removal,”’ (E)
the solid-angle correction,'® (F) the detector absorption correction,”!
or (G) the parallax correction.”’ The values of CCryicget, CCrauer CCr/25
CCpep and CCyy resulting from these processing choices are sum-
marized in Tables IT and S6.

To study the effect of the choice of merging approach on data
quality, we computed diffraction image scale factors using four differ-
ent signal sources: (A) the profile of the image intensity vs the scatter-
ing vector length, (B) the average intensity in the isotropic ring, (C)
the average intensity in the diffraction image, and (D) the Bragg peaks.
For (A), the profile in each image was scaled to minimize the differ-
ence with respect to the profile in a reference image, using intensities
within the resolution range (up to 1.4 A). For (B), the scale factor was
computed as the ratio of the average pixel intensities within the water
ring region (5-1.82 A). For (C), the scale factor was computed as the
ratio of average pixel intensities within the resolution range. For (D),
the Bragg intensity scale factors reported by dials.scale””* were used.
They are denoted as the (A) radial profile, (B) water ring, (C) overall,

TABLE II. The CC statistics of each dataset are analyzed with different data processing choices. The diffuse map generated by each processing method was evaluated with
five CC metrics: CCrriegel, CClaves CC172, CCrep, @and CCy y (anisotropic ADP model). Method A (standard processing pipeline) contains real CC values of each dataset up to
1.4 A, while other methods (B)-(D) are filled with relative CC changes compared to those in method A. Cells in (B)—(D) are colored with four different colors depending on the
relative changes. A cell is colored as white if the relative CC change is =0.00 and as light blue/red if CC increases/decreases by less than 0.1; otherwise, it will be colored as
dark blue/red.

Sample WT-1 WT-2 WT-3 G150A-1 G150A-2 G150A-3 G150T-1 G150T-2 G150T-3

A. Standard data processing pipeline

CClicdel 0.93 0.91 0.91 0.93 0.91 0.91 0.91 0.92 0.94

CClaue 0.90 0.87 0.87 0.88 0.86 0.85 0.86 0.88 091

CCip2 0.85 0.78 0.81 0.81 0.76 0.77 0.82 0.84 0.89

CCrep 0.86 0.84 0.85 0.82 0.81 0.82 0.88 0.87 0.89

CCrim 0.70 0.71 0.67 0.70 0.68 0.73 0.76 0.75 0.80

B. Standard pipeline without non-crystal background image subtraction

CClriedel —0.01 —0.01 —0.02 —0.01 —0.03 —0.02 —0.03 —0.02 —0.02

CClaue —0.01 —0.03 —0.02 —0.02 —0.03 —0.03 —0.03 —0.04 —0.02

CCyp2 —0.02 —0.06 —0.04 —0.04 —0.07 —0.06 —0.06 —0.06 —0.03

CCrep —0.03 —0.05 —0.05 —0.08 —0.08 —0.05 —0.03 —0.05 —0.03

CCrim —0.01 —0.02 —0.04 —0.03 —0.06 —0.02 —0.04 —0.03 —0.02

C. Standard pipeline without the polarization correction

CChriedel +0.04 +0.04 +0.04 +0.03 +0.05 +0.04 +0.03 +0.03 +0.02

CClaue +0.05 —0.02 +0.04 —0.01 +0.07 +0.03

CCip2 +0.08 —0.06 +0.08 —0.06

CCrep

CCrim

D. Standard pipeline without the radial profile variance removal step

CClriedel —0.01 —0.01 —0.02 —0.02 —0.01 —0.03 —0.02 —0.03 —0.00

CClaye —0.02 —0.06 —0.01 —0.05 —0.07 —0.03 —0.04 —0.03

CCip —0.04 —0.03 —0.09 & —0.05 —0.07 —0.04

CCrep —0.05 h —0.04 —0.02 —0.04 —0.01 —0.02 —0.01

CCrim +0.01 —0.01 +0.00 —0.01 —0.01 —0.06 —0.01 —0.04 —0.01
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and (D) Bragg scale factor, respectively. The standard pipeline in this
work uses method (A). The effectiveness of a particular scale factor
was evaluated with data quality metrics of the diffuse map processed
using that scale factor. The data quality statistics of each type of scale
factor are summarized in Table S7. This table also includes another
four choices (E)-(H) where the radial profile variance removal step
was turned off as the scale factor was switched from (A) to (D)
successively.

Ill. RESULTS
A. WT and mutant ICH structures and helix motion

Prior work with ICH showed that x-ray photooxidation of
Cys101 results in concerted motion of a helix near the active site that
is also observed during formation of the catalytic thioimidate interme-
diate.”” These cysteine modification-activated motions in ICH** occur
owing to transient loss of negative charge on the catalytic cysteine thio-
late and facilitate later steps in catalysis. Engineered mutations at resi-
due 150 (e.g., G150A, G150T) also favor shifted conformations of the
helix to varying degrees. Because the concerted motion of this helix
can be modulated by mutation and the charge of the Cys101 S, atom,
ICH is an attractive system for exploring diffuse scattering as a probe
of functional correlated protein motions.

In this work, structural models refined against replicate Bragg
datasets that were collected simultaneously with the diffuse scattering
data (see below) are essentially identical (0.02-0.03 A C, RMSD). The
refined WT and GI150A ICH models are also highly similar
(~0.05-0.07 A C, RMSD). As observed before,”” the G150T mutation
constitutively shifts the helix to the relaxed conformation and crystalli-
zes in a different space group than WT or G150A ICH (see Sec. II). As
expected based on these structural and space group changes, G150T
ICH superimposes onto WT and G150A ICH with a larger C,, RMSD
of ~0.8A (see Fig. 3). In addition, the six WT and G150A datasets
show ~2¢ difference (mF, — DEF,) electron density features around
the mobile helix that indicate a minor population (<10% occupancy)
of the shifted helix conformation. Consistent with our efforts to mini-
mize radiation damage to the crystals, these difference map features

FIG. 3. Structure of ICH. The ribbon diagram for the WT ICH dimer is shown in
blue, with protomer A colored darker blue and protomer B lighter blue. The struc-
ture of G150T ICH (yellow-green) is superimposed on protomer A of WT ICH. The
location of residue 150 is represented as a red sphere, and the mobile helix is
labeled H and shown in brighter colors.

