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Abstract
Objectives Due to its high sensitivity, DCE MRI of the breast (bMRI) is increasingly used for both screening and assessment
purposes. The high number of detected lesions poses a significant logistic challenge in clinical practice. The aimwas to evaluate a
temporally and spatially resolved (4D) radiomics approach to distinguish benign from malignant enhancing breast lesions and
thereby avoid unnecessary biopsies.
Methods This retrospective study included consecutive patients with MRI-suspicious findings (BI-RADS 4/5). Two blinded
readers analyzed DCE images using a commercially available software, automatically extracting BI-RADS curve types and
pharmacokinetic enhancement features. After principal component analysis (PCA), a neural network–derived A.I. classifier to
discriminate benign from malignant lesions was constructed and tested using a random split simple approach. The rate of
avoidable biopsies was evaluated at exploratory cutoffs (C1, 100%, and C2, ≥ 95% sensitivity).
Results Four hundred seventy (295 malignant) lesions in 329 female patients (mean age 55.1 years, range 18–85 years) were
examined. Eighty-six DCE features were extracted based on automated volumetric lesion analysis. Five independent component
features were extracted using PCA. The A.I. classifier achieved a significant (p < .001) accuracy to distinguish benign from
malignant lesion within the test sample (AUC: 83.5%; 95% CI: 76.8–89.0%). Applying identified cutoffs on testing data not
included in training dataset showed the potential to lower the number of unnecessary biopsies of benign lesions by 14.5% (C1)
and 36.2% (C2).
Conclusion The investigated automated 4D radiomics approach resulted in an accurate A.I. classifier able to distinguish between
benign and malignant lesions. Its application could have avoided unnecessary biopsies.
Key Points
• Principal component analysis of the extracted volumetric and temporally resolved (4D) DCEmarkers favored pharmacokinetic
modeling derived features.

• An A.I. classifier based on 86 extracted DCE features achieved a good to excellent diagnostic performance as measured by the
area under the ROC curve with 80.6% (training dataset) and 83.5% (testing dataset).

• Testing the resulting A.I. classifier showed the potential to lower the number of unnecessary biopsies of benign breast lesions by
up to 36.2%, p < .001 at the cost of up to 4.5% (n = 4) false negative low-risk cancers.
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Abbreviations
A.I. Artificial intelligence
ANN Artificial neural network
AUC Area under the curve
BI-RADS Breast Imaging Reporting and Data System
bMRI Breast MRI
CLAIM Checklist for Artificial Intelligence in Medical

Imaging
CM Contrast medium
DCE Dynamic contrast enhanced
DCIS Ductal carcinoma in situ
DICOM Digital Imaging and Communications in

Medicine
EES Extravascular extracellular space
EUSOBI European Society of Breast Imaging
FDA US Food and Drug Administration
Gd-DTPA Gadoteric acid
NST “No specific type” (former invasive ductal car-

cinoma or not otherwise specified (NOS))
PACS Picture Archiving and Communication System
PCA Principal component analysis
ROC Receiver operating characteristic
SI Signal intensity

Introduction

Due to its superior sensitivity, dynamic contrast-enhanced
(DCE) magnetic resonance imaging (MRI) of the breast
(bMRI) is an established diagnostic tool for screening in high-
risk patients and problem-solving in equivocal and unclear
breast lesions detected by mammography or ultrasound as well
as monitoring of response to treatment [1, 2]. Recently, convinc-
ing evidence has been published supporting the use of bMRI in
intermediate-risk screening such as in women with extremely
dense breasts, likely to increase the demand for bMRI examina-
tions in the future [3–5]. In bMRI, the main criterion for identi-
fying suspicious lesions is contrast enhancement. While a lack
of contrast enhancement practically excludes cancer, contrast
enhancing lesions potentially raise suspicion for malignancy.

The diagnostic challenge in bMRI remains to distinguish be-
tween benign and malignant enhancement [6, 7]. In women
referred to biopsy due to BI-RADS 4 or 5 findings, a majority
of these lesions of 40.2–84.6% yield benign results [8–10].
These false positive findings requiring additional image-guided
interventions should be kept to a minimum due to high and
expensive demands regarding personnel and magnet time [2].
Therefore, methods for avoiding false positive MR BI-RADS
category assignments are warranted. Previous research efforts
used either further MRI techniques [11–13] or dedicated clinical
decision rules based on morphologic and kinetic BI-RADS
criteria [14]. While the results of these approaches were encour-
aging, additional measurements increase magnet time and

clinical decision rules require human feature interpretation.
Even though clinical decision rules may reduce image interpre-
tation differences due to different experience levels [15], inter-
reader variation remains [16]. To take advantage of the high
sensitivity of bMRI without causing too many recalls including
biopsy recommendations, computational information–centered
A.I. methods such as radiomics and machine learning are desir-
able. Radiomics is an increasingly important field in medicine,
providing imaging-derivedmarkers automatically extracted from
large amounts of data that are beyond human recognition [17].

Initial approaches focused on automatized signal-intensity
time curve evaluation, demonstrating comparable results as hu-
man readers [18]. Williams et al [19] found that semiautomatic
software analysis of lesion enhancement kinetics facilitated the
interpretation of bMRI exams, leading to a better discrimination
of benign and malignant lesions. By applying their software to
biopsied lesions, they were able to demonstrate a reduction of
the false positive rate (corresponding to avoidable biopsies) by
up to 23% using semiautomatic determination of enhancement
kinetics. In a methodologically comparable setting, Gweon et al
[20] reported a potential reduction of biopsies of benign lesions
by 53%. Applied to non-mass lesions, Vag et al [21] also found
computer-aided analysis of contrast enhancement kinetics could
improve breast cancer diagnosis, though not accurate enough to
rely on BI-RADS enhancement kinetics as a single diagnostic
criterion. The latter results are in line with multiple publications
that support the combination of information from multiple
image-derived contrasts and criteria to ensure sufficient diagnos-
tic certainty to support clinical decision-making [6, 10, 22–25].

Notably, as DCE is the backbone of bMRI, hypothesis-
driven research has led to well-established pharmacokinetic
models, most importantly the Tofts model providing parame-
ters reflecting tissue vascularization properties. One of those
parameters ktrans (i.e., transfer constant of contrast medium
(CM) from plasma compartment into the extravascular extra-
cellular space (EES)) reflects the contrast medium influx in
the investigated tissue. Malignant lesions show a higher net
capillary diameter and a higher vascular permeability leading
to higher ktrans values as compared to benign lesions. The
second parameter is ve (i.e., EES per tissue volume) which
describes the extracellular extravascular distribution volume.
Due to an increased cellularity and desmoplastic changes, it is
decreased in malignant lesions. The combination of these two
parameters shapes the dynamic enhancement curve and both
have been linked to the biological behavior of such character-
ized tissue [26–28]. Radiomics can combine this physiologi-
cal information derived from temporally and spatially re-
solved (= 4D) DCE data with machine learning.

Our objective was to evaluate such a 4D radiomics ap-
proach using DCE-bMRI. The diagnostic task was to distin-
guish benign from malignant enhancing breast lesions for
aiding radiologists in clinical decision-making with the aim
to avoid unnecessary biopsies.
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Materials and methods

Study design

This retrospective, single-center, cross-sectional observational
diagnostic study was approved by the local ethical review
board (Friedrich Schiller Universität Jena), waiving the need
for informed consent. The patient-related data were de-
identified and handled in accordance with standards of good
scientific practice. Study design, manuscript editing and
reporting of findings, was done with respect to the CLAIM
guidelines [29]. Data generated or analyzed during the study
are available from the corresponding author by request.