Struct. Dyn. 8, 044701 (2021); doi: 10.1063/4.0000087
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are much lower than those observed when Cysl101 is oxidized to
Cys101-SOH.”* These minor difference map peaks near the helix
could indicate either the basal level of helical mobility in ICH or a
response to minor x-ray-induced Cys101 modification in these data-
sets, possibly including thiyl radical formation.

B. Quantifying the quality of the experimental diffuse
scattering maps

Diffuse intensity is continuously distributed in reciprocal space
and is weak compared to Bragg intensity; therefore, robust metrics for
quantifying diffuse data quality are needed to avoid the introduction
of noise or artifacts into the diffuse maps. Diffraction patterns were
processed using our standard pipeline described in Sec. II to obtain 3D
anisotropic diffuse scattering maps for all nine datasets. The diffraction
volume was saved in a 3D lattice with 121 x 121 x 121 voxels sampled
by integer Miller indices. The whole pipeline and visualization of each
substep is displayed in Fig. 2. As shown in panel (f) of Fig. 2, aniso-
tropic features were observable in processed diffraction patterns after
the removal of Bragg peaks although they were not as clear as those
displayed in 3D diffraction volumes [panel (i)] after a deeper noise
and isotropic component reduction. The average number of pixels
that contribute to the intensity of each non-empty voxel in the diffrac-
tion volume is more than 1000 up to 1.4 A, as shown in Fig. S7, leading
to a small standard error of the mean. In addition, the isotropic com-
ponent is more than ten times stronger than the anisotropic data
(Fig. S8). Extracting large-scale anisotropic features from diffuse data
therefore is challenging not only due to the high intensity of the Bragg
peaks, but also due to the presence of a more intense isotropic compo-
nent. The Laue-symmetrized anisotropic diffuse maps for all datasets
are displayed as section cuts in Figs. 4 and 5 in the g, and g directions,
while other visualizations (in the g, direction) are shown in Fig. S9.
Independent datasets of the same protein are very similar, as can be
observed from their section cuts. This gives additional confidence that
the diffuse maps produced by our pipeline contain bona fide protein
diffuse scattering data and are not dominated by anisotropic back-
ground features or merging artifacts.

In addition to using visual inspection, we assessed the quality of
the extracted diffuse maps using quantitative metrics such as percent
completeness, CCpryiedey and CCiaye (Table I). The resolution-
dependent curves of these metrics up to 1.4A are displayed in Fig.
S10. Each dataset is >95% complete in each resolution shell and >98%
complete over the entire resolution range. The CCpryieqel is >0.7 in
each resolution shell and >0.9 overall. The CCp,, is lower than
CChriedels but it is still >0.5 in each resolution shell and >0.85 in the
overall resolution range. These numbers have been used to evaluate
the data quality of diffuse maps before,''**’ however, in this work we
find that the CCpyeqgel and CCp,,,. metrics are less sensitive to the data
quality than CC,,. For example, CC,, is roughly twice as sensitive as
CClaue to changes in the diffuse map based on the observed decreases
of both metrics in the analysis of different processing choices
(Tables 1T and S6). In addition, as shown in Table II, the CCjaue
is >0.75 even without key processing steps such as the polarization
correction or radial profile variance removal, where merging artifacts
are clearly shown in section cuts of corresponding diffuse maps
(Figs. S11 and S12). This suggests that CC . fails to evaluate the data
quality if there are contaminating background features in the images
that roughly obey Friedel or Laue symmetry but are not the desired
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FIG. 4. Central slices of Laue-symmetrized anisotropic diffuse maps (standard pipeline) of nine datasets perpendicular to g, direction. Each image is cut from the center of the
corresponding dlffuse map which is three-time finely sampled over Miller indices H, K, L. Each subfigure shows average voxels within a depth of 0.05 A"in qy direction, and
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protein-derived diffuse signal. Based on these findings, we used CC;,,
to evaluate internal consistency of a diffuse map in this work and
increased emphasis on reproducibility to assess the data quality.

The CC,/, values for each dataset are provided in Table I, with
the resolution-dependent curves shown in Fig. 6. CCy/, varies from
0.76 to 0.89 for all datasets, indicating that the anisotropic diffuse fea-
tures obey crystallographic point group symmetry reasonably well.
CC;, is found to increase for the WT-1, WT-3, and G150A-2 datasets
when the polarization correction is not used in the diffuse data proc-
essing pipeline (C in Table IT). This increase in correlation upon omit-
ting an important correction is caused by the anisotropy in the
diffraction pattern introduced by x-ray polarization that does not arise
from the sample. Despite not representing crystal-derived diffuse fea-
tures, these merging artifacts can greatly increase CC,/, values when
polarization-induced features happen to coincide with a crystal sym-
metry axis. As shown in Fig. S11, these polarization features are much

Struct. Dyn. 8, 044701 (2021); doi: 10.1063/4.0000087
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in g,g, plane. Both g, and g, axes extend to 1.4 A and O represents the center in the reciprocal space. These finely sampled diffraction volumes were used
for improved visualization only and were not used in data quality evaluation and modeling.

stronger along some directions. Importantly, these artifacts are not
reproducible between datasets, indicating that inter-dataset reproduc-
ibility may be a valuable additional data quality metric for diffuse scat-
tering data.