Patients

We included consecutive women who underwent bMRI from
03/2005 to 10/2006 at the department of Institute of Diagnostic
and Interventional Radiology, University Hospital Jena,
Germany, for suspicious or unclear findings (BI-RADS 0, 4,
or 5) in mammography or ultrasound. Mammography and/or
ultrasound were either performed for screening reasons or as
diagnostic workup in symptomatic women (e.g., palpable
lump), hence representing the routinely imaged patient popula-
tion for staging and problem-solving bMRI [10, 12, 22]. Final
multimodal assessment of the included lesions was rated BI-
RADS 4 or 5 in a double reading approach of two out of four
radiologists with 5–25 years of breast imaging experience.
Consequently, all underwent histological verification after
bMRI by means of ultrasound-guided 14G core biopsy or
MRI-guided 9G console-based vacuum-assisted breast biopsy.
All malignant lesions and all lesions of uncertain malignant
potential (B3 [30]) underwent surgery. Surgery was also per-
formed in single cases where radio-pathological congruence
could not be established (highly suspicious findings with histo-
logical results suggesting a missed biopsy target). For the refer-
ence standard, histopathological diagnoses were dichotomized
into benign vs malignant. Examinations performed after neoad-
juvant chemotherapy were excluded from further analysis
avoiding bias due to altered enhancement data. The final study
dataset contained 329 women with 470 histologically verified
lesions.

Patients analyzed for this study have been investigated in
previous investigations with different purpose, analyses, and
results [18].

MRI scanner and imaging technique

Imaging was performed according to international standards
[1, 31, 32] on clinical 1.5T magnetic resonance imaging units
(Magnetom Sonata and Magnetom Symphony, Siemens
Healthineers) using dedicated bilateral receive-only 4-channel
breast coils. The imaging protocol included 8 dynamic axial

T1-weighted spoiled gradient echo (repetition time 113 ms,
echo time 5 ms, flip angle 80°, spatial resolution 1.1 × 0.9 × 3
mm, 33 slices, interslice gap depending on breast size 0–20%,
temporal resolution 60 s) measurements, one before and 7
after IV contrast media (0.1 mmol/kg of Gd-DTPA). The con-
trast medium was administered intravenously as a rapid bolus
(3 mL/s), by an automatic injector (Spectris, Medrad).
Subtractions of precontrast images from the postcontrast dy-
namic images were performed automatically by the scanner
software.

Image analysis

All image data was analyzed by commercially available soft-
ware (currently available as DynaCAD, a class 2 FDA cleared
medical product, registration number 892.2050). Data analy-
sis was performed by two readers blinded towards the histo-
pathological outcome supervised by a breast imaging expert
(P.B.). Readers received special training (n = 300 independent
exams with histological verification) both in bMRI and in
handling the software.

Preprocessing and lesion segmentation

After transfer of the non-manipulated DICOM data via the
local Picture Archiving and Communication System
(PACS), preprocessing included automated elastic motion
registration. The registered dynamic series were color-coded
using thresholds for initial and delayed phase enhancement
using one pre- (P0) and two postcontrast time points (P1 early,
P2 delayed after 1 min and 7 min, respectively). The initial
change in signal intensity (wash-in) from P0 to P1 was re-
quired to pass a threshold of 33% relative signal increase. If
this threshold was passed, the early phase enhancement could
be categorized as follows: (i) 33–50% (slow), (ii) > 50–100%
(medium), and (iii) > 100% (fast) signal increase. The curve
type was further categorized by the delayed enhancement be-
tween P1 and P2 as follows: (i) persistent increase (> 10%
signal increase), (ii) plateau (stable signal ± 10%), and (iii)
wash-out (> 10% signal decrease). These criteria gave a total
of 9 curve type combinations (see supplemental digital
content 1 for illustration of curve types). Voxels not passing
the initial enhancement threshold were excluded from the
analysis. Pharmacokinetic mapping was performed using the
Tofts model with population-based arterial input function and
T1 time.