Because anisotropic background features or artifacts can generate
high values for CC,,, another robust and unbiased quality metric for
diffuse data is desired. To address this issue, we introduced CCprep, as a
measure of the reproducibility of anisotropic diffuse maps of the same
protein collected from similar crystals. Collecting multiple datasets for
the calculation of CCpep, is not a large experimental burden as PADs
and shutterless data collection have reduced the time needed to collect
a complete dataset to a few minutes at most synchrotron beamlines.
The inter-dataset metric CCre, is valuable because it is not expected to
be influenced as much as CC,, by artifacts or background scattering
from the mount. Both metrics can be used together to increase conf-
dence in the assessment of the quality of the anisotropic diffuse data.
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These two metrics also provide means to compare different data proc- Fig. 7. CCpep is >0.8 for all datasets processed using the standard pipe-
essing pipelines and to evaluate the effect of each submodule during line and drops to lower values when important steps are omitted, as
processing, as we discuss below. shown in Table II. The detailed statistics of other diffuse data analysis

The CCpe;, statistics is summarized in Table I, with the resolution choices is listed in Table S6. The CC,, value follows the same trend as

dependent CC curves of dataset pairs of the same protein shown in CClaue although it is more sensitive to diffuse data quality, while the
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FIG. 6. The resolution dependent CC+, curves for WT, G150A, and G150T datasets. Each curve was calculated using PHENIX up to 1.4 A, with the unsymmetrized anisotropic
map as input.
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FIG. 7. The resolution dependent CC curves of dataset pairs of the same protein. Each subfigure shows three CC curves between every two independent measurements for
WT, G150A, and G150T, respectively. For example, the curve of WT-1 and WT-2 was calculated as the CC between Laue-symmetrized anisotropic diffuse maps of WT-1 and

WT-2 datasets.

CCpep does not always follow the same trend as CC,. For example,
the G150A-2 dataset processed without the polarization correction (C
in Table II) shows that its CCp,,. value increases by 0.07, and CC;,
value increases by 0.13 due to the presence of merging artifacts with
symmetrical features (Fig. S11). In contrast, CCge,, decreases by 0.31,
demonstrating that the improvement in CC;,, might be due to back-
ground features or artifacts that are not reproducible in independent
samples. Using the standard processing pipeline, all ICH datasets dis-
play substantial CC,/, and CCge, values.

The near-identical WT and G150A ICH dimeric protein struc-
tures (C, RMSD ~ 0.06 A) provide an opportunity to evaluate the
cross correlation coefficient (CCcyoss) of their diffuse scattering maps.
WT and G150A crystallize in the same space group, while G150T crys-
tallizes in a different space group with a related cell to WT and G150A
ICH (see Sec. II). The CCcyoss for WT-1, for example, can be calculated
as the average CC of CC(WT-1, G150A-1), CC(WT-1, G150A-2), and
CC(WT-1, G150A-3). We find that the CCcyoss is >0.83 for every WT
and G150A dataset (Table 1), and each data pair within the set of repli-
cate WT and G150A datasets also has CC > 0.8, as shown in orange-
colored cells in Table S5. The high cross correlation between WT and
G150A diffuse datasets provides additional evidence that protein-
derived diffuse scattering is the dominant feature in the processed
diffuse anisotropic maps and is consistent with the minor differences in
the crystal structures refined against the Bragg data.

C. Evaluating models of protein motion using the LLM
and RBT models

Much of the motivation for collecting diffuse data has been to
develop models of correlated atomic motions. In this work, we develop
LLM and independent RBT models as implemented in Lunus'’ (see
Sec. II). The traditional LLM model assumes that atomic motions in
macromolecules have pairwise correlations that decay exponentially
with a characteristic length ), even across molecular and unit-cell
boundaries.” The magnitude of the atomic displacement is given by g,
which is refined as a single value for all of the atoms in the unit cell. In
contrast, the RBT model assumes independent rigid body translation
of the entire asymmetric unit.

Just as diffraction patterns can be mapped into reciprocal space
to build 3D diffraction volumes, simulated diffraction images can be
generated using diffraction volumes obtained either from experimental
data or a model. This allows a direct visual comparison between the
experimental and simulated diffraction patterns in the same orienta-
tion. One example is shown in Fig. S13, which compares the LLM
model and the experimental data. Visual inspection of the simulated

Struct. Dyn. 8, 044701 (2021); doi: 10.1063/4.0000087
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and experimental diffuse scattering shows agreement in many regions,
although the simulated data display more detailed “granular” features,
while the experimental data appear somewhat more “smeared.”

The individual atomic ADPs are set to zero in the standard LLM
model [Iy(q) in Eq. (2)]."" We wondered how well the diffuse data
can discriminate between different models of atomic displacement,
and whether using the refined ADPs (either isotropic or anisotropic)
from the structural model might provide the LLM with a more accu-
rate representation of variations in atomic positions in the protein. We
therefore considered a variation of the standard LLM where Iy(q) in
Eq. (2) is replaced by Ip(q), computed using either isotropic or aniso-
tropic individual ADPs [Eq. (3) and supplementary material
Sec. IV].”* In addition to assessing the agreement with the data using
the CCy 1, we considered whether the optimal values of o were close
to zero, consistent with the predictions of Eq. (3) (see Sec. 1I).