Enhancing lesions were segmented in a supervised manner
using an automated multislice 3D segmentation procedure
provided by the software (Fig. 1). The interaction with the
software was by manually selecting a lesion for analysis by
clicking on it. If the automated segmentation failed in single
cases due to diffuse, extensive enhancements, a manual seg-
mentation could be performed. Segmentation results were
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controlled by the study supervisor based on multimodal im-
aging data and histopathological reports (P.B.).

Image data extraction

After lesion segmentation, the software displayed the follow-
ing image features, yielding a total of 86 parameters, which
were used for further evaluation and diagnostic model
building.

1. Pre-contrast T1w signal intensities and signal intensities
of all threshold-passing voxels at all time points after CM
injection (n = 8, mean curve)

2. Automatically chosen voxel clusters (3 by 3) within the
whole segmented lesion presenting the most suspicious
curve types:

a. Maximum wash-in curve signal intensities (including
one precontrast scan, n = 8)

b. Relative maximum wash-out curve signal intensities
(n = 7)

c. Relative maximum wash-in/wash-out curve signal in-
tensities (n = 7)

3. Distribution of subvolume percentages defined by curve
types 1–9 (n = 9; e.g., percentage of medium wash-out
voxels within the lesion)

4. Voxel-wise distribution (percentiles 10 to 90 and quar-
tiles) of pharmacokinetic parameters derived from the
Tofts model (n = 33, iAUC, ktrans, ve)

Consequently, results were exported into a database and
additional secondary parameters were calculated (Excel in
Office 365, Microsoft, US):

5. Relative wash-out rates (defined as: relSI
initial–relSI

delayed)
using the first and second (peak) postcontrast time points
as reference points, leading to two values per curve (n = 8;

mean, maximum wash-in, maximum wash-out, maxi-
mum wash-in/wash-out)

6. Overall lesion percentage of wash-out (i–iii/III), plateau
(i–iii/II) and persistent (i–iii/I) curve types (n = 3).

7. Interquartile ranges for iAUC, ktrans and ve (n = 3).

Examples for malignant and benign lesions are given in
Fig. 2 and Fig. 3.

Data dimension reduction and diagnostic model
building

Principal component analysis using all 86 extracted pa-
rameters was used for data dimension reduction. An
eigenvalue cutoff of 3 as suggested by our statistician
was set and all components showing higher eigenvalues
saved for further analysis and model building. To build
a diagnostic A.I. classifier, an artificial neural network
(ANN) using multilayer perceptron architecture was
trained. The input layer consisted of the principal com-
ponent analysis (PCA) extracted components, the output
layer was the probability of malignancy in a binary
benign vs malignant task. The ANN architecture includ-
ing the number and nodes of hidden layers, activation
function (hyperbolic tangent or sigmoid), and the num-
ber of training epochs was automatically chosen based
on classification performance improvement. The initial
constraints for the number of units within the hidden
layer was set to range between one and 50. Training
was done in batch mode using the scaled conjugant
grading algorithm for optimization. Initial lambda was
set to 5 × 10−7, initial sigma to 5 × 10−5. The number
of training epochs was automatically chosen with the
minimum relative change in training error set to
0.0001 and the minimum relative change in training
error ratio set to 0.001. The A.I. classifier was trained
on 70% of the cases, leaving 30% as an independent

Fig. 1 Example for automated lesion segmentation in a 49-year-old
woman with her2 type invasive breast cancer not otherwise specified
(NST) in the medial right breast (a, coded red on the parametric map).
After marking the lesion by a single mouse-click, an irregular mass is

accurately delineated in a volumetric manner (b, only one slice shown
here). Subsequently, the ultimately benign lesion (c, lateral right breast) is
segmented automatically after marking it with one mouse-click
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testing sample out of the same data source. All calcula-
tions were performed using SPSS version 25, 2017
(SPSS Inc., IBM).