The results of the LLM analysis differed when using crystal struc-
tures refined using Refmac5 vs PHENIX. For the Refmac5-refined
PDB files, the LLM model parameters and CCy s for all ICH datasets
using different ADP treatments are shown in Fig. 8 and summarized
in Table S8; the resolution-dependent CCyyy curves are shown in Fig.
S14. In the case of the WT-1 dataset, the zero ADP model yields an
overall CCyyp of 0.67 to 1.4 A resolution, with a correlation length y
= 6.7 A and an overall atomic displacement ¢ = 0.40 A. The CCiim
using the isotropic ADP model is higher (0.71), with a longer correla-
tion length y = 7.9 A and much smaller ¢ < 0.01 A, consistent with an
overall Debye-Waller factor of unity as in Eq. (3). The anisotropic
ADP model yields a value of CCyyy, that is comparable to the isotropic
LLM (Table S8), despite being a superior model of the Bragg data. The
other datasets show that the CC;p varies within 0.66-0.80 for the
various ADP treatments. The highest CCy ) is consistently achieved
in the isotropic ADP LLM model, which varies within 0.70-0.80. The
anisotropic ADP LLM model yields higher correlations than the zero
ADP LLM model for all datasets. The correlation length 7 is shortest
(~7A) in the zero ADP LLM model and longest (~8.5 A) in the
anisotropic ADP model. We observe that the correlation length
increases as the ADP model becomes more detailed in most (seven)
datasets in this work.

Despite the Refmac5 and PHENIX models having comparable
model statistics and agreement with the Bragg data, the PHENIX
models have different distributions of ADP anisotropy (Fig. S1). In
particular, for the WT PHENIX models, the distribution deviates from
the “bell-shaped” distribution centered on ~0.45 that is typically
observed in proteins (Fig. $1).”**" In contrast, the Refmac5-refined
models have anisotropy distributions that are closer to the average of
other proteins, with fewer extreme anisotropy values (Fig. S1). The
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FIG. 8. The LLM model statistics for all ICH datasets using Refmac5-refined PDB files with different ADP treatments. The two subfigures display the best-fit CC,y and aver-
age correlation length 7, respectively. Each dataset was analyzed using three different ADP models including the zero, isotropic, and anisotropic ADP, respectively. The dashed
vertical line separates WT, G150A, and G150T datasets. The full LLM statistics are presented in Table S8.

differing anisotropy values are not correlated with changes in the over-
all magnitude of the PHENIX- and Refmac5-refined ADPs, which are
highly similar (Fig. S2). We determined that the difference in the
anisotropic ADPs is due to different overall anisotropic scale parame-
ters produced by the two programs (see Sec. II, Table S4, and supple-
mentary material Sec. I11).>* We were able to use these different
anisotropic scale matrices to convert the PHENIX-refined anisotropic
ADPs into ones that closely resemble those in the Refmac5-refined
model and vice versa (see Sec. II; Figs. S1 and S3-S5; supplementary
material Sec. I1I),™ confirming that the differences in the PHENIX
and Refmac5 anisotropic ADP models are due predominantly to dif-
ferent anisotropic scaling parameters. This does not exclude the possi-
bility of residual anisotropic ADP differences arising from different
restraints in the two programs, which might be important for solvent
atoms (see Figs. S1, S$4, and S5).

Although the different ADP models agreed equally well with
the Bragg data (Table S1), this was not the case for the diffuse scat-
tering data. Results of the LLM analysis using either the Refmac5-
and PHENIX-refined input models are summarized in Tables S8
and S9. These two sets of models are comparable for all ADP treat-
ments except anisotropic ADPs, which show marked differences. In
general, the CCyyy values are higher and o values are lower for the
Refmac5 anisotropic ADP models compared to those refined in
PHENIX. The discrepancies between the Refmac5 and PHENIX
models are clearest for the three replicate WT datasets, where the
agreement with the data is lower for the PHENIX anisotropic ADP
models (CCpyp ~ 0.6) than the Refmac5-refined models (CCyym
~ 0.7); the PHENIX models also lead to higher ¢ values in the best-
fit LLM (~0.2 A), suggesting an inconsistency with the predictions
of Eq. (3). The difference in mean CCyyy and o between the
Refmac5 and PHENIX models are larger than their standard devia-
tions across three replicate WT datasets, supporting the significance
of the discrepancies. However, the higher ¢ value for the WT-3
dataset indicates that there might be issues that remain in that
Refmac5 anisotropic ADP model, or, alternatively, that there might
be issues with the WT-3 diffuse data.
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Compared to the low sensitivity of the Bragg data to anisotropic
ADP differences as judged by the similar R, values for the PHENIX
and Refmac5 models (Tables S1 and S10), the increased sensitivity of
the diffuse data suggested that diffuse scattering might potentially be
useful for modeling ADPs. However, the R factors are computed in a
different way than CCy; and these two statistics are not directly com-
parable to each other. We therefore used a measure of the agreement
with the Bragg data—CCpyage—that is computed in the same way as
CCppwms except using Bragg data. Specifically, CCpyqg; Was computed as
the Pearson correlation between the model and Bragg data intensities
(as opposed to amplitudes) after subtracting the isotropic component,
and, importantly, without applying overall anisotropic ADP scaling.
Therefore, CCpagy and CCppy provide quantitatively comparable
measures of model quality that can be used to assess the relative sensi-
tivity of Bragg and diffuse scattering data to these different anisotropic
ADP models. We compared CCpyqags and CCpy values obtained for
the Refmac5 and PHENIX models as well as the Refmac5 and
PHENIX models that had been rescaled using the difference aniso-
tropic scaling matrices (see above; Sec. IT). The results are summarized
in Fig. 9 and Table S11, and clearly indicate that the diffuse data are
more sensitive to the differences in the ADPs than the Bragg data. For
example, whereas CCyyy for the PHENIX WT-1 model increases
from 0.6 to 0.7 after ADP rescaling, the CCpqge value changes by a
much smaller amount, from 0.893 to 0.895.

Considered together, the improved anisotropic ADP CCyy, the
lack of change in CCpyqg (Fig. 9 and Table S11), the lower values of o,
and the more typical distribution of anisotropies for the Refmac5-
refined and rescaled PHENIX anisotropic ADP models show that dif-
fuse scattering data favor anisotropic ADP models that possess more
plausible features even when the Bragg models have similar Reee/Ryork
and CCp;,g, values. The implications of this observation for using dif-
fuse and Bragg data together to refine crystallographic models are dis-
cussed below.

Some studies have indicated that independent rigid-body
motions of macromolecules are responsible for a significant portion of
the diffuse scattering signal.*”* To investigate this possibility for ICH,
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FIG. 9. CCgagg and CCy i between experimental data and calculated Refmac5,
PHENIX models with and without rescaling of the model B factors using Uy for the
WT-1 dataset. The sensitivity of CC, to changes in the ADPs is much greater
than that of CCg/agg, indicating that diffuse scattering data are more sensitive than
Bragg data to anisotropic scale factor-related changes in ADPs. The displayed CC
values are calculated with a low resolution cutoff of 10 A because no bulk solvent
correction was used. Both the Bragg and diffuse intensities have had the isotropic
component removed as described in Sec. Il.

we implemented an independent RBT model in Lunus and used a
metric equivalent to CCyyyy, called CCrpr, as a target for optimiza-
tion.'” The optimal CCrpr and displacement parameter (c) values are
summarized in Table S12. The CCrpr (~0.55) is lower than CCyyy; by
about 0.1 for all datasets and ADPs treatments. The optimal ¢ values
in the zero ADP RBT model are generally similar to those in the zero
ADP LLM model. Interestingly, as in the LLM models, using the
Refmac5-refined anisotropic ADP models (Table S12) produces higher
CCrpr values than the PHENIX-refined models (Table S13) although
their differences are not as large as those for the LLM model.

D. Studying the effects of various steps in the analysis
pipeline

To determine which aspects of the diffuse scattering experiment
and subsequent image processing have the greatest impact on final
data quality, we systematically omitted each step in our pipeline, one
at a time. Results of this analysis are partially shown in Table II and
summarized in Table S6. Data quality assessed using CC; > and CCrp,
does not change greatly when the solid-angle, detector absorption, and
parallax correction are omitted. In contrast, omitting the non-crystal
background subtraction, polarization correction, or radial profile vari-
ance removal step substantially degrades the data quality. The omis-
sion of non-crystal background subtraction reduces the two quality
metrics by 0.02-0.08 for all datasets, with the visualization only
changed slightly (Fig. S15). The omission of the polarization correction
reduces CCpey, of all datasets by more than 0.1, with CC,, varying in a
less informative way for each dataset. The omission of radial profile
variance removal step reduces both quality metrics by 0.01-0.09 for
most datasets and decreases a few of them by more than 0.1. The sig-
nificant effects of these three steps are expected as they are critical to
remove contaminating anisotropic background intensity and to reduce
merging artifacts (Figs. S11 and S12). In contrast, other processing
steps, such as the solid-angle, detector absorption, and parallax correc-
tion, only affect the radial intensity distribution in the diffraction pat-
tern but do not introduce angular anisotropies. In addition, the
omission of polarization correction increases the CC,, value because
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the strong anisotropic artifacts (see Fig. S11) that are introduced by x-
ray polarization are not removed. In this case, also omitting the solid-
angle correction can scale down the contribution of high resolution
data to the calculation of correlations, leading to slight improvements
for both CC,, and CCre;, in the overall resolution range.

For the study of four different scale factors, the radial profile,
overall, and water ring scale factors follow the same trend and only
vary slightly (Fig. S16). However, the Bragg scale factor is significantly
different from the other three, especially in the last half of each dataset
where it increases more than the others (Fig. S16). This means that the
last half of the images will be scaled to a much higher intensity level
using the Bragg scale factor. The data quality metrics using each scale
factor treatment are summarized in Table S7, where the radial profile
variance removal step is turned on for (A)-(D) and turned off for
(E)—(H). The radial profile, overall, and water ring scale factors with
radial profile variance removal (A)-(D) produce the same CC,,, and
CCpep for all datasets, while the Bragg scale factor performs slightly
worse. However, when the radial profile variance removal step is
turned off (E)-(H), all four scale factors perform much worse, with the
Bragg scale factor treatment producing very poor diffuse maps that are
dominated by merging artifacts, as shown in Fig. S17. Interestingly,
only the Bragg scale factor (H) has a measurable effect on the CCyy
even though the data quality as quantified by CC;, and CCre, signifi-
cantly decreases for other processing choices (D)-(G).

IV. DISCUSSION

A. Using multiple quality metrics to produce high
quality diffuse scattering maps

Reliably extracting the relatively weak diffuse scattering signal
from raw diffraction images is vital for generating useful diffuse scat-
tering maps for downstream applications. Several different data quality
metrics have been discussed in this article, including CChryieder CCrauer
and CC,, for evaluating internal consistency in diffuse datasets and
CClross and CCrep for measuring inter-dataset reproducibility. CCyque
and CCryieqe evaluate whether the diffuse map follows the expected
symmetry, but they have behaviors that make them less desirable as
data quality metrics. In particular, CCp,, values change by about half
as much as CCy/, values when perturbations to the data processing are
introduced (Tables S6 and S7). Moreover, the value of CCj .. can be
rather high even for a diffuse map with obvious merging artifacts (see
Fig. S11). This is in part because each voxel in a symmetrized map
contains a contribution from the corresponding voxel in the unsym-
metrized map, leading to a non-zero correlation even for random
datasets. The correlation is highest for low-symmetry Laue groups: in
P1, where CC e corresponds to CCryieqels the value is about 0.7 for a
random dataset. Because of this, we favor CC,, as a quality metric.