Diagnostic performance statistics

The diagnostic performance of the constructed A.I. clas-
sifier to distinguish benign from malignant breast le-
sions as determined by histopathology as the reference
standard was assessed using ROC analysis. The differ-
ence of the calculated AUCs against chance was tested
and considered significant if p ≤. 05. Cutoffs with high
sensitivity (100%, C1; ≥ 95%, C2) were identified in the
training dataset and then applied on the testing dataset
to estimate the potential of the A.I. classifier to avoid
unnecessary biopsies which equals the specificity be-
cause the patient population consisted only of suspicious
biopsied findings. At the same time, the number of
missed (false negative) cancers at these cutoffs could
be determined. Medcalc version 19, 2019 (Medcalc
Software Ltd.) was used for all ROC analyses.

Results

Dataset: patients and lesions

In 329 patients (mean age 55.1 years, range 18–85 years)
included, a total of 470 lesions were histologically verified
(Table 1, Fig. 4). Of those, 295 (62.8%) were found to be
malignant and 175 (37.2%) benign with a lesion size ranging
from 5 to 91 mm. The median lesion size was 16 mm with an
interquartile range of 13 mm.

By means of random allocation, approximately 70% of the
lesions were used as training and 30% as testing dataset.
Finally, 313 lesions (66.6%, 207 malignant) were assigned
as training and 157 (33.7%, 88 malignant) as testing cases.

Principal component analysis of the extracted
features

Eighty-six MRI features were extracted from semi-automatic
image analysis. PCA of these features separated 5 main com-
ponents within the dataset. The component matrix revealed
that the main variables influencing component 1 were related

Fig. 2 Visualization example of the volumetric analysis of a poorly
differentiated (high grade, G3) invasive ductal cancer, not otherwise
specified (NST) in a 54-year-old woman. a The segmentation also shown
in Fig. 1, (b) the distribution of enhancement curve types as defined in the
methods section (red: wash-out; green: plateau enhancement; blue: per-
sistent enhancement; the shades denote the initial enhancement: dark:
slow, intermediate: medium, bright: fast). c A histogram of ktrans while
E shows a histogram of ve values. The signal-intensity time curves for the

whole lesion (white), the maximum initial enhancement (purple), the
maximum wash-out (green), and the maximum initial enhancement to
wash-out curve (turquoise) are shown in d. The figure presents some of
the visualization methods provided by the software used for image data
analysis. All raw data were exported voxel-wise for further analysis as
specified in the methods section. The A.I. classifier provided a pseudo-
probability of malignancy of 77% which was above both C1 and C2

thresholds
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to volumetric ktrans distribution while component 2 was main-
ly influenced by volumetric ve distribution. Component 3 was
mainly influenced by the signal intensity changes over time of
the maximum wash-out curve and wash-in to wash-out curve
and component 4 mainly by the signal intensity changes of the
maximumwash-in curve. Finally, component 5 showedmajor
relationships with the lesion volume average signal intensity
changes over time (mean curve) and the relative distribution
of plateau and persistent curve type voxels (see table,
supplemental digital content 2, giving details on component
composition).

Diagnostic performance of the A.I. classifier

The trained multilayer perception MLP 5:3:2 A.I. classifier
yielded a highly significant (p < .001) AUC of 80.6% (95%
CI: 75.8–84.8%). On the testing dataset, the A.I. classifier
achieved a highly significant (p < .001) AUC of 83.5%
(95% CI: 76.8–89.0%). Single predictor importance and A.I.

classifier architecture is given in figures supplemental digital
content 3 and supplemental digital content 4.

Potential of the A.I. classifier to avoid unnecessary
biopsies

Training set C1 was identified at a predicted pseudo-
probability of > 0.1741, yielding a sensitivity of 100%
and a specificity of 9.4%. C2 conditions were fulfilled
at a predicted pseudo-probability > 0.2564, achieving a
sensitivity of 95.2% and a specificity of 42.5%. At C1,
10 of 106 (9.4%) unnecessary biopsies yielding benign
results were rated true negative by the ANN classifier,
with 0 false negative findings. At C2, the number of
benign lesions correctly identified as benign was 45/
106 (42.5%), yielding 10/207 (4.8%) false negative
findings. The majority (8/10) of the false negative le-
sions were either non-invasive cancers (DCIS, n = 6) or
low-risk invasive cancers (luminal A type, i.e., ER-/PR-
positive, Her2-negative, and low proliferation index Ki-