Despite the benefits of using CCy, to assess data quality, a sym-
metry measure alone cannot fully describe the data quality of a diffuse
map, especially when the map is dominated by anisotropic back-
ground features or artifacts which may approximately obey these sym-
metries. This consideration motivated our use of the metric CCgep to
validate whether the anisotropic diffuse signal originates from protein
crystal diffraction. The paucity of data quality metrics that can dis-
criminate between anisotropic diffuse scattering from the sample and
from the background is an important reason that different protocols
for constructing diffuse maps have been reported.'>** The com-
bined use of CC,/, and CCpge, provides a more complete picture of
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data quality than CC,, alone. The use of these metrics also helped to
assess quantitatively the performance of our data processing pipeline
and enabled the processing choice analysis in this work. The CCqyoss is
a special metric that can be used for two proteins with similar struc-
tures and unit cell dimensions, such as WT and G150A ICH in our
experiment. It may have particular value when comparing changes in
diffuse scattering between similar samples that have been subjected to
perturbations such as temperature change, mutation, etc.

B. Effects of each processing step in the diffuse map
construction pipeline

Constructing and modeling the 3D diffuse map is now the stan-
dard method for diffuse scattering analysis. Although different ver-
sions share a similar general workflow, the details may vary. Benefiting
from the introduction of two additional quality metrics, we are able to
perform a detailed analysis of the variations, yielding insight into the
impact of each processing step on the overall quality of the anisotropic
diffuse map (Tables II, S6, and S7). The standard pipeline works satis-
factorily for all datasets giving CC;,>0.76 and CCgep > 0.81.
Eliminating the parallax, solid-angle, and detector absorption correc-
tions have small effects on both CC,/; and CCgep, perhaps related to
the fact that they only modulate the radial intensity distribution in the
diffraction pattern. In contrast, the non-crystal background subtrac-
tion, polarization correction, and radial profile variance removal have
stronger effects on the data quality of extracted diffuse maps. The
omission of these steps will affect the angular intensity distribution in
the diffraction pattern and introduce strong artifacts or anisotropic
background features to the diffuse map, which leads to systematic
errors in the anisotropic diffuse intensity. It is important to note that
the non-crystal background image subtraction requires acquiring
matched background exposures at the time of data collection. The col-
lection of non-crystal background patterns has not been consistently
performed until recently”' despite its simplicity. When a shadow from
the capillary or beamstop is visible, it can be manually masked out
from the detector image, but other anisotropic noise may not be visible
by eye in the single diffraction pattern and thus can accumulate in the
3D diffuse map. We suggest collecting non-crystal background pat-
terns in rotation method experiments. For SFX experiments, it might
be possible to improve data quality by analyzing non-hit patterns and
finding suitable background patterns for subtraction. The radial profile
variance removal is another important step to avoid introducing merg-
ing artifacts in the diffuse map (Fig. S12). An alternative™ to radial
profile variance removal is to subtract the radially averaged profile
from each diffraction pattern before the 3D merging step; indeed, in
implementing our removal method, we found that the difference in
image radial profiles is similar to the first principal component. The
diffuse map construction pipeline is flexible to some extent, and the
main focus is to remove anisotropic noise and avoid merging artifacts.
Any steps that can introduce errors in the angular intensity distribu-
tion in the diffraction pattern deserve careful attention.

In addition to the processing choice analysis, four different types
of per-image scale factors were also evaluated by comparing the data
quality of diffuse maps processed by corresponding scale factors. As
shown in Results, the radial profile, overall, and water ring scale factors
generate similar results according to our data quality metrics and per-
form moderately better than the Bragg scale factor which was adopted
similarly by Peck et al”’ for systems other than ICH, using scale
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factors from XDS. When the radial profile variance removal step is
turned off, all four scale factors give much worse results than the stan-
dard pipeline and also perform differently although Fig. S16 shows
that curves of the radial profile, overall, and water ring scale factors
only vary slightly for all datasets. This indicates that data quality of the
diffuse map is very sensitive to changes in the scale factor when radial
profile variance removal is absent, while the radial profile variance
removal step greatly reduces the impact of scale factors. In any case,
for our ICH data, the Bragg scale factor always behaves worse than the
others, which can be inferred from its distinctive curve that differs
from the others especially for the last half images of each dataset. The
Bragg scale factor increases to higher values than the other three scale
factors and this is probably induced by the decrease in Bragg intensi-
ties in the last half diffraction patterns. The radial profile scale factor
therefore is preferred for extracting high-quality diffuse maps from
ICH diffraction images.

C. Analysis of diffuse scattering using the LLM model

Using the standard LLM model with zero ADPs'®'"” [Eq. (2)], the
agreement with the data (CCpyp of ~0.7), the value of the atomic dis-
placement o (~0.4 A), and the value of the correlation length y (~7 A)
are all comparable to previous studies of other protein crystals using
coarse-grained diffuse data.''**® Using isotropic ADPs in the calcula-
tion of Iy(q) in Eq. (2), the optimal LLM models yielded slightly higher
correlations with the data than using zero ADPs, and the differences
exceed the standard deviations of three replicate datasets for all protein
forms. The CCy of 0.80 for G150T-3 is in the high end compared to
the correlations reported from some previous work.'®'** The fitted
values of ¢ for this model are very close to zero, indicating that the
ADPs from the Bragg analysis are consistent with the pattern of diffuse
intensity predicted by Eq. (3). The fact that including isotropic ADPs
in the LLM leads to a low value of ¢ lends additional support to the
utility of using a LLM model to analyze the ICH diffuse data. We con-
sistently found that the refined correlation lengths y were longer for
the isotropic (~8 A) and anisotropic ADP models (~8.5 A) than in
the zero ADP model (~7 A) for all nine datasets. The dependence
of the correlation length on the complexity of the atomic displacement
model was unexpected. However, we note that the LLM used here
involves only a single correlation length, whereas it is more likely that
displacements with multiple correlation lengths contribute to the
actual diffuse signal."’