Fig. 3 Visualization example of the volumetric analysis of a
fibroadenoma B2 (benign finding in biopsy, no further procedure
needed) in a 34-year-old woman. a The segmentation also shown in
Fig. 1, (b) the distribution of enhancement curve types as defined in the
methods section (red: wash-out; green: plateau enhancement; blue: per-
sistent enhancement; the shades denote the initial enhancement: dark:
slow, intermediate: medium, bright: fast). c A histogram of ktrans, e a
histogram of ve values. The signal-intensity time curves for the whole

lesion (white), the maximum initial enhancement (purple), the maximum
wash-out (green), and the most suspect curve (turquoise) are shown in d.
The figure presents some of the visualization methods provided by the
software used for image data analysis. All raw data were exported voxel-
wise for further analysis as specified in the methods section. The A.I.
classifier provided a pseudo-probability of malignancy of 6% which
was below both C1 and C2 thresholds
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67; n = 2). The remaining two false negative lesions
were moderately differentiated/intermediate grade (G2)
her2-positive invasive lobular cancers.

In the testing sample, evaluating the performance of the
predefined A.I. classifier cutoff C1 (> 0.1741) led to a sensi-
tivity of 100% and a specificity of 14.5%. Applying C2 (>
0.2564) resulted in a sensitivity of 95.5% and a specificity of

36.2%. Ten of 69 (14.5%, C1) and 25 of 69 (36.2%, C2) of the
benign lesions were correctly identified while yielding 0 (C1)
and four of 88 (4.5%, C2) false negative cancers. This resulted
in a PPV of 60.0% (C1) and 65.6% (C2) and a NPV of 100%
(C1) resp. 86.2% (C2) with an accuracy of 62.4% (C1) and
69.4% (C2). False negative lesions within the testing sample
consisted of either non-invasive cancers (DCIS, n = 3) or low-

Table 1 Histopathological lesion
characteristics % total % subgroup

Malignant 295 62.8%

Typing

IDC 229 76.6%

ILC 26 8.8%

DCIS 22 7.5%

Other 18 6.1%

Immunohistochemical characteristics

HR+, her2neu− 137 46.4%

HR+, her2neu+ 38 12.9%

HR−, her2neu+ 35 11.9%

HR−, her2neu− 59 20.0%

Missing/n.a. 26 8.9%

Benign 175 37.2%

Fibroadenoma 41 23.4%

Epithelial proliferations, adenosis 76 43.4%

Papilloma 33 18.9%

Phyllodes 2 1.1%

Inflammation 12 6.9%

Fibrosis, non-proliferative changes 11 6.3%

IDC invasive ductal cancer no specific type (NST), ILC invasive lobular cancer, DCIS ductal carcinoma in situ,
other: invasive mucinous, invasive papillary cancer; malignant phyllodes, metastases; HR hormonal receptor; +,
positive; −, negative

Fig. 4 Receiver operating characteristics (ROC) curves for the training (a) and testing (b) datasets. Detailed results are given in the Results section and
Table 2
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risk invasive cancer (NST, well differentiated /low grade, i.e.,
G1, luminal A type; n = 1, Table 2).

Discussion

We demonstrate that the investigated temporally and spatially
resolved (4D) radiomics approach on DCE images can distin-
guish benign from malignant enhancing breast lesions. Using
a high-sensitivity cutoff for malignancy could potentially have
avoided 15% (C1) of the biopsies of breast lesions with final
benign outcomes without false negatives. The rate of avoid-
able biopsies could have been increased up to 36.2% (C2) at
the cost of 3 missed non-invasive DCIS and one missed lumi-
nal A type IDC.

In a variety of indications, bMRI is increasingly recognized
as a powerful diagnostic tool [1, 2, 33]. Recent years have
brought several publications unambiguously demonstrating
the added value of bMRI in intermediate-risk screening [3, 4,
34]. These studies pave the ground for tailored screening ap-
proaches where bMRI could be applied in women with
mammographically extremely dense breasts. One of the major
issues when using bMRI as an additional diagnostic tool is the
workup of lesions only visible on MRI [2, 33, 35]. While some
of these lesions can be visualized by targeted ultrasound exam-
inations, additional second-look ultrasound examinations re-
quire substantial personnel, and, though less expensive than
MRI-guided biopsies, money. MRI-guided biopsies are effec-
tive for diagnosing breast cancer but invasive and time consum-
ing [2, 35]. In addition, a survey by the European Society of
Breast Imaging (EUSOBI) pointed out a shortage regarding
MRI-guided invasive procedures in Europe [2]. Therefore,
methods for avoiding false positive MR BI-RADS category
assignments are warranted. Previous research efforts used ei-
ther further MRI techniques [11–13] or dedicated clinical deci-
sion rules based on morphologic and kinetic BI-RADS criteria
[14]. While the results of these approaches were encouraging,
additional measurements increase magnet time and clinical de-
cision rules require human feature interpretation. Even though
clinical decision rules may reduce difficulties in image

interpretation, differences due to different experience levels
[15] and inter-reader variation remain [16].

Therefore, recent years have seen the rise of quantitative
multi-dimensional analysis of imaging data which are consid-
ered to reflect underlying phenotypes of neoplastic disease,
now referred to as radiomics [36]. There is a growing number
of publications on this topic, using variable software systems,
data analysis, and classification techniques with different focus
and endpoints, making comparison of performance and out-
come challenging [37]. Technical issues regarding study com-
parability include image analysis, preprocessing, normalization,
feature reduction, and neural network structure [37–40]. For
clinically applicable study results, an endpoint relevant for clin-
ical decision-making should be defined. In clinical management
of breast lesions, unnecessary biopsies remain a major clinical
issue. To estimate the value of additional tests including
radiomic classifiers, high-sensitivity cutoffs in biopsied patient
populations may estimate the rate of potentially avoidable bi-
opsies [12, 14, 16, 19, 20, 24]. Using automatic analysis of
classical kinetic and pharmacokinetic parameters to build a vol-
umetric 4D radiomic ANN classifier, we found about 15% (C1)
respectively 36% (C2) potentially avoidable biopsies in a setting
of MRI-suspicious breast lesions with histological verification.
The diagnostic accuracy reported therefore equals the possible
improvement of lesion characterization by the establishedANN
over initial human interpretation (who assigned the initial BI-
RADS categories and biopsy recommendations) in the investi-
gated setting. Truhn et al [41] reported on a radiomic and deep
learning study to distinguish benign and malignant lesions in
bMRI based on T2-weighted and dynamic contrast-enhanced
image-derived features. Though their results were encouraging,
diagnostic performance estimates were below human readers
and the impact of clinical decision-making (i.e., to perform or
not perform a biopsy) was not investigated. Advantages of our
approach include the following: commercially available soft-
ware with transparent underlying algorithms and the inclusion
of DCE data reflecting physiological information as compared
to agnostic criteria without underlying physiological back-
ground. Further, we chose a defined and clinically relevant
setting and endpoint (avoidable biopsies), a sufficiently large

Table 2 Diagnostic performance
of the ANN Sensitivity (TP/TP + FN) 95% CI Specificity (TN/TN + FP) 95% CI +LR −LR

Training set (n = 313)

C1 100% (207/207) 98.2–100% 9.4% (10/106) 5.2–16.5% 1.1 0

C2 95.2% (197/207) 91.3–97.7% 42.5% (45/106) 33.5–52.0% 1.7 0.1

Test set (n = 157)