Because atomic motions result in the loss of Bragg intensity and
increased diffuse scattering, there has been long-standing interest in
combining Bragg and diffuse scattering data to improve models of
atomic motion in crystal structures.”**' By using LLM models that
incorporate different anisotropic ADP models for the same structural
model, we found that diffuse scattering data can discriminate between
more and less plausible representations of anisotropic atomic motion,
even when these models have similar Rgee/Ryorc and CCpagg Values
and thus cannot be distinguished easily based on Bragg data alone.
Both Refmac5- and PHENIX-refined models agree well with the Bragg
data; however, the PHENIX models consistently refine to lower anisot-
ropy values (corresponding to more anisotropic motion) than the
Refmac5 refinements (see Tables S2 and S3) and sometimes have
anisotropy distributions that deviate from the “bell-shaped” curve cen-
tered on ~0.45 that is typically observed (Fig. S1).””*’ We showed that
the origin of this effect is that these two widely used refinement
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programs can produce different anisotropic scaling parameters even
when the starting model and the datasets are identical. This results in
different anisotropy in the final model ADPs even though the ADP
magnitudes (ie., Bey) are nearly identical. This difference is under-
standable because the total anisotropy in the diffraction data contains
contributions from the crystal as a whole (anisotropic scaling parame-
ters) and from individual atomic motions (ADPs), whose values are
highly correlated, and thus they are refined separately.”” Therefore, if
different anisotropic scale parameters are initially refined by different
programs using otherwise identical starting models and datasets, there
will be subsequent compensatory changes in the refined anisotropic
ADPs of the final models, as we have observed. In addition, we find
that when ICH LLM models that already include individual ADPs also
have substantial ¢ values, the models tend to agree less well with the
diffuse data; it is possible that LLM analysis of ¢ values might be used
for other systems as a general indicator of when ADPs deserve addi-
tional scrutiny. Interestingly, LLM models with anisotropic ADPs
have CC values that are comparable to or lower than models using
isotropic ADPs. The lack of improvement going from the isotropic to
anisotropic ADP model was unexpected because anisotropic ADPs
contain information about both the preferred directions and ampli-
tudes of motion and substantially improve the agreement of the
refined models with the Bragg data (see Sec. II; Table S10). While there
are several lines of future investigation suggested by our results, the
ability of diffuse scattering data to discriminate between models of
anisotropic atomic motion that are equally consistent with the Bragg
data indicates that joint refinement of models against Bragg and dif-
fuse scattering data—an idea long discussed in the literature’' —is
promising and might result in more accurate representations of atomic
motion in proteins. We note that because ICH exhibits controllable
concerted helical motion, it makes an ideal system to explore the abil-
ity of diffuse scattering data to discriminate between various represen-
tations of correlated secondary structure motions in the future.

Recent articles””* have suggested that independent rigid-body
translations, like those in our RBT model, are responsible for the
majority of the diffuse signal in protein x-ray diffraction. For ICH, we
found that the LLM model agrees better with the diffuse data distrib-
uted between the Bragg peaks than the RBT model for all datasets in
all ADP models (CCyn and CCrpr values in Tables S8 and S12). This
result indicates that the large-scale diffuse features in ICH are more
accurately described using liquid-like rather than independent transla-
tional rigid-body motions. As the values of y from the LLM fits are
much smaller than the size of the protein, our results suggest that the
correlation lengths inherent in the RBT model might be too long.
Note that we did not consider rigid-body rotations and that our find-
ings do not exclude the possibility that rigid-body motions coupled
across molecular and unit-cell boundaries are important for modeling
the sharper diffuse features in the neighborhood of the Bragg peak.”!

It is important to interpret data quality metrics (such as CC,),
and CCprep) and model quality metrics (CCrrnr, CCrpr) in their appro-
priate contexts. Data quality metrics pertain only to the measured sig-
nal and are independent of model quality metrics, which quantify
agreement between a representation of the data and the measured sig-
nal. However, better data processing approaches are expected to result
in more accurate models. A prominent example is the development of
paired model refinement in concert with CC;,, for processing Bragg
data, which uses the model Ry and Rge. values obtained from
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refinements against datasets processed to different resolution limits in
order to determine the maximal resolution at which meaningful signal
is present.”’ Although we did not use a full paired refinement-like
workflow, we found that the CC;; values for the refined LLMs were
not sensitive to even serious degradation in the quality of the diffuse
maps, unlike the data quality metrics CC,/, and CCgep. For example,
CCpm does not change significantly even when the diffuse data qual-
ity is severely reduced, such as in the WT-3 dataset processed without
the radial profile variance removal step (D in Table IT). In this case, the
data quality as quantified by CCpg,, decreases by 0.11, while CCy
does not change. Therefore, we do not currently recommend using
model CC values as a metric for evaluating diffuse scattering data
processing decisions although this may change with improved models
of correlated motions.

D. Lessons about experimental best practices for the
collection of macromolecular diffuse scattering data

Our detailed analysis of the influence of various processing steps
on the quality of diffuse maps provides insights into important experi-
mental aspects of collecting diffuse scattering data. The weak intensity
values of diffuse scattering compared to Bragg diffraction places a pre-
mium on experimental approaches that reduce background scatter-
ing,21 and our results underscore the importance of careful treatment
of the background. Because the speed of modern data collection makes
collecting multiple datasets straightforward, we suggest collecting non-
crystal background images which, in the case of a rotation series,
match the spindle angles of the crystal exposures. There is broad agree-
ment that the sample-derived signal should be maximized by using
large crystals and by reducing sources of scattering in the beamline
setup. However, the best choice of the sample mount is still debated.
In this study, we used thin-walled borosilicate glass capillaries that are
expected to have nearly isotropic background scattering. However,
glass scatters x-rays ~10 times more strongly than plastics such as
kapton,”’ and thus will produce an intrinsically higher background
that obscures weak diffuse scattering signals. In addition, depending
on the diffracted beam path through the capillary walls, the greater
absorption of glass might lead to anisotropy in the absorption of scat-
tered x-rays. While most plastic mounts enjoy the advantage of lower
scattering, they generate an anisotropic background owing to scatter-
ing by partially oriented molecules that compose the plastic. Our work
and those of others”””' indicate that combining the collection and
careful subtraction of background non-crystal images with PCA analy-
sis allows for effective removal of contaminating anisotropic back-
ground signals; however, a model of the capillary would be required to
account for anisotropic absorption effects. This suggests that plastic
capillaries with lower scattering may be preferable for diffuse scattering
experiments despite their more anisotropic background. An important
consideration with plastic capillaries is that the loop that is typically
used to support the crystal in these mounts can generate a large aniso-
tropic background signal. Therefore, it is advisable to use a loop that is
smaller than the crystal and to aim the x-ray beam into portions of the
crystal that are fully outside the loop throughout the rotation range.
This is important because it is difficult to collect well-matched non-
crystal background images that include empty loop scattering for later
subtraction from the diffraction images.

Prior diffuse scattering work has used large, well-diffracting crys-
tals with comparable thickness in all three dimensions.”'*'**" Such
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crystals are advantageous for diffuse scattering because they place
comparable volumes of the crystal in the x-ray beam in all orienta-
tions during data collection, resulting in images with similar dif-
fraction intensity throughout the dataset. In contrast, WT ICH
crystals grew with a difficult, plate-shaped habit that required care-
ful mounting in order to orient the short axis of the plate co-
linearly with the capillary axis so that the x-ray beam illuminated
similar thicknesses of crystal during rotation. Our initial inspection
of diffuse data collected from crystals that were not so carefully ori-
ented indicated that the data quality suffered when the x-ray beam
illuminated very different thicknesses of the crystal during data col-
lection. We note that rods do not present this problem so long as
the long axis of the rod is roughly collinear with the rotation axis,
which is their naturally preferred orientation during capillary
mounting. Although it is clear that diffuse scattering researchers
previously appreciated the importance of crystal size and shape for
data quality, crystal morphology should be considered by experi-
mentalists when planning a diffuse scattering experiment, particu-
larly if plate-shaped crystals are being used.

Our use of the reproducibility metric CCg,, showed that there
was a much larger amount of contaminating anisotropic intensity in
the WT-3 dataset compared to the other two replicates, which may
not have been obvious had we not collected the other two datasets for
comparison. The radial profile variance removal approach was able to
suppress these problematic features and resulted in a usable final data-
set that compared well with its replicates after processing based on the
quality metrics. However, the LLM model of WT-3 still stands out as
an outlier with a much larger ¢ in the anisotropic ADP model. The
absence of comparable contaminating anisotropic features in WT-1
and WT-2 excludes beamline components, detector issues, or other
sources that would be common to all three datasets. It is possible that
the culprit is contaminating detritus (e.g., lint, a fiber from the wick,
etc.) that may have adhered to the crystal used to collect the WT-3
dataset during mounting. This illustrates the sensitivity of diffuse scat-
tering data to minor sources of non-crystalline scattering that make a
negligible contribution to the Bragg data and demonstrates the value
of collecting multiple datasets.

The intrinsic weakness of diffuse scattering data presents
detection challenges that are tempting to solve by increasing the x-
ray dose. However, because diffuse scattering data are typically col-
lected from crystals at ambient (i.e., non-cryogenic) temperatures,
radiation damage is a major concern. In this regard, the ICH system
was especially valuable as it contains a radiation-sensitive active site
cysteine nucleophile (Cys101) that is readily photo-oxidized to
cysteine-sulfenic acid at x-ray doses lower than the typically quoted
3 x 10° Gy dose limit for ambient temperature Bragg data collec-
tion.””** We did not see strong evidence of Cys101 oxidation in
these datasets although we cannot exclude that some minor oxida-
tion occurred. The minimal radiation damage in these sensitive
crystals indicates that PADs, rapid shutterless data collection, and
the use of large beams (~100-200 pm) can limit radiation damage
and allow the collection of usable diffuse scattering data from mod-
erately radiation-sensitive protein crystals. As in prior work,'” we
collected usable Bragg and diffuse scattering data simultaneously,
and it is possible that such combined Bragg/diffuse datasets could
be used for the global refinement of macromolecular structure,
atomic mobility, and correlated motions in the future.
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V. CONCLUSION

In this work, we have developed an open-source data analysis
pipeline dspack to extract diffuse scattering features from x-ray diffrac-
tion patterns. Detailed studies were performed to validate the effective-
ness of this pipeline and demonstrate how each submodule and
different analysis variables can affect the data quality of extracted dif-
fuse maps. We described our systematic study of the reproducibility of
diffuse scattering from isocyanide hydratase (ICH) with nine datasets
of three different protein forms demonstrating that the replicate dif-
fuse datasets were similar in pairwise comparisons [Pearson correla-
tion coefficient (CC) >0.8]. In particular, these studies emphasized the
importance for data quality of non-crystal background pattern sub-
traction, radial profile variance removal of radial intensity profiles, and
the approach to calculating per-image scale factors. We introduced
two unbiased and robust metrics (CC,/, and CCpp) to evaluate the
data quality of diffuse maps. We conclude that using CC;,, alone can
lead to artificially high assessments of data quality and that including
CCpep can help to obtain a more reasonable assessment of data quality.
We found that diffuse scattering data are more sensitive than Bragg
data to different models of anisotropic atomic motion resulting from
distinct anisotropic scaling parameters, and that diffuse scattering data
favor models with more typical distributions of atomic anisotropy. In
a comparison of the LLM and independent RBT models of protein
motions inside the ICH crystal, we found that the agreement with the
data is higher for the LLM model than for the RBT model and that the
LLM model agreement is in the high end among those reported in
some other studies.”'** Overall, this study provides a new set of
computational tools for the analysis of diffuse scattering data, demon-
strates the potential value of diffuse scattering for evaluating some
types of ADP models, and indicates that ICH is an excellent system for
future diffuse scattering studies.
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