C1 100% (88/88) 95.9–100% 14.5% (10/69) 7.2–25% 1.2 0

C2 95.5% (84/88) 88.8–98.7% 36.2% (25/69) 25.0–48.7% 1.5 0.1

ANN artificial neural network, TP true positive, TN true negative, FP false positive, FN false negative, +/−; LR
likelihood ratio, C1, 100% sensitivity cutoff; C2, > 95% sensitivity cutoff
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database and a split sample validation. Recently, Verburg et al
[5], in a screening setting on women with extremely dense
breasts including 85% of benign lesions, found 41.5% respec-
tive 26.2% of avoidable biopsies in recalled patients via a
radiomic model based on 46 imaging and 3 clinical parameters
using a multiparametric or abbreviated MRI protocol. Another
study by Illan et al [42] focused on the clinically challenging
non-mass lesions in bMRI and provided automatic segmenta-
tion, aiding visual analysis of contrast enhancement kinetics for
inexperienced and expert readers. Next to facilitating lesion
characterization, a radiomics method incorporating prior
knowledge on physiological enhancement characteristics has
been shown useful for predicting survival in patients with pri-
mary breast cancer, based on automatically extracted contrast
enhancement kinetics and volumetric features [43].

Vascular properties can be quantified by DCE measure-
ments including pharmacokinetic mapping. The main compo-
nents of our model were primarily composed of the volumetric
characteristics (histogram parameters) of ktrans (component 1)
and ve (component 2), which are known to be closely related
to vascular net diameter and permeability (ktrans) and extracel-
lular compartment properties (ve). Notably, and in line with
other investigations on malignant tissue characterization, it
was not only the parameters themselves but their spatial dis-
tribution characteristics that independently contributed to le-
sion diagnosis, stressing the value of a volumetric approach
[27]. The other three identified main components were mostly
dependent on enhancement kinetics such as wash-in and
wash-out, matching the BI-RADS criteria for raising suspi-
cion for cancer [44].

Some limitations of the presented study have to be ad-
dressed. First, our study was designed retrospectively with
an inherent selection bias towards clinically challenging cases,
which were referred to biopsy. Consequently, the prevalence
of malignant lesions in our study is higher compared to the
general population. Moreover, the study was conducted in a
high prevalence setting resulting in a database that included a
mix of lesions that were visible on conventional images or
bMRI. Therefore, the results must be called exploratory at this
stage and cannot be directly generalized, e.g., to screening
recalls. Nevertheless, this design allows to assess a clinically
relevant endpoint: avoidable biopsies in benign lesions. Using
only MRI-suspicious lesions that underwent histological con-
firmation results in a database consisting only of true positive
and false positive lesions referring to the initial clinical read by
the reporting radiologists. Therefore, diagnostic performance
estimates directly translate into improved diagnostic accuracy
and allow measuring the rate of potentially avoidable biopsies
and their costs in false negative results. We did not perform a
dedicated reproducibility analysis of the automated lesion seg-
mentation and feature extraction. Our clinical experience with
the software used along with the underlying segmentation
algorithm suggests very little variation, which might only be

possible in very noisy data or very large and ill-defined en-
hancements. The approach of using a single vendor system on
single vendor image data might be considered a limitation.
However, the DCE-derived volumetric parameters used for
this study did not use higher dimensional texture features that
may be prone to vendor-specific bias. While our results that
are based on MR images acquired according to international
recommendations are encouraging, we can envision an even
higher diagnostic potential using MRI techniques achieving
higher temporal and spatial resolution. Finally, our explorato-
ry results, though proven robust upon split sample validation,
require independent, preferably prospective testing to demon-
strate their clinical applicability. In addition, future research
may also include a number of other established parameters,
such as shape and textural features as well as T2-weighted
features [8, 41].

In conclusion, the investigated temporally and spatially re-
solved (4D) radiomics approach revealed a high diagnostic
ability to distinguish between benign and malignant lesions
without requiring subjective reader interpretation. Applying
the proposed ANN, a relevant number of unnecessary biopsies
on benign lesions could have been averted automatically, fa-
cilitating the workflow for radiologists and reducing the bur-
den for patients.
